next contents properties index

®

W3C

Scalable Vector Graphics (SVG) 1.0
Specification

W3C Candidate Recommendation 2 August 2000

Thisversion:
http://www.w3.org/TR/2000/CR-SV G-20000802/

(Available as. PDF, zip archive of HTML)
Latest version:
http://www.w3.org/ TR/SVG/
Previous version:
http://www.w3.0rg/TR/2000/WD-SV G-20000629/
Editor:
Jon Ferraiolo <jferraio@adobe.com>
Authors:
See author list

Copyright ©1998, 1999, 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply.

Abstract

This specification defines the features and syntax for Scalable Vector Graphics (SVG), alanguage for
describing two-dimensional vector and mixed vector/raster graphicsin XML.

Status of this document

Thisisthe Candidate Recommendation of the Scalable Vector Graphics (SVG) 1.0 specification. This means
that the SV G Working Group (Members-only) considers the specification to be stable and encourages
implementation and comment on the specification during this period. The Candidate Recommendation review
period ends when there exists at least one SV G implementation which passes each of the Basic Effectivity (BE)

file:///D|/Public/CR-SVG-20000802/indexlist.html
http://www.w3.org/
http://www.w3.org/TR/2000/CR-SVG-20000802/index.html
http://www.w3.org/TR/2000/CR-SVG-20000802/CR-SVG-20000802.pdf
http://www.w3.org/TR/2000/CR-SVG-20000802/CR-SVG-20000802.zip
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/2000/WD-SVG-20000629/
mailto:jferraio@adobe.com
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Graphics/SVG/Group

testsin the SVG test suite. Due to the already very good implementation status of SV G, we anticipate thisto

take approximately one month. Please send review comments before the review period ends to
svg-comments@wa3.0rg.

Should this specification prove very difficult or impossible to implement, the Working Group will return the
document to Working Draft status and make necessary changes. Otherwise, the Working Group anticipates
asking the W3C Director to advance this document to Proposed Recommendation.

ThisisaW3C Working Draft for review by W3C Members and other interested parties. It is adraft document
and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to use W3C
Working Drafts as reference material or to cite them as other than "work in progress’. Thisiswork in progress
and does not imply endorsement by, or the consensus of, the W3C Membership.

This document has been produced as part of the Graphics Activity. The authors of this document are the SVG
WG members. The editor is Jon Ferraiolo.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.0rg/TR/.

Quick Table of Contents

e 1 Introduction

« 2 Concepts
¢ 3 Rendering Model

e 4 Basic Data Types and Interfaces

« 5 Document Structure

o 63Styling

7 Coordinate Systems, Transformations and Units
- 8Paths

o 9 Basic Shapes

o 10 Text

o 11 Painting: Filling, Stroking and Marker Symbols
« 12 Color

» 13 Gradients and Patterns

« 14 Clipping, Masking and Compositing

« 15 Filter Effects

« 16 Interactivity

e 17 Linking

» 18 Scripting

o 19 Animation

o 20 Fonts

http://www.w3.org/Graphics/SVG/Test
http://www.w3.org/Graphics/SVG/SVG-Implementations
mailto:svg-comments@w3.org
http://www.w3.org/Graphics/Activity
http://www.w3.org/TR/

o 21 Metadata

o 22 Backwards Compatibility

« 23 Extensibility

o Appendix A: DTD

« Appendix B: SVG's Document Object Model (DOM)
« Appendix C: IDL Definitions

« Appendix D: Java L anguage Binding

« Appendix E: ECMA Script Language Binding

« Appendix F: Implementation Requirements

o Appendix G: Conformance Criteria

o Appendix H: Accessibility Support

o Appendix |: Internationalization Support

o Appendix J: Minimizing SVG File Sizes

o Appendix K: References

o Appendix L: Property index

o Appendix M: Change History

The following sections have not been written yet, but are expected to be be present in later versions of this
specification:

« Appendix N: Element and attribute index

« Appendix O: Index

Full Table of Contents

« 1 Introduction
o 1.1About SVG
o 1.2 SVG MIME type, file name extension and Macintosh filetype
o 1.3 Compatibility with Other Standards Efforts
o 1.4 Terminology
o 1.5 Definitions
« 2 Concepts
» 3 Rendering Model
o 3.1 Introduction

o 3.2 The painters model
o0 3.3 Rendering Order

o 3.4 Grouping

o 3.5 Types of graphics elements

= 3.5.1 Painting shapes and text

» 3.5.2 Painting raster images

o 3.6 Filtering painted regions

o 3.7 Clipping, masking and object opacity

o 3.8 Parent Compositing

o 4 Basic Data Types and Interfaces

0 4.1 Basic data types

o 4.2 Recognized color keyword names
o 4.3 Basic DOM interfaces
o 5 Document Structure

o 5.1 Defining an SV G document fragment: the 'svg' e ement

= 5.1.1 Overview

s 5.1.2 The'svg' element

o 5.2 Grouping and Naming Collections of Drawing Elements; the 'g' element

» 5.2.1 Overview
= 5.2.2The'q element

o 5.3 References and the 'defs element
= 53.1 Overview
= 5.3.2 URI reference attributes
» 5.3.3 The'defs element

0 5.4 The'desc' and 'title' elements

o 5.5 The'symbol' element

o 5.6 The'use element

o 5.7 The'image' element

o 5.8 Conditional processing

= 5.8.1 Conditional processing overview
= 5.8.2 The 'switch' element

= 5.8.3 The requiredFeatures attribute

» 5.8.4 The requiredExtensions attribute
= 5.8.5 The systeml anguage attribute

o 5.9 Common attributes
s 5.9.1 Theid attribute

s 5.9.2 The xml:lang and xml:space attributes

= 5.9.3 The external ResourcesRequired attribute
o 5.10 DOM interfaces
« 6Styling
o 6.1 SVG's styling properties

o 6.2 Usage scenarios for styling

o 6.3 Alternative ways to specify styling properties

o 6.4 Specifying properties using the presentation attributes

o 6.5 Entity definitions for the presentation attributes
0 6.6 Styling with XSL

o 6.7 Styling with CSS

o 6.8 Facilitiesfrom CSS and XSL used by SVG

0 6.9 Referencing external style sheets

o 6.10 The 'style’ element

0 6.11 The class attribute

0 6.12 The style attribute

o 6.13 Specifying the default style sheet language

0 6.14 Property inheritance

0 6.15 The scope/range of styles
0 6.16 User agent style sheet

0 6.17 Aural style sheets

0 6.18 DOM interfaces

o 7 Coordinate Systems, Transformations and Units

o 7.1 Introduction

o 7.2 Theinitia viewport

o 7.3 Theinitial coordinate system

o 7.4 Coordinate system transformations

o 7.5 Nested transformations

o 7.6 The transform attribute

o 7.7 TheviewBox attribute

o 7.8 The preserveAspectRatio attribute

o 7.9 Establishing a new viewport

o 7.10 Units

o 7.11 Redefining the meaning of unit identifiers

o 7.12 Object bounding box units

o 7.13 Processing rules when using absolute unit identifiers and percentages
o 7.14 DOM interfaces
- 8Paths
o 8.1 Introduction
o 8.2 The'path' element
o 8.3 Path Data
= 8.3.1 Genera information about path data
= 8.3.2 The"moveto" commands

s 8.3.3 The"closgpath" command

s 8.3.4 The"lineto" commands

= 8.3.5 The curve commands

= 8.3.6 The cubic Bézier curve commands

s 8.3.7 The quadratic Bézier curve commands

= 8.3.8 Thedliptical arc curve commands
= 8.3.9 The grammar for path data
o 8.4 Distance along a path
o 8.5 DOM interfaces
« 9 Basic Shapes

o 9.1 Introduction

o 9.2 The'rect' element

o 9.3 The'circle' element
o 9.4 The'dllipse’ element
o 9.5The'lin€ e ement

o 9.6 The'polyline' element

o 9.7 The'polygon' e ement

o 9.8 The grammar for points specificationsin 'polyline’ and 'polygon’ elements
o 9.9 DOM interfaces

o« 10 Text
o 10.1 Introduction

o 10.2 Characters and their corresponding glyphs
o 10.3 Fonts, font tables and baselines

o 10.4 The 'text' element

o 10.5 The 'tspan’ element

o 10.6 The 'tref' element

O

O

O

10.7 The 'glyphRun' e ement

10.8 Text layout

» 10.8.1 Text layout introduction

= 10.8.2 Setting the inline progression direction

= 10.8.3 Glyph orientation within a text run
» 10.8.4 Relationship with bidirectionality
10.9 Alignment properties

s 10.9.1 Text alignment properties

» 10.9.2 Basdline alignment properties

10.10 Font selection properties

10.11 Spacing properties

10.12 Text decoration

10.13 Text on a path

= 10.13.1 Introduction to text on a path

= 10.13.2 The 'textPath' element

» 10.13.3 Text on a path layout rules
10.14 Alternate glyphs

10.15 White space handling

10.16 Text selection

10.17 DOM interfaces

e 11 Painting: Filling, Stroking and Marker Symbols

O

O

O

11.1 Introduction

11.2 Specifying paint

11.3 Fill Properties

11.4 Stroke Properties

11.5 Controlling visibility

11.6 Markers

= 11.6.1 Introduction
s 11.6.2 The 'marker' element
s 11.6.3 Marker properties

s 11.6.4 Details on how markers are rendered

11.7 Rendering properties

11.8 Inheritance of painting properties

11.9 DOM interfaces

e 12 Color
o 12.1 Introduction

o 12.2 The'color' property

o 12.3 Color profile descriptions

s 12.3.1 Overview of color profile descriptions

» 12.3.2 Alternative ways for defining a color profile description

s 12.3.3 The'color-profile' element

s 12.3.4 The 'color-profile-src' element

= 12.3.5 @color-profile’ when using CSS styling
o0 12.4 DOM interfaces
« 13 Gradients and Patterns
o 13.1 Introduction
o 13.2 Gradients
= 13.2.1 Introduction
= 13.2.2 Linear gradients
= 13.2.3 Radia gradients
» 13.2.4 Gradient stops
o 13.3 Patterns
o 13.4 DOM interfaces
« 14 Clipping, Masking and Compositing

o 14.1 Introduction

o 14.2 Simple apha compositing
14.3 Clipping paths
= 14.3.1 Introduction
s 14.3.2 Theinitial clipping path
» 14.3.3 The'overflow' and 'clip’ properties

[}

= 14.3.4 Clip to viewport vs. clip to viewBox
= 14.3.5 Establishing a new clipping path
o 14.4 Masking
o 14.5 Object and group opacity: the 'opacity’ property
o 14.6 DOM interfaces
15 Filter Effects
o 15.1 Introduction

o 15.2 An example

o 15.3 The filter' element
o 15.4 The filter' property

o 15.5 Filter effectsregion

o 15.6 Accessing the background image

o 15.7 Filter primitives overview
s 15.7.1 Overview
s 15.7.2 Common attributes

s 15.7.3 Filter primitive sub-region

o 15.8 Light source elements and properties
= 15.8.1 Introduction
= 15.8.2 Light source ‘feDistantLight'
= 15.8.3 Light source ‘fePointLight'
= 15.8.4 Light source 'feSpotLight'
= 15.8.5 The'lighting-color' property

o 15.9 Filter primitive 'feBlend'
o 15.10 Filter primitive 'feColorM atrix'
o 15.11 Filter primitive 'feComponentTransfer'

o 15.12 Filter primitive 'feComposite'

o 15.13 Filter primitive 'feConvolveMatrix'

o 15.14 Filter primitive 'feDiffuseLighting'

o 15.15 Filter primitive 'feDisplacementM ap'
o 15.16 Filter primitive 'feFlood'
o 15.17 Filter primitive 'feGaussianBlur'

o 15.18 Filter primitive 'felmage

o 15.19 Filter primitive 'feMerge

o 15.20 Filter primitive ‘feM orphology'
o 15.21 Filter primitive feOffset’
o 15.22 Filter primitive ‘feSpecularL ighting'
o 15.23 Filter primitive 'feTile
o 15.24 Filter primitive ‘feTurbulence
o 15.25 DOM interfaces
16 Interactivity

o 16.1 Introduction

o 16.2 Complete list of supported events

o 16.3 User interface events

o 16.4 Pointer events

o 16.5 Processing order for user interface events

o 16.6 The 'pointer-events property

o 16.7 Magnification, zooming and panning

o 16.8 Cursors

16.8.1 Introduction to cursors

16.8.2 The 'cursor' property

16.8.3 The 'cursor' element

o 16.9 DOM interfaces

e 17 Linking

o 17.1 Links out of SV G contents: the 'a’ element

o 17.2 Linking into SV G content: URI fragments and SV G views

17.2.1 Introduction: URI fragments and SV G views

17.2.2 SV G fragment identifiers

17.2.3 Predefined views: the 'view' element

o 17.3 DOM interfaces

« 18 Scripting

o 18.1 Specifying the scripting lanquage

18.1.1 Specifying the default scripting language

18.1.2 Local declaration of a scripting language

o 18.2 The'script' e ement

o 18.3 Event handling

o 18.4 Event attributes

o 18.5 DOM interfaces

e 19 Animation

o 19.1 Introduction

o 19.2 Animation elements

19.2.1 Overview

19.2.2 Relationship to SMIL Animation

19.2.3 Animation e ements example

19.2.4 Attributes to identify the target element for an animation

19.2.5 Attributes to identify the target attribute or property for an animation

19.2.6 Attributes to control the timing of the animation

O

O

= 19.2.7 Attributes that define animation values over time

= 19.2.8 Attributes that control whether animations are additive

= 19.2.9 Inheritance

= 19.2.10 The 'animate’ element

= 19.2.11 The 'set' element

= 19.2.12 The 'animateMotion' element

= 19.2.13 The ‘animateColor' element

= 19.2.14 The 'animateTransform' element

= 19.2.15 Elements, attributes and properties that can be animated
19.3 Animation using the SVG DOM

19.4 DOM interfaces

o 20 Fonts

O

O

O

O

20.1 Introduction

20.2 Overview of SVG fonts

20.3 The 'font' element

20.4 The 'glyph' element

20.5 The 'missing-glyph' element

20.6 The 'hkern' and 'vkern' elements

20.7 Describing afont

s 20.7.1 Overview of font descriptions

» 20.7.2 Alternative ways for providing afont description
s 20.7.3 The 'font-face' e ement
20.8 DOM interfaces

o 21 Metadata

O

O

O

O

21.1 Introduction

21.2 The 'metadata element

21.3 An example

21.4 DOM interfaces

o 22 Backwards Compatibility

o 23 Extenshility

O

O

O

O

23.1 Foreign namespaces and private data

23.2 Embedding foreign object types

23.3 The 'foreignObject' el ement

23.4 An example

o 23.5 Adding private el ements and attributes to the DTD
o 23.6 DOM interfaces
o Appendix A: DTD

o Appendix B: SVG's Document Object Model (DOM)

o B.1SVG DOM Overview

B.2 Naming Conventions

B.3 Interface SV GException

B.4 Feature strings for the hasFeatur e method call

B.5 Relationship with DOM2 events

B.6 Relationship with DOM2 CSS object model (CSS OM)

O

O

O

B.6.1 Introduction

B.6.2 User agents that do not support styling with CSS

B.6.3 User agents that support styling with CSS

B.6.4 Extended interfaces

o B.7 Invalid values
o Appendix C: IDL Definitions

Appendix D: Java L anguage Binding

o Appendix E: ECMA Script Language Binding

o Appendix F: Implementation Reguirements

o F.1 Introduction

O

O

O

F.2 Error processing

F.3 Version control

F.4 Clamping values which are restricted to a particular range

F.5 'path’ element implementation notes

F.6 Elliptical arc implementation notes

F.6.1 Elliptical arc syntax

F.6.2 Out-of-range parameters

F.6.3 Parameterization alternatives

F.6.4 Conversion from center to endpoint parameterization

F.6.5 Conversion from endpoint to center parameterization

F.6.6 Correction of out-of-range radii

o F.7 Text salection implementation notes

o F.8 Printing implementation notes

o Appendix G: Conformance Criteria

o G.1 Introduction

o G.2 Conforming SVG Document Fragments

o G.3 Conforming SVG Stand-Alone Files

o G.4 Conforming SV G Included Document Fragments
o G.5 Conforming SVG Generators

o G.6 Conforming SVG Interpreters

o G.7 Conforming SVG Viewers

« Appendix H: Accessibility Support

o H.1 WAI Accessibility Guidelines

o H.2 SVG Content Accessibility Guidelines
« Appendix |: Internationalization Support

o 1.1 Introduction

o 1.2 Internationalization and SVG

o 1.3 SVG Internationalization Guidelines
« Appendix J Minimizing SVG File Sizes

o Appendix K: References

o K.1 Normative references

o K.2 Informative references

o Appendix L: Property index

« Appendix M: Change History

The following sections have not been written yet, but are expected to be be present in later versions of this
specification:

« Appendix N: Element and attribute index

« Appendix O: Index

Authors:
John Bowler, Microsoft Corporation <johnbo@microsoft.com>

Milt Capsimalis, Autodesk Inc. <milt@autodesk.com>

Richard Cohn, Adobe Systems Incorporated <cohn@adobe.com>
David Dodds, L exica <ddodds@I exica.net>

Andrew Donoho, IBM <awd@us.ibm.com>

David Duce, Oxford Brookes University <daduce@brookes.ac.uk>

Jerry Evans, Sun Microsystems <jerry.evans@Eng.sun.com>
Jon Ferraiolo, Adobe Systems Incorporated <jferraio@adobe.com>
Scott Furman, Netscape Communications Corporation <fur@netscape.com>

mailto:johnbo@microsoft.com
mailto:milt@autodesk.com
mailto:cohn@adobe.com
mailto:ddodds@lexica.net
mailto:awd@us.ibm.com
mailto:daduce@brookes.ac.uk
mailto:jerry.evans@Eng.sun.com
mailto:jferraio@adobe.com
mailto:fur@netscape.com

Brent Getlin, Macromedia <bgetlin@macromedia.com>

Peter Graffagnino, Apple <pgraff @apple.com>
Rick Graham, BitFlash Inc. <rick@bitflash.com>
Vincent Hardy, Sun Microsystems, <vincent.hardy @sun.com>

Lofton Henderson, OASIS, <lofton@rockynet.com>

Alan Hester, Xerox Corporation <Alan.Hester@usa.xerox.com>

Bob Hopgood, RAL (CCLRC) <frah@inf.rl.ac.uk>

Dean Jackson, CSIRO <dean.jackson@cmis.csiro.au>

Christophe Jolif, ILOG <jolif @ilog.fr>

Kelvin Lawrence, IBM <klawrenc@us.ibm.com>

ChrisLilley, W3C <chris@w3.org>

Philip Mansfield, IntraNet Solutions, Inc. <philipm@schemasoft.com>

Kevin McCluskey, Netscape Communications Corporation <kmcclusk @netscape.com>
Tuan Nguyen, Microsoft Corporation <tuann@microsoft.com>

Troy Sandal, Visio Corporation <TroyS@visio.com>

Peter Santangeli, Macromedia <psantangeli @macromedia.com>
Haroon Sheikh, Corel Corporation <haroons@corel.ca>

Gavriel State, Corel Corporation <gavriel S@QCOREL.CA>

Robert Stevahn, Hewlett-Packard Company <rstevahn@boi.hp.com>

Timothy Thompson, Kodak <timothy.thompson@kodak.com>

Shenxue Zhou, Quark <szhou@quark.com>

next contents properties index

WiC

ML W3 css b

mailto:bgetlin@macromedia.com
mailto:pgraff@apple.com
mailto:rick@bitflash.com
mailto:vincent.hardy@sun.com
mailto:lofton@rockynet.com
mailto:Alan.Hester@usa.xerox.com
mailto:frah@inf.rl.ac.uk
mailto:dean.jackson@cmis.csiro.au
mailto:jolif@ilog.fr
mailto:klawrenc@us.ibm.com
mailto:chris@w3.org
mailto:philipm@schemasoft.com
mailto:kmcclusk@netscape.com
mailto:tuann@microsoft.com
mailto:TroyS@visio.com
mailto:psantangeli@macromedia.com
mailto:haroons@corel.ca
mailto:gavriels@COREL.CA
mailto:rstevahn@boi.hp.com
mailto:timothy.thompson@kodak.com
mailto:szhou@quark.com
file:///D|/Public/CR-SVG-20000802/indexlist.html
http://validator.w3.org/
http://jigsaw.w3.org/css-validator

previous next contents properties index

1 Introduction

Contents

e 1.1About SVG

o 1.2 SVG MIME type, file name extension and Macintosh filetype
o 1.3 Compatibility with Other Standards Efforts

o 1.4 Terminology

o 1.5 Definitions

1.1 About SVG

This specification defines the features and syntax for Scalable Vector Graphics (SVG).

SVG isalanguage for describing two-dimensional graphicsin XML [XML 10]. SVG allows for three types of
graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images and text.
Graphical objects can be grouped, styled, transformed and composited into previously rendered objects. The
feature set includes nested transformations, clipping paths, apha masks, filter effects and template objects.

SV G drawings can be interactive and dynamic. Animations can be defined and triggered either declaratively
(i.e., by embedding SV G animation elementsin SV G content) or via scripting.

Sophisticated applications of SVG are possible by use of supplemental scripting language with accessto SVG's
Document Object Model (DOM), which provides complete accessto all elements, attributes and properties. A
rich set of event handlers such as onmouseover and onclick can be assigned to any SV G graphical object.
Because of its compatibility and leveraging of other Web standards, features like scripting can be done on
XHTML and SV G e ements simultaneously within the same Web page.

SVG isalanguage for rich graphical content. For accessibility reasons, if thereis an original source document
containing higher-level structure and semantics, it is recommended that the higher-level information be made
available somehow, either by making the original source document available, or making an alternative version
available in an alternative format which conveys the higher-level information, or by using SVG'sfacilitiesto
include the higher-level information within the SV G content. For suggested techniques in achieving greater
accessibility, see Accessibility.

file:///D|/Public/CR-SVG-20000802/indexlist.html
http://www.w3.org/Graphics/SVG/

1.2 SVG MIME type, file name extension and
Macintosh filetype

The MIME typefor SVGis"i mage/ svg- xm ". The W3C will register this MIME type around the time
when SVG is approved as a W3C Recommendation.

It is recommended that SV G files have the extension™ . svg" (all lower case) on al platforms.

It is recommended that SV G files stored on Macintosh HFS file systems be given afiletype of "svg " (al
lower case, with a space character as the fourth letter).

1.3 Compatibility with Other Standards Efforts

SVG leverages and integrates with other W3C specifications and standards efforts. By leveraging and
conforming to other standards, SV G becomes more powerful and makes it easier for usersto learn how to
incorporate SV G into their Web sites.

The following describes some of the ways in which SVG maintains compatibility with, leverages and integrates
with other W3C efforts:

SVGisan application of XML and is compatible with the "Extensible Markup Language (XML) 1.0"
Recommendation [XML10]

SVG is compatible with the "Namespaces in XML" Recommendation [XML-NS]
SVG utilizes"XML Linking Language (XLink)" [XLINK] for URI referencing.

SVG's syntax for referencing element IDs is a compatible subset of the ID referencing syntax in "XML
Pointer Language (XPointer)" [XPTR].

SV G content can be styled by either CSS (see "Cascading Style Sheets (CSS) level 2" specification
[CSS2]) or XSL (see"XSL Transformations (XSLT) Version 1.0" [XSLT]). (See Styling with CSS and
Styling with XSL)

SV G supports relevant properties and approaches common to CSS and X SL, plus selected semantics and
features of CSS (see SVG's styling properties and SV G's Use of Cascading Style Sheets).

Externa style sheets are referenced using the mechanism documented in " Associating Style Sheets with
XML documents Version 1.0" [XML-SS].

SV G includes a complete Document Object Model (DOM) and conforms to the "Document Object
Model (DOM) level 1" Recommendation [DOM1]. The SVG DOM has a high level of compatibility

and consistency with the HTML DOM that is defined inthe DOM Level 1 specification. Additionally,
the SVG DOM supports and incorporates many of the facilities described in "Document Object Model
(DOM) level 2" [DOM2], including the CSS object model and event handling.

SV G incorporates some features and approaches that are part of the " Synchronized Multimedia
Integration Language (SMIL) 1.0 Specification” [SMIL 1], including the 'switch' element and the

systemL anquage attribute.

SVG's animation features (see Animation) were developed in collaboration with the W3C Synchronized
Multimedia (SYMM) Working Group, developers of the Synchronized Multimedia Integration

Language (SMIL) 1.0 Specification [SMIL1]. SVG's animation features incorporate and extend the
general-purpose XML animation capabilities described in the "SMIL Animation” specification
[SMILANIM].

« SVG has been designed to allow future versions of SMIL to use animated or static SVG content as
media components.

« SVG attempts to achieve maximum compatibility with both HTML 4 [HTML4] and XHTML (tm) 1.0
[XHTML]. Many of SVG'sfacilities are modeled directly after HTML, including its use of CSS [CSS2],
its approach to event handling, and its approach to its Document Object Model [DOM?2].

o SVG iscompatibility with W3C work on internationalization. References (W3C and otherwise) include:
[UNICODE] and [CHARMOD]. Also, see | nternationalization Support.

o SVGiscompatible with W3C work on Web Accessibility [WALI]. Also, see Accessibility Support.

In environments which support [DOM 2] for other XML grammars (e.g., XHTML [XHTML]) and which also

support SVG and the SVG DOM, a single scripting approach can be used simultaneously for both XML
documents and SV G graphics, in which case interactive and dynamic effects will be possible on multiple XML
namespaces using the same set of scripts.

1.4 Terminology

Within this specification, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" areto be interpreted as
described in RFC 2119 (see [RFC2119]). However, for readability, these words do not appear in all uppercase

letters in this specification.

At times, this specification recommends good practice for authors and user agents. These recommendations are
not normative and conformance with this specification does not depend on their realization. These
recommendations contain the expression "We recommend ...", "This specification recommends ...", or some
similar wording.

1.5 Definitions

basic shape

Standard shapes which are predefined in SV G as a convenience for common graphical operations.
Specifically: 'rect', ‘circle, 'dlipse, 'lin€, ‘polyline, ‘polygon'.

canvas

a surface onto which graphics elements are drawn, which can be real physical media such as adisplay or
paper or an abstract surface such as a alocated region of computer memory. See the discussion of the
SVG canvasin the chapter on Coordinate Systems, Transformations and Units.

clipping path
a combination of ‘path’, 'text' and basic shapes which serve as the outline of a (in the absense of

antialiasing) 1-bit mask, where everything on the "inside" of the outline is alowed to show through but
everything on the outside is masked out. See Clipping paths.

container element

An element which can have graphics elements and other container elements as child elements.
Specificaly: 'svg, 'd, 'defs 'symbol’, 'clipPath’, 'mask’, 'pattern’, ‘marker’, 'a’ and 'switch'.

current innermost SV G document fragment

The XML document sub-tree which starts with the most immediate ancestor 'svg' element of agiven
SVG eement

current SV G document fragment

The XML document sub-tree which starts with the outermost ancestor 'svg’ element of agiven SVG
element, with the requirement that all container elements between the outermost 'svg' and this element
are all elementsin the SVG language

current transformation matrix (CTM)

Transformation matrices define the mathematical mapping from one coordinate system into another
using a 3x3 matrix using the equation [x'y' 1] =[xy 1] * matrix. The current transformation matrix
(CTM) defines the mapping from the user coordinate system into the viewport coordinate system. See
Coordinate system transformations

fill
The operation of painting the interior of a shape or the interior of the character glyphsin atext string.

font
A font represents an organized collection of glyphsin which the various glyph representations will share
acommon look or styling such that, when a string of charactersis rendered together, the result is highly
legible, conveys a particular artistic style and provides consistent inter-character alignment and spacing.
glyph

A glyph represents a unit of rendered content within afont. Often, there is a one-to-one correspondence

between characters to be drawn and corresponding glyphs (e.g., often, the character "A" isrendered
using asingle glyph), but other times multiple glyphs are used to render a single character (e.g., use of
accents) or asingle glyph can be used to render multiple characters (e.g., ligatures). Typicaly, aglyphis
defined by one or more shapes such as a path, possibly with additional information such as rendering

hints that help afont engine to produce legible text in small sizes.
graphics element

One of the element types that can cause graphics to be drawn onto the target canvas. Specifically: 'path’,
'text’, 'rect’, 'circl€e, 'ellipse, 'lin€, 'polylin€, 'polygon’, ‘image’ and 'use’.

graphics referencing element

A graphics element which uses areference to a different document or element as the source of its
graphical content. Specifically: 'use' and 'image'’.

local URI reference
A Uniform Resource Identifier [URI] that does not include an <absoluteURI> or <relativeURI> and thus
represents a reference to an element within the current document. See References and the 'defs element.
mask

a container e ement which can contain graphics elements or other container e ements which define a set

of graphicsthat isto be used as a semi-transparent mask for compositing foreground objects into the
current background. See Masks.

non-local URI reference

A Uniform Resource Identifier [URI] that includes an <absoluteURI> or <relativeURI> and thus

(usually) represents areference to a different document or an element within a different document. See
References and the 'defs element.

paint
A paint represents away of putting color values onto the canvas. A paint might consists of both color

values and associated alpha values which control the blending of colors against already existing color
values on the canvas. SV G supports three types of built-in paint: color, gradients and patterns.

presentation attribute
An XML attribute on an SV G element which specifies avalue for agiven property for that element. See
Styling.

property

A parameter that helps specify how a document should be rendered. A complete list of SVG's properties
can be found in Property Index. Properties are assigned to elements in the SV G language either by

presentation attributes on elements in the SV G language or by using a styling language such as CSS
[CSS2]. See Styling.

shape
A graphics element that is defined by some combination of straight lines and curves. Specifically: 'path’,
'rect’, 'circle, 'élipse, 'lin€, 'polyline, 'polygon'.

stroke
The operation of painting the outline of a shape or the outline of character glyphsin atext string.

SVG canvas

the canvas onto which the SV G content is rendered. See the discussion of the SV G canvas in the chapter
on Coordinate Systems, Transformations and Units.

SV G document fragment

The XML document sub-tree which starts with an 'svg' element. An SV G document fragment can
consist of a stand-alone SV G document, or afragment of a parent XML document enclosed by an 'svg'
element. When an 'svg' element is a descendant of another 'svg' element, there are two SV G document
fragments, one for each 'svg' element. (One SV G document fragment is contained within another SVG
document fragment.)

SVG viewport

the viewport within the SV G canvas which defines the rectangular region into which SV G content is
rendered. See the discussion of the SV G viewport in the chapter on Coordinate Systems,
Transformations and Units.

text content element

One of SVG's elements that can define atext string that is to be rendered onto the canvas. SVG's text
content elements are the following: 'text’, 'tspan’, 'tref’, 'glyphRun’ and 'textPath'.

transformation

A modification of the current transformation matrix (CTM) by providing a supplemental transformation

in the form of a set of simple transformations specifications (such as scaling, rotation or translation)
and/or one or more transformation matrices. See Coordinate system transformations

transformation matrix

Transformation matrices define the mathematical mapping from one coordinate system into another
using a 3x3 matrix using the equation [x'y' 1] =[xy 1] * matrix. See current transformation matrix

(CTM) and Coordinate system transformations

URI Reference
A Uniform Resource Identifier [URI] which serves as areferenceto afile or to an element within afile.
See References and the 'defs element.

user coordinate system

In general, a coordinate system defines |ocations and distances on the current canvas. The current user

coordinate system is the coordinate system that is currently active and which is used to define how
coordinates and lengths are located and computed, respectively, on the current canvas. See initial user

coordinate system and Coordinate system transformations.

user space
A synonym for user coordinate system.

user units

A coordinate value or length expressed in user units represents a coordinate value or length in the
current user coordinate system. Thus, 10 user units represents alength of 10 unitsin the current user

coordinate system.

viewport
arectangular region within the current canvas onto which graphics elements are to be rendered. See the
discussion of the SV G viewport in the chapter on Coordinate Systems, Transformations and Units.

viewport coordinate system

In general, a coordinate system defines locations and distances on the current canvas. The viewport
coordinate system is the coordinate system that is active at the start of processing of an 'svg' element,
before processing the optional viewBox attribute. In the case of an SV G document fragment that is

embedded within a parent document which uses CSS to manage its layout, then the viewport coordinate
system will have the same orientation and lengths asin CSS, with the origin at the top-left on the
viewport. See The initial viewport and Establishing a new viewport.

viewport space
A synonym for viewport coordinate system.

viewport units

A coordinate value or length expressed in viewport units represents a coordinate value or length in the
viewport coordinate system. Thus, 10 viewport units represents a length of 10 unitsin the viewport

coordinate system.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

2 Concepts
Explaining the name: SVG

SVG stands for Scalable Vector Graphics, an XML grammar for stylable graphics, usable asan XML
Namespace.

Scalable

To be scalable means to increase or decrease uniformly. In terms of graphics, scalable means not being limited
to asingle, fixed, pixel size. On the Web, scalable means that that a particular technology can grow to alarge
number of files, alarge number of users, awide variety of applications. SV G, being a graphics technology for
the Web, is scalable in both senses of the word.

SVG graphics are scalable to different display resolutions, so that for example printed output uses the full
resolution of the printer and can be displayed at the same size on screens of different resolutions. The same
SV G graphic can be placed at different sizes on the same Web page, and re-used at different sizes on different
pages. SV G graphics can be magnified to see fine detail, or to aid those with low vision.

SV G graphics are scal able because they can be referenced or included inside other SV G graphics, allowing a
complex illustration to be built up in parts, perhaps by several people. The symbol, marker and font capabilities
promote re-use of graphical components, maximise the advantages of HTTP caching and avoid the need for a
centralised registry of approved symbols.

Vector

Vector graphics contain geometric objects such as lines and curves. This gives greater flexibility compared to
raster-only formats (such as PNG and JPEG) which have to store information for every pixel of the graphic.
Typically, vector formats can also integrate raster images and can combine them with vector information such
as clipping paths to produce a complete illustration; SVG is no exception.

Since al modern displays are raster-oriented, the difference between raster-only and vector graphics comes
down to where they are rasterized; client side in the case of vector graphics, as opposed to already rasterized on
the server. SV G gives control over the rasterisation process, for example to allow anti-aliased artwork without
the ugly aliasing typical of low quality vector implementations. SV G also provides client-side raster filter

effects, so that moving to a vector format does not mean the loss of popular effects such as soft drop shadows.

Graphics

Most existing XML grammars represent either textual information, or represent raw data such as financial
information. They typically provide only rudimentary graphical capabilities, often less capable than the HTML
'img' element. SV G fillsagap in the market by providing arich, structured description of vector and mixed
vector/raster graphics; it can be used standalone, or as an XML namespace with other grammars.

file:///D|/Public/CR-SVG-20000802/indexlist.html

XML

XML, aW3C Recommendation for structured information exchange, has become extremely popular and is both
widely and reliably implemented. By being written in XML, SV G builds on this strong foundation and gains
many advantages such as a sound basis for internationalisation, powerful structuring capability, an object
model, and so on. By building on existing, cleanly-implemented specifications, XML -based grammars are open
to implementation without a huge reverse engineering effort.

Namespace

It is certainly useful to have a standalone, SV G-only viewer. But SVG is also intended to be used as one
component in a multi-namespace XML application. This multiplies the power of each of the namespaces used,
to allow innovative new content to be created. For example, SV G graphics may be included in a document
which uses any text-oriented XML namespace - including XHTML. A scientific document, for example, might
also use MathML [MATHML] for mathematics in the document. The combination of SVG and SMIL leadsto

interesting, time based, graphically rich presentations.

SVG isagood, genera-purpose component for any multi-namespace grammar that needs to use graphics.

Stylable

The advantages of style sheetsin terms of presentational control, flexibility, faster download and improved
maintenance are now generally accepted, certainly for use with text. SV G extends this control to the realm of

graphics.

The combination of scripting, DOM and CSSis often termed "Dynamic HTML" and iswidely used for
animation, interactivity and presentational effects. SV G alows the same script-based manipulation of the
document tree and the style sheet.

Important SVG Concepts

Graphical Objects

With any XML grammar, consideration has to be given to what exactly is being modelled. For textual formats,
modelling istypically at the level of paragraphs and phrases, rather than individual nouns, adverbs, or
phonemes. Similarly, SVG models graphics at the level of graphical objects rather than individual points.

SVG provides ageneral path element, which can be used to create a huge variety of graphical objects, and also
provides common geometric objects such as rectangles and ellipses. These are convenient for hand coding and
may be used in the same ways as the more general path element. SV G provides fine control over the coordinate
system in which graphical objects are defined and the transformations that will be applied during rendering.

Symbols

It would have been possible to define some standard symbols that SV G would provide. But which ones? There
would always be additional symbols for electronics, cartography, flowcharts, etc., that people would need that
were not provided until the "next version”. SV G allows users to create, re-use and share their own symbols
without requiring a centralised registry. Communities of users can create and refine the symbols that they need,
without having to ask a committee. Designers can be sure exactly of the graphical appearance of the symbols

file:///TR/REC-xml

they use and not have to worry about unsupported symbols.

Symbols may be used at different sizes and orientations, and can be restyled to fit in with the rest of the
graphical composition.

Raster Effects

Many existing Web graphics use the filtering operations found in paint packages to create blurs, shadows,
lighting effects and so on. With the client-side rasterisation used with vector formats, such effects might be
thought impossible. SV G allows the declarative specification of filters, either singly or in combination, which
can be applied on the client side when the SV G isrendered. These are specified in such away that the graphics
are still scalable and displayable at different resolutions.

Fonts

Graphically rich material is often highly dependent on the particular font used and the exact spacing of the
glyphs. In many cases, designers convert text to outlines to avoid any font substitution problems. This means
that the original text is not present and thus seachability and accessibility suffer. In response to feedback from
designers, SVG includes font elements so that both text and graphical appearance are preserved.

Animation

Animation can be produced via script-based manipulation of the document, but scripts are difficult to edit and
interchange between authoring toolsis harder. Again in response to feedback from the design community, SVG
includes declarative animation elements which were designed collaboratively by the SVG and SYMM working
groups. This allows the animated effects common in existing Web graphics to be expressed in SVG.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

3 Rendering Model

Contents

e 3.1 Introduction

e 3.2 The painters model
o 3.3 Rendering Order

« 3.4 Grouping
o 3.5 Types of graphics elements

o 3.5.1 Painting shapes and text

o 3.5.2 Painting raster images

o 3.6 Filtering painted regions

o 3.7 Clipping, masking and object opacity

¢ 3.8 Parent Compositing

3.1 Introduction

Implementations of SVG are expected to behave as though they implement a rendering (or imaging) model
corresponding to the one described in this chapter. A real implementation is not required to implement the
model in thisway, but the result on any device supported by the implementation shall match that described by
this model.

The appendix on conformance requirements describes the extent to which an actual implementation may deviate
from this description. In practice an actual implementation will deviate slightly because of limitations of the
output device (e.g. only alimited range of colors might be supported) and because of practical limitationsin
implementing a precise mathematical model (e.g. for realistic performance curves are approximated by straight
lines, the approximation need only be sufficiently precise to match the conformance requirements.)

3.2 The painters model

SVG uses a"painters model” of rendering. Paint is applied in successive operations to the output device such
that each operation paints over some area of the output device. When the area overlaps a previously painted area
the new paint partially or completely obscures the old. When the paint is not completely opague the result on
the output device is defined by the (mathematical) rules for compositing described under Simple Alpha

file:///D|/Public/CR-SVG-20000802/indexlist.html

Blending.

3.3 Rendering Order

Elementsin an SV G document fragment have an implicit drawing order, with the first elementsin the SVG
document fragment getting "painted” first. Subsequent elements are painted on top of previously painted
elements.

3.4 Grouping

Grouping elements such as the 'g' have the effect of producing atemporary separate canvas onto which child

elements are painted. Upon the completion of the group, the effect is asif the group's canvas is painted onto the
ancestors canvas using the standard rendering rules for individual graphic objects.

3.5 Types of graphics elements

SV G supports three fundamental types of graphics elements that can be rendered onto the canvas:
« Shapes, which represent some combination of straight line and curves

« Text, which represents some combination of character glyphs

« Raster images, which represent an array of values that specify the paint color and opacity (often termed
alpha) at a series of points on arectangular grid. (SVG requires support for specified raster image
formats under conformance requirements.)

3.5.1 Painting shapes and text

Shapes and text can befilled (i.e., apply paint to the interior of the shape) and stroked (i.e., apply paint along the

outline of the shape). A stroke operation is centered on the outline of the object; thus, in effect, half of the paint
falls on the interior of the shape and half of the paint falls outside of the shape.

For certain types of shapes, marker symbols (which themselves can consist of any combination of shapes, text
and images) can be drawn at selected vertices. Each marker symbol is painted asif its graphical content were
expanded into the SV G document tree just after the shape object which is using the given marker symbol. The
graphical contents of a marker symbol are rendered using the same methods are graphics elements. Marker
symbols are not applicable to text.

Thefill is painted first, then the stroke, and then the marker symbols. The marker symbols are rendered in order
along the outline of the shape, from the start of the shape to the end of the shape.

Each fill and stroke operation has its own opacity settings; thus, you can fill and/or stroke a shape with a
semi-transparently drawn solid color, with different opacity values for the fill and stroke operations.

Thefill and stroke operations are entirely independent painting operations; thus, if you both fill and stroke a
shape, half of the stroke will be painted on top of part of the fill.

SV G supports the following built-in types of paint which can be used in fill and stroke operations:
» Solid color

« Gradients (linear and radial)
« Patterns

3.5.2 Painting raster images

When araster image is rendered, the original samples are "resampled” using standard algorithms to produce
samples at the positions required on the output device. Resampling requirements are discussed under
conformance regquirements.

3.6 Filtering painted regions

SVG dlows any painting operation to be filtered. (See Filter Effects)

In this case the result must be as though the paint operations had been applied to an intermediate canvas, of a
size determined by the rules given in Filter Effects then filtered by the processes defined in Filter Effects.

3.7 Clipping, masking and object opacity

SVG dlows any painting operation to be limited to a sub-region of the output device by clipping and masking.
Thisisdescribed in Clipping, Masking and Compositing

Clipping uses a path to define aregion of the output device to which paint can be applied. Any painting
operation executed within the scope of the clipping must be rendered such that only those parts of the device
that fall within the clipping region are affected by the painting operation. A clipping path can be thought of asa
mask wherein those pixels outside the clipping path are black with an alpha value of zero and those pixels
inside the clipping path are white with an alphavalue of 1. "Within" is defined by the same rules used to
determine the interior of a path for painting. The clipping path is typically anti-aliased on low-resolution
devices (see 'shape-rendering’). Clipping is described in Clipping paths.

Masking uses the luminance of the color channels and alpha channel in areferenced SV G element to define a
supplemental set of apha values which are multiplied to the alpha values already present in the graphicsto
which the mask is applied. Masking is described in Masking.

A supplemental masking operation may also be specified by applying a"global™ opacity to a set of rendering
operations. In this case the mask isinfinite, with acolor of white and an apha channel of the given opacity
value. (See 'opacity’ property.)

In al cases the SV G implementation must behave as though all painting and filtering isfirst performed to an
intermediate (imaginary) canvas. Then, alpha values on the intermediate canvas are multiplied by the implicit
apha values from the clipping path, the alpha values from the mask, and the alpha values from the 'opacity’
property. The resulting canvas is composited into the background using simple alpha blending. Thusif an area
of the output device is painted with a group opacity of 50% using opaque red paint followed by opague green
paint the result is as though it had been painted with just 50% opaque green paint. Thisis because the opaque
green paint completely obscures the red paint on the intermediate canvas before the intermediate asawholeis
rendered onto the output device.

3.8 Parent Compositing

SV G document fragments can be semi-opaque. In many environments (e.g., Web browsers), the SV G document
fragment has afinal compositing step where the document as awhole is blended translucently into the
background canvas.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

4 Basic Data Types and Interfaces

Contents

o 4.1 Basic datatypes

o 4.2 Recognized color keyword names
« 4.3 Basic DOM interfaces

4.1 Basic data types

The common data types for SVG's properties and attributes fall into the following categories:
« <angle>: Anangle valueis a<number> optionally followed immediately with an angle unit identifier. Angle unit identifiers are;
0 deg: degrees
o grad: grads
o rad: radians

For properties defined in [CSS2], an angle unit identifier must be provided. For SV G-specific attributes and properties, the angle unit
identifier is optional. If not provided, the angle value is assumed to be in degrees.
The corresponding SVG DOM interface definition for <angle> is SVGAngle.

« <color>: The basic type <color> is a CSS2-compatibl e specification for a color in the SRGB color space [SRGB]. <color> appliesto SVG's
use of the 'color' property and is a component of the definitions of properties 'fill', 'stroke' 'stop-color’, 'flood-color' and 'lighting-color’,
which also offer optional |CC-based color specifications.

A <color> is either a keyword (see Recognized color keyword names) or a numerical RGB specification.

In addition to these color keywords, users may specify keywords that correspond to the colors used by objects in the user's environment.
The normative definition of these keywords is [CSS2 system colors].

The format of an RGB value in hexadecimal notation is a'# immediately followed by either three or six hexadecimal characters. The
three-digit RGB notation (#rgb) is converted into six-digit form (#rrggbb) by replicating digits, not by adding zeros. For example, #b0
expands to #fbb00. This ensures that white (#ffffff) can be specified with the short notation (#fff) and removes any dependencies on the
color depth of the display. The format of an RGB value in the functional notation is 'rgb(’ followed by a comma-separated list of three
numerical values (either three integer values or three percentage values) followed by *)'. The integer value 255 corresponds to 100%, and to
F or FF in the hexadecimal notation: rgh(255,255,255) = rgh(100%,100%,100%) = #FFF. White space characters are allowed around the
numerical values. All RGB colors are specified in the SRGB color space (see [SRGB]). Using sSRGB provides an unambiguous and

objectively measurable definition of of the color, which can be related to international standards (see [COLORIMETRY]).

The corresponding SVG DOM interface definitions for <color> are defined in [DOM2-CSS]; in particular, see the
[DOM2-CSS-RGBCOL OR]. SVG's extension to color, including the ability to specify ICC-based colors, are represented in DOM interface
SVGCalor.

» <coordinate>: The format of a<coordinate> is a<number> optionally followed immediately by a unit identifier.
If the <coordinate> is expressed as a simple number without a unit identifier (e.g., 48), then the value represents a coordinate value in the
current user coordinate system (see Coordinate Systems, Transformations and Units).
If one of the unit identifiersis provided (e.g., 12mm), the <coordinate> represents the coordinate in the user coordinate system that isthe
given distance (measured in the viewport coordinate system) from the origin of the user coordinate system along the relevant axis (the
x-axisfor X coordinates, they-axisfor Y coordinates). (See Processing rules when using absolute unit identifiers and percentages.)
If a percentageis provided (e.g., 10%), the <coordinate> represents the coordinate in the user coordinate system that is the given distance
(measured as a percentage of the width or height of a contextually-defined reference object such as the current viewport) from the origin of
the user coordinate system along the relevant axis (the x-axis for X coordinates, the y-axisfor Y coordinates). (See Processing rules when
using absolute unit identifiers and percentages.)
Within the SVG DOM, a <coordinate> is represented as an SV GL ength since both values have the same syntax (although the semantics
are not identical).

« <frequency>: Frequency values are used with aural properties. The normative definition of frequency values can be found in
[CSS2-AURAL]. A frequency valueis a<number> immediately followed by a frequency unit identifier. Frequency unit identifiers are:

o Hz: Hertz

file:///D|/Public/CR-SVG-20000802/indexlist.html
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors

o kHz: kilo Hertz

Frequency values may not be negative.
The corresponding SVG DOM interface definitions for <frequency> are defined in [DOM2-CSS].

<integer>: An <integer> is specified as an optional sign character ('+' or -', with '+' being the default) followed by one or more digits "0" to
"9".
Unless stated otherwise for a particular attribute or property, the range for a <integer> encompasses (at a minimum) -2147483648 to

2147483647.
Within the SVG DOM, an <integer> is represented as an SV GAnimatedinteger.

<length>: A length is a distance measurement. The format of a <length> is a <number> optionally followed immediately by a unit

identifier. (Note that a <number> has different formulations depending on whether it is applied to a property or an XML attribute.)

If the <length> is expressed as a value without a unit identifier (e.g., 48), then the <length> represents a distance in the current user
coordinate system.

If one of the unit identifiersis provided (e.g., 12mm), then the <length> represents a width, height or length value in the viewport

coordinate system, depending on the value which is being represented. (See Processing rules when using absolute unit identifiers and
percentages.)

If a percentageis provided (e.g., 10%), then the given percentage represents a percentage of the width, height or weighted average of the
width and height of the viewport, depending on the value which is being represented. (See Processing rules when using absolute unit

identifiers and percentages.)
Within the SVG DOM, a <length> is represented as an SV GL ength.

<list of xxx> (where xxx represents a value of some type): A list consists of a separated sequence of values. The specification of listsis
different for property values than for XML attribute values.

o Listsin property values are comma-separated, with optional white space before or after the comma.

o Unless explicitly described differently, lists within SV G's XML attributes are either comma-separated, with optional white space
before or after the comma, or white space-separated.

White space in lists is defined as one or more of the following consecutive characters:. "space” (Unicode code 32), "tab" (9), "line feed"
(20), "carriage return” (13) and "form-feed" (12).
Within the SVYG DOM, a<list of xxx> is represented by various custom interfaces, such as SV GTransformList.

<number> (real number value): The specification of real number valuesis different for property values than for XML attribute values.

0 CSS2[CSS2] states that a property value which is a <number> is specified in decimal notation (i.e., a <decimal-number>), which
consists of either an <integer>, or an optional sign character followed by zero or more digits followed by adot (.) followed by zero
or more digits with at least one digit required either before or after the dot. Thus, for conformance with CSS2, any property in SVG
which accepts <number> values is specified in decimal notation only.

o For SVG's XML attributes, to provide as much scalability in numeric values as possible, real number values can be provided either
in decimal notation or in scientific notation (i.e., a <scientific-number>), which consists of a <decimal-number> immediately
followed by the letter "€" or "E" immediately followed by an <integer>.

Unless stated otherwise for a particular attribute or property, a <number> has the capacity for at least a single-precision floating point
number (see [ICC32]) and has arange (at a minimum) of -3.4e+38F to +3.4e+38F.

It is recommended that higher precision floating point storage and computation be performed on operations such as coordinate system
transformations to provide the best possible precision and to prevent round-off errors.

Conforming High-Quality SVG Viewers are required to use at |east double-precision floating point (see [ICC32]) intermediate calculations

on certain numerical operations.
Within the SVG DOM, a <number> is represented as an SVGNumber.

<paint>: The values for properties 'fill' and 'stroke’ are specifications of the type of paint to use when filling or stroking a given graphics
element. The available options and syntax for <paint> is described in Specifying paint.
Within the SVG DOM, <paint> is represented as an SV GPaint.

<percentage>: The format of a percentage value is a <number> immediately followed by a'%'. Percentage values are aways relative to
another value, for example alength. Each attribute or property that allows percentages al so defines the reference distance measurement to

which the percentage refers.
Within the SVG DOM, a <percentage> is represented as an SV GL ength.

<time>: A time value is a <number> immediately followed by atime unit identifier. Time unit identifiers are:
o ms: milliseconds
0 S seconds

Time values are used in CSS properties and may not be negative.
The corresponding SVG DOM interface definitions for <time> are defined in [DOM2-CSS].

<transform-list> : The detailed description of the possible values for a <transform-list> are detailed in Modifying the User Coordinate
System: the transform attribute.
Within the SVG DOM, <transform-list> is represented as an SVGTransformList.

 <uri> (Uniform Resource Identifiers [URI] references): A URI is the address of aresource on the Web. For the specification of URI

referencesin SVG, see URI references.
Within the SVG DOM, <uri> is represented as a DOM String.

4.2 Recognized color keyword names

Thefollowing isthelist of recognized color keywords that can be used as a keyword value for data type <color>:

aliceblue
antiquewhite
agua
aguamarine
azure

beige

bisque

black
blanchedalmond
blue
blueviolet
brown
burlywood
cadetblue
chartreuse
chocolate
coral
cornflowerblue
cornsilk
crimson

cyan
darkblue
darkcyan
darkgoldenrod
darkgray
darkgreen
darkgrey
darkkhaki
darkmagenta
darkolivegreen
darkorange
darkorchid
darkred
darksalmon
darkseagreen
darkdlateblue
darkslategray
darkslategrey
darkturquoise
darkviolet
deeppink
deepskyblue
dimgray
dimgrey
dodgerblue
firebrick
florawhite
forestgreen
fuchsia
gainsboro

rgb(240, 248, 255)
rgh(250, 235, 215)
rgb(0, 255, 255)
rgh(127, 255, 212)
rgh(240, 255, 255)
rgb(245, 245, 220)
rgb(255, 228, 196)
rgb(0, 0, 0)
rgh(255, 235, 205)
rgb(0, 0, 255)
rgh(138, 43, 226)
rgb(165, 42, 42)
rgh(222, 184, 135)
rgb(95, 158, 160)
rgh(127, 255, 0)
rgb(210, 105, 30)
rgb(255, 127, 80)
rgb(100, 149, 237)
rgb(255, 248, 220)
rgh(220, 20, 60)
rgb(0, 255, 255)
rgb(0, 0, 139)
rgb(0, 139, 139)
rgh(184, 134, 11)
rgh(169, 169, 169)
rgb(0, 100, 0)
rgb(169, 169, 169)
rgb(189, 183, 107)
rgh(139, 0, 139)
rgb(85, 107, 47)
rgh(255, 140, 0)
rgb(153, 50, 204)
rgb(139, 0, 0)
rgh(233, 150, 122)
rgh(143, 188, 143)
rgh(72, 61, 139)
rgb(47, 79, 79)
rgb(47, 79, 79)
rgb(0, 206, 209)
rgh(148, 0, 211)
rgh(255, 20, 147)
rgh(0, 191, 255)
rgb(105, 105, 105)
rgb(105, 105, 105)
rgb(30, 144, 255)
rgb(178, 34, 34)
rgb(255, 250, 240)
rgb(34, 139, 34)
rgb(255, 0, 255)
rgh(220, 220, 220)

lightpink
lightsalmon
lightseagreen
lightskyblue
lightslategray
lightslategrey
lightsteelblue
lightyellow
lime
limegreen
linen
magenta
maroon

rgb(255, 182, 193)
rgh(255, 160, 122)
rgh(32, 178, 170)
rgh(135, 206, 250)
rgb(119, 136, 153)
rgb(119, 136, 153)
rgb(176, 196, 222)
rgh(255, 255, 224)
rgb(0, 255, 0)
rgb(50, 205, 50)
rgb(250, 240, 230)
rgb(255, 0, 255)
rgh(128, 0, 0)

mediumaguamarine rgh(102, 205, 170)

mediumblue
mediumorchid
mediumpurple
mediumseagreen
mediumslateblue

rgb(0, 0, 205)
rgb(186, 85, 211)
rgb(147, 112, 219)
rgb(60, 179, 113)
rgh(123, 104, 238)

mediumspringgreen rgb(0, 250, 154)

mediumturquoise
mediumvioletred
midnightblue
mintcream
mistyrose
moccasin
navajowhite
navy

oldlace

olive
olivedrab
orange
orangered
orchid
palegoldenrod
palegreen
paleturquoise
palevioletred
papayawhip
peachpuff
peru

pink

plum
powderblue
purple

red

rosybrown
royablue
saddlebrown
salmon

rgb(72, 209, 204)
rgb(199, 21, 133)
rgb(25, 25, 112)
rgh(245, 255, 250)
rgh(255, 228, 225)
rgh(255, 228, 181)
rgb(255, 222, 173)
rgb(0, 0, 128)
rgh(253, 245, 230)
rgh(128, 128, 0)
rgh(107, 142, 35)
rgb(255, 165, 0)
rgb(255, 69, 0)
rgh(218, 112, 214)
rgh(238, 232, 170)
rgh(152, 251, 152)
rgb(175, 238, 238)
rgb(219, 112, 147)
rgh(255, 239, 213)
rgh(255, 218, 185)
rgh(205, 133, 63)
rgh(255, 192, 203)
rgb(221, 160, 221)
rghb(176, 224, 230)
rgb(128, 0, 128)
rgh(255, 0, 0)
rgb(188, 143, 143)
rgb(65, 105, 225)
rgb(139, 69, 19)
rgh(250, 128, 114)

ghostwhite rgh(248, 248, 255) sandybrown rgb(244, 164, 96)
gold rgb(255, 215, 0) seagreen rgb(46, 139, 87)
goldenrod rgb(218, 165, 32) seashell rgb(255, 245, 238)
gray rgh(128, 128, 128) sienna rghb(160, 82, 45)
grey rgb(128, 128, 128) silver rgb(192, 192, 192)
green rgb(0, 128, 0) skyblue rgb(135, 206, 235)
greenyellow rgb(173, 255, 47) dateblue rgb(106, 90, 205)
honeydew rgb(240, 255, 240) dategray rgb(112, 128, 144)
hotpink rgb(255, 105, 180) dategrey rgb(112, 128, 144)
indianred rgh(205, 92, 92) snow rgh(255, 250, 250)
indigo rgb(75, 0, 130) springgreen rgb(0, 255, 127)
ivory rgb(255, 255, 240) steelblue rgb(70, 130, 180)
khaki rgb(240, 230, 140) tan rgb(210, 180, 140)
lavender rgb(230, 230, 250) ted rgb(0, 128, 128)
lavenderblush rgh(255, 240, 245) thistle rgb(216, 191, 216)
lawngreen rgh(124, 252, 0) tomato rgh(255, 99, 71)
lemonchiffon rgb(255, 250, 205) turquoise rgb(64, 224, 208)
lightblue rgb(173, 216, 230) violet rgb(238, 130, 238)
lightcoral rgh(240, 128, 128) wheat rgb(245, 222, 179)
lightcyan rgh(224, 255, 255) white rgb(255, 255, 255)
lightgoldenrodyellow rgh(250, 250, 210) whitesmoke rgb(245, 245, 245)
lightgray rgb(211, 211, 211) yellow rgb(255, 255, 0)
lightgreen rgb(144, 238, 144) yellowgreen rgb(154, 205, 50)
lightgrey rgb(211, 211, 211)

4.3 Basic DOM interfaces

The following interfaces are defined below: SV GElement, SVGList, SVGLengthList, SV GAnimatedL engthL ist, SV GAnimatedString,
SVGAnimatedBoolean, SV GAnimatedEnumeration, SVGAnNgle, SVGAnimatedAngle, SVGColor, SVGICCColor, SVGAnimatedinteger,
SVGLength, SVGAnimatedL ength, SV GAnimatedNumber, SVGNumberList, SVGAnimatedNumberList, SVGRect, SV GAnimatedRect,
SVGUnitTypes, SVGStylable, SVGTransformable, SVGTests, SV GL angSpace, SV GExternal ResourcesRequired, SV GFitToViewBox,
SVGZoomAndPan, SVGViewSpec, SVGURIReference, SVGCSSRule, SV GRenderinglntent.

Interface SVGElement

All of the SVG DOM interfaces that correspond directly to elementsin the SV G language (e.g., the SV GPathElement interface corresponds
directly to the 'path' element in the language) are derivative from base class SV GElement.

IDL Definition

i nterface SVCEl enent El enent {
attribute DOVString id;
/1 rai ses DOVException on setting
readonly attribute SVGSVGEl ement owner SVGEl enent ;
readonly attribute SVGEl enent vi ewport El enent;

};

Attributes
DOMString id
The value of theid attribute on the given element.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
readonly SVGSV GElement ownerSV GElement
The nearest ancestor 'svg' element. Null if the given element is the outermost 'svg' element.

readonly SV GElement viewportElement

The element which established the current viewport. Often, the nearest ancestor 'svg' element. Null if thisisthe given element isthe
outermost 'svg' element.

Interface SVGList

Thisinterface defines a set of generic list handling attributes and methods.
IDL Definition

i nterface SVALi st {
readonly attribute unsigned | ong nunber Cf It ens;

voi d clear ()
rai ses(DOVException);

Qoject initialize (in Object newmtem)
rai ses(DOVException, SVGException);

hject createltem();

bj ect getltem (in unsigned |ong index)
rai ses(DOVException);

hject insertltenBefore (in Object newitem in unsigned | ong index)
rai ses(DOVException, SVGException);

hject replaceltem (in Object newtem in unsigned |ong index)
rai ses(DOVException, SVGException);

Obj ect renoveltem (in unsigned | ong index)
rai ses(DOVException);

hj ect appendltem (in Object newltem)
rai ses(DOVException, SVGException);

1

Attributes
readonly unsigned long numberOfltems
The number of itemsin thelist.

Methods
clear
Clearsal existing current items from the list, with the result being an empty list.
No Parameters
No Return Vaue
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
initialize
Clears all existing current items from the list and re-initializes the list to hold the single item specified by the parameter.
Parameters
in Object newltem The item which should become the only member of the list.
Return value
Object Theitem being inserted into thellist.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.
createltem

Creates an initialized item of the appropriate type for thislist.
No Parameters
Return value

Object The created item.

No Exceptions
getltem
Returns the specified item from the list.
Parameters
inunsigned long index The index of the item from the list which isto be returned. The first item is number 0.
Return value
Object The selected item.
Exceptions
DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater than or equal to numberOfitems.
insertitemBefore
Inserts anew item into the list at the specified position. The first item is number O.
Parameters

in Object newltem Theitem which isto beinserted into the list.

in unsigned long index The index of the item before which the new item is to be inserted. The first item is number O.
If theindex isless than or equal to O, then the new item isinserted at the front of thelist. If the

index is greater than or equal to numberOfltems, then the new item is appended to the end of the
list.

Return value
Object Theinserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.

replaceltem
Replaces an existing item in the list with a new item.
Parameters
in Object newltem Theitem which isto be inserted into the list.
inunsigned long index Theindex of the item which is to be replaced. Thefirst item is number 0.
Return value
Object Theinserted item.
Exceptions
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if theindex number is negative or greater than or equal to numberOfltems.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.
removeltem
Removes an existing item from the list.
Parameters
inunsigned long index The index of the item which isto be removed. The first item is number O.
Return value
Object The removed item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater than or equal to numberOfltems.
appenditem
Inserts anew item at the end of thelist.
Parameters

in Object newltem Theitem which isto be inserted into the list. The first item is number O.
Return value

Object Theinserted item.

Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong type of object for the given list.

Interface SVGLengthList

Used for values that can be expressed as an array of SV GLengths.

The various methods inherited from SV GList, which are defined in SVGList to accept parameters and return values of type Object, must receive
parameters of type SV GLength and return values of type SVGLength.

IDL Definition

i nterface SVG.engthList : SVGA.ist {};

Interface SVGAnimatedLengthList

Used for attributes of type SV GLengthList which can be animated.
IDL Definition

i nterface SVGAni mat edLengt hLi st {

attri bute SVG.engt hLi st baseVal ;
/1 rai ses DOVException on setting
readonly attribute SVG.engthLi st aninVal;

};

Attributes
SVGLengthList baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
readonly SVGLengthList animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGAnimatedString

Used for attributes of type DOM String which can be animated.
IDL Definition

interface SVGAni matedString {

attribute DOVString baseVal;
/1 raises DOVException on setting
readonly attribute DOVString ani nval ;

};

Attributes
DOM String baseVa
The base value of the given attribute before applying any animations.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly DOM String animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGAnimatedBoolean

Used for attributes of type boolean which can be animated.
IDL Definition

i nterface SVGAni mat edBool ean {

attri bute bool ean baseVal ;
/'l rai ses DOVException on setting
readonly attribute bool ean aninval;

};

Attributes
boolean baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly boolean animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGAnimatedEnumeration

Used for attributes whose value must be a constant from a particular enumeration and which can be animated.

IDL Definition

i nterface SVGAni mat edEnunerati on {

attri bute unsigned short baseVal;
/'l rai ses DOVException on setting
readonly attribute unsigned short aninVal;

};

Attributes
unsigned short baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly unsigned short animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGAngle

The SVGAnNgle interface corresponds to the <angle> basic data type.
IDL Definition

interface SVGAngl e {

/1 Angle Unit Types

const unsigned short SVG ANGLETYPE_UNKNO/WN
const unsigned short SVG ANGLETYPE_UNSPECI FI ED
const unsigned short SVG ANGLETYPE_DEG

const unsigned short SVG ANGLETYPE_RAD

const unsigned short SVG ANGLETYPE_GRAD

TTITIRTINT
ronNRQ

readonly attribute unsigned short unitType;
attribute fl oat val ue;
/'l rai ses DOVException on setting
attribute float val uel nSpeci fi edUni ts;
/1 rai ses DOVException on setting
attribute DOVString val ueAsString;
/'l rai ses DOVException on setting

voi d newval ueSpeci fiedUnits (in unsigned short unitType, in float val uel nSpecifiedUnits);
voi d convert ToSpecifiedUnits (in unsigned short unitType);

b

Definition group Angle Unit Types
Defined constants

SVG_ANGLETYPE_UNKNOWN The unit typeis not one of predefined unit types. It isinvalid to attempt to define a new
value of thistype or to attempt to switch an existing value to this type.

SVG_ANGLETYPE_UNSPECIFIED No unit type was provided (i.e., aunitless value was specified). For angles, aunitless value
istreated the same as if degrees were specified.

SVG_ANGLETYPE_DEG The unit type was explicitly set to degrees.
SVG_ANGLETYPE_RAD The unit typeisradians.
SVG_ANGLETYPE_GRAD The unit type is grads.

Attributes
readonly unsigned short unitType
Thetype of the value as specified by one of the constants specified above.
float value

The angle value as afloating point value, in degrees. Setting this attribute will cause valuel nSpecifiedUnits and valueAsString to be
updated automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float valuelnSpecifiedUnits

The angle value as a floating point value, in the units expressed by unitType. Setting this attribute will cause value and
valueAsString to be updated automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOM String valueAsString

The angle value as a string value, in the units expressed by unitType. Setting this attribute will cause value and
valuel nSpecifiedUnits to be updated automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
Methods
newV alueSpecifiedUnits
Reset the value as a number with an associated unitType, thereby replacing the values for all of the attributes on the object.

Parameters

inunsigned short unitType ~ The unitType for the angle value (e.g., SYG_ANGLETYPE_DEG).
in float valuelnSpecifiedUnits The angle value.

No Return Value
No Exceptions
convertToSpecifiedUnits

Preserve the same value, but convert to the specified unitType. Object attributes unitType, valueAsSpecified and valueAsString
might be modified as aresult of this method.

Parameters
in unsigned short unitType The unitType to switch to (e.g., SYG_ANGLETYPE_DEG).

No Return Value
No Exceptions

Interface SVGAnimatedAngle

Corresponds to all properties and attributes whose values can be basic type 'angle’ and which are animatable.
IDL Definition

i nterface SVGAni mat edAngl e {

attri bute SVGAngl e baseVal ;
/'l rai ses DOVException on setting
readonly attribute SVGAngl e ani nval ;

})
Attributes
SVGAnNgle baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
readonly SVGAngle animVa

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGColor

The SVGColor corresponds to color value definition for properties 'stop-color', 'flood-color' and 'lighting-color' and is a base class for interface
SVGPaint. It incorporates SV G's extended notion of color, which incorporates | CC-based color specifications.

Interface SV GColor does not correspond to the <color> basic datatype. For the <color> basic data type, the applicable DOM interfaces are
defined in [DOM2-CSS]; in particular, see the [DOM2-CSS-RGBCOL OR].

IDL Definition

interface SVCGCol or : css:: CSSVal ue {
/'l Col or Types

const unsigned short SVG_COLORTYPE_UNKNOWN = 0;
const unsigned short SVG COLORTYPE_RGBCOLOR = 1;
const unsigned short SVG COLORTYPE_RGBCOLCR | CCCOLOR = 2;

readonly attribute unsigned short col or Type;
readonly attribute css:: RGBCol or r gbCol or;
readonly attribute SVG@ CCCol or i ccCol or;

voi d set RGBCol or (in css::RGBCol or rghCol or);

voi d set RGBCol or I CCCol or (in css::RACol or rgbCol or, in SVA CCCol or iccColor);
css: : RGBCol or createRGBCol or ();

SVA CCCol or createSVA CCCol or ()

b

Definition group Color Types
Defined constants

SVG_COLORTYPE_UNKNOWN The color type is not one of predefined types. It isinvalid to attempt to define a
new value of thistype or to attempt to switch an existing value to this type.

SVG_COLORTYPE_RGBCOLOR An sRGB color has been specified without an aternative ICC color
specification.

SVG_COLORTYPE_RGBCOLOR_ICCCOLOR An sRGB color has been specified along with an aternative ICC color
specification.

Attributes
readonly unsigned short colorType
The type of the value as specified by one of the constants specified above.
readonly css::RGBColor rgbColor
The color specified in the SRGB color space.
readonly SVGICCColor iccColor
The aternate ICC color specification.

Methods
setRGBColor
Modifies the color value to be the specified SRGB color without an alternate | CC color specification.
Parameters

in css::RGBColor rgbColor The new sRGB color specification.
No Return Vaue
No Exceptions
setRGBColorlCCColor
Modifies the color value to be the specified SRGB color with an alternate ICC color specification.
Parameters
in css::RGBColor rghColor The new sRGB color specification.
in SYGICCCaolor iccColor The aternate ICC color specification.
No Return Value
No Exceptions
createRGBColor
Returns an RGBColor object which isinitialized to red=green=blue=0.
No Parameters
Return value
css::RGBColor The returned RGBColor object.
No Exceptions
createSV GICCColor
Returns an SV GICCColor object which isinitialized to an empty list of colors and anull for the colorProfile string.
No Parameters
Return value
SVGICCColor Thereturned SVGICCColor object.
No Exceptions

Interface SVGICCColor

The SVGICCColor expresses an | CC-based color specification and is a base class for interface SV GColor
IDL Definition

i nterface SVA CCCol or {

attribute DOVString colorProfile;
/'l rai ses DOVException on setting

readonly attribute SVG.i st col ors;
1

Attributes
DOM String colorProfile

The name of the color profile, which isthe first parameter of an ICC color specification.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly SVGL.ist colors

Thelist of color values that define this ICC color. Each color valueis an arbitrary floating point number.

The various methods from SV GList, which are defined to accept parameters and return values of type Object, must receive
parameters of type float and return values of type float.

Interface SVGAnimatedInteger

Used for attributes of basic type 'integer' which can be animated.
IDL Definition

i nterface SVGAni mat edl nt eger {

attri bute | ong baseVal;
/'l rai ses DOVException on setting

readonly attribute |ong aninVval;

b

Attributes
long baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly long animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGLength

The SV GLength interface corresponds to the <length> basic data type.
IDL Definition

interface SVG.ength {

/1 Length Unit Types

const unsigned short SVG LENGTHTYPE_ UNKNOWN
const unsigned short SVG LENGTHTYPE_NUVBER
const unsigned short SVG LENGTHTYPE PERCENTAGE
const unsigned short SVG LENGTHTYPE_EMS
const unsigned short SVG LENGTHTYPE_EXS
const unsigned short SVG LENGTHTYPE_PX
const unsigned short SVG LENGTHTYPE_CM
const unsigned short SVG LENGTHTYPE_ WM
const unsigned short SVG LENGTHTYPE_I N
const unsigned short SVG LENGTHTYPE_PT
const unsigned short SVG LENGTHTYPE_PC

IO TR TR T T VR TR I R TR TR
BORXNORWLONRO

e

readonly attribute unsigned short unitType;
attribute fl oat val ue;
/'l rai ses DOVException on setting
attribute float val uel nSpeci fi edUni ts;
/'l rai ses DOVException on setting
attribute DOVString val ueAsString;
/'l rai ses DOVException on setting

voi d newval ueSpeci fi edUnits (in unsigned short unitType, in float val uelnSpecifiedUnits);
voi d convert ToSpecifiedUnits (in unsigned short unitType);

};

Definition group Length Unit Types
Defined constants

SVG_LENGTHTYPE_UNKNOWN The unit typeis not one of predefined unit types. It isinvalid to attempt to define a new
value of thistype or to attempt to switch an existing value to this type.

SVG_LENGTHTYPE_NUMBER No unit type was provided (i.e., a unitless value was specified), which indicates avalue in
user units.
SVG_LENGTHTYPE_PERCENTAGE A percentage value was specified.
SVG_LENGTHTYPE_EMS A value was specified using the "em" units defined in CSS2.
SVG_LENGTHTYPE_EXS A value was specified using the "ex" units defined in CSS2.
SVG_LENGTHTYPE_PX A value was specified using the "px" units defined in CSS2.
SVG_LENGTHTYPE_CM A value was specified using the "cm” units defined in CSS2.
SVG_LENGTHTYPE_MM A value was specified using the "mm" units defined in CSS2.
SVG_LENGTHTYPE_IN A value was specified using the "in" units defined in CSS2.
SVG_LENGTHTYPE_PT A value was specified using the "pt" units defined in CSS2.
SVG_LENGTHTYPE_PC A value was specified using the "pc" units defined in CSS2.

Attributes
readonly unsigned short unitType
Thetype of the value as specified by one of the constants specified above.
float value

The value as an floating point value, in user units. Setting this attribute will cause valuelnSpecifiedUnits and valueAsString to be
updated automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float valuelnSpecifiedUnits

The value as an floating point value, in the units expressed by unitType. Setting this attribute will cause value and valueAsString to
be updated automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

DOM String valueAsString

The value as a string value, in the units expressed by unitType. Setting this attribute will cause value and valuelnSpecifiedUnits to
be updated automatically to reflect this setting.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
Methods

newV alueSpecifiedUnits
Reset the value as a number with an associated unitType, thereby replacing the values for all of the attributes on the object.
Parameters
inunsigned short unitType ~ The unitType for the value (e.g.,, SYG_LENGTHTYPE_MM).
in float valuelnSpecifiedUnits The new value.
No Return Value
No Exceptions
convertToSpecifiedUnits

Preserve the same value, but convert to the specified unitType. Object attributes unitType, valueAsSpecified and valueAsString
might be modified as a result of this method,

Parameters

in unsigned short unitType The unitTypeto switch to (e.g., SVG_LENGTHTYPE_MM).
No Return Value
No Exceptions

Interface SVGAnimatedLength

Used for attributes of basic type 'length’ which can be animated.
IDL Definition

i nterface SVGAni mat edLength {

attri bute SVG.ength baseVal;
/'l rai ses DOVException on setting
readonly attribute SVG@.ength ani nval;

};

Attributes
SVGLength baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly SVGLength animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGAnimatedNumber

Used for attributes of basic type 'number’ which can be animated.
IDL Definition

i nterface SVGAni mat edNunber {

attribute float baseVal;
/'l rai ses DOVException on setting
readonly attribute float aninval;

};

Attributes
float baseVal
The base value of the given attribute before applying any animations.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly float animval

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGNumberList

Used for values that can be expressed as an array of numbers (i.e., each entry isa'float’).

The various methods inherited from SV GList, which are defined in SVGList to accept parameters and return values of type Object, must receive
parameters of type float and return values of type float.

IDL Definition

i nterface SVG\unberlList : SVG.ist {};

Interface SVGAnimatedNumberList

Used for attributes which take alist of numbers and which can be animated.
IDL Definition

i nterface SVGAni mat edNunberLi st {

attri bute SVGNunberLi st baseVal;
/'l rai ses DOVException on setting
readonly attribute SVG\unberLi st aninVal ;

b

Attributes
SVGNumberList baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly SVGNumberList animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGRect

Rectangles are defined as consisting of a (x,y) coordinate pair identifying aminimum X value, aminimum Y value, and awidth and height, which
are usually constrained to be non-negative.

IDL Definition

i nterface SVGRect {

attribute float x;

/'l rai ses DOVException on setting
attribute float y;

/'l rai ses DOVException on setting
attribute float wi dth;

/'l rai ses DOVException on setting
attribute float height;

/1 rai ses DOVException on setting

i
Attributes
float x
Corresponds to attribute x on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y
Corresponds to attribute y on the given element.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float width
Corresponds to attribute width on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float height

Corresponds to attribute height on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGAnimatedRect

Used for attributes of type SV GRect which can be animated.
IDL Definition

i nterface SVGAni mat edRect {

attri bute SVGRect baseVal ;
/'l rai ses DOVException on setting
readonly attribute SVGRect aninval;

};

Attributes
SVGRect baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
readonly SVGRect animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGUnIitTypes

The SVGUnitTypes interface defines a commonly used set of constants and is a base interface used by SV GGradientElement,
SV GPatternElement, SV GClipPathElement, SV GMaskElement, and SV GFilterElement.

IDL Definition

interface SVGQUnit Types {

/1 Unit Types

const unsigned short SVG UNI T_TYPE_ UNKNO/W

const unsigned short SVG UN T_TYPE_ USERSPACEONUSE
const unsigned short SVG UN T_TYPE_ USERSPACE

const unsigned short SVG UN T_TYPE_OBJECTBOUNDI NGBOX

nnonon
Nk o

b

Definition group Unit Types
Defined constants

SVG_UNIT_TYPE_UNKNOWN The typeis not one of predefined types. It isinvalid to attempt to define a new
value of thistype or to attempt to switch an existing value to this type.

SVG_UNIT_TYPE_USERSPACEONUSE Corresponds to value userSpaceOnUse.
SVG_UNIT_TYPE_USERSPACE Corresponds to value user Space.
SVG_UNIT_TYPE_OBJECTBOUNDINGBOX Corresponds to value objectBoundingBox.

Interface SVGStylable

IDL Definition

interface SVGStyl able {

readonly attribute SVGAni matedString cl assNane;
readonly attribute css::CSSStyl eDecl aration style;

css:: CSSVal ue getPresentationAttribute (in DOVBtring nane);
css:: CSSval ue get Ani mat edPresentati onAttribute (in DOVString name);

};

Attributes
readonly SV GAnimatedString className
Corresponds to attribute class on the given element.
readonly css::CSSStyleDeclaration style

Corresponds to attribute style on the given element. If the user agent does not support styling with CSS, then this attribute must
always have the value of null.

Methods
getPresentationAttribute

Returns the base (i.e., static) value of a given presentation attribute as an object of type CSSValue. The returned object is live;
changes to the objects represent immediate changes to the objects to which the CSSValue is attached.

Parameters
in DOM String name Retrieves a"presentation attribute” by name.
Return value

css::CSSVaue The static/base value of the given presentation attribute as a CSSValue, or NULL if the given attribute
does not have a specified value.

If the given attribute or property is being animated, contains the current animated value of the attribute or
property. If the given attribute or property is not currently being animated, contains the same value as
'baseVal'.
No Exceptions
getAnimatedPresentationAttribute

Returns the current animated val ue of a given presentation attribute as an object of type CSSVaue. The returned object is
readonly. An attempt to modify the return value will generate an exception.

Parameters
in DOM String name Retrieves the current animated value of a"presentation attribute" by name.
Return value

css::CSSValue The current animated value of the given presentation attribute asa CSSValue, or NULL if the given
attribute does not have a specified value.

No Exceptions

Interface SVGTransformable

Interface SV GTransformable contains properties and methods that apply to all elements which have attribute transform.
IDL Definition

i nterface SVGIransformabl e {

readonly attribute SVCGEl enent near est Vi ewport El ement ;
readonly attribute SVCEl enment farthest Vi ewport El ement ;
readonly attribute SVGAni mat edTransfornli st transform

SVGRect getBBox ();
SVGwatrix getCTM ();
SVGwatri x get ScreenCIM () ;
SVGWatri x get Transfor mioEl enent (in SVGEl enent el enent)
rai ses(SVGException);
1

Attributes
readonly SV GElement nearestViewportElement

The element which established the current viewport. Often, the nearest ancestor 'svg' element. Null if the current element isthe
outermost 'svg' element.

readonly SV GElement farthestViewportElement
The farthest ancestor 'svg' element. Null if the current element is the outermost 'svg' element.
readonly SVGAnimatedTransformList transform
Corresponds to attribute transform on the given element.
Methods
getBBox

Returns the tight bounding box in current user space (i.e., after application of the transform attribute) on the geometry of all
contained graphics elements, exclusive of stroke-width and filter effects).

No Parameters
Return value
SVGRect An SVGRect object that defines the bounding box.
No Exceptions
getCTM

Returns the transformation matrix from current user units (i.e., after application of the transform attribute) to the viewport
coordinate system for the nearestViewportElement.

No Parameters
Return value
SVGMatrix An SVGMaitrix object that defines the CTM.
No Exceptions
getScreenCTM

Returns the transformation matrix from current user units (i.e., after application of the transform attribute) to the parent user agent's
notice of a"pixel". For display devices, ideally this represents a physical screen pixel. For other devices or environments where
physical pixel sizes are not known, then an algorithm similar to the CSS2 definition of a"pixel" can be used instead.

No Parameters
Return value

SVGMatrix An SVGMatrix object that defines the given transformation matrix.
No Exceptions

getTransformToElement

Returns the transformation matrix from the user coordinate system on the current element (after application of the transform
attribute) to the user coordinate system on element (after application of its transform attribute).

Parameters

in SVGElement element The target element.
Return value

SVGMatrix An SVGMatrix object that defines the transformation.
Exceptions

SVGException SVG_MATRIX_NOT_INVERTABLE: Raised if the currently defined transformation matrices make it
impossible to compute the given matrix (e.g., because one of the transformationsis singular).

Interface SVGTests

Interface SV GTests defines an interface which appliesto all elements which have attributes requiredFeatures, requiredExtensions and
systeml anguage.

IDL Definition

i nterface SVGIests {

attri bute SVG.i st requiredFeatures;

/'l rai ses DOVException on setting
attri bute SVGA.i st requiredExtensions;

/'l rai ses DOVException on setting
attri bute SVGA.i st systenlanguage;

/'l rai ses DOVException on setting

bool ean hasExtension (in DOVString extension);

};

Attributes
SVGList requiredFeatures

Corresponds to attribute requiredFeatures on the given element. The various methods from SV GList, which are defined to accept
parameters and return values of type Object, must receive parameters of type DOM String and return val ues of type DOM String.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
SVGList requiredExtensions

Corresponds to attribute requiredExtensions on the given element. The various methods from SV GList, which are defined to accept
parameters and return values of type Object, must receive parameters of type DOM String and return val ues of type DOM String.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
SVGList systemLanguage

Corresponds to attribute systemL anguage on the given element. The various methods from SV GL.ist, which are defined to accept
parameters and return values of type Object, must receive parameters of type DOM String and return val ues of type DOM String.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Methods
hasExtension
Returnstrue if the user agent supports the given extension, specified by a URI.
Parameters

in DOM String extension The name of the extension, expressed asa URI.
Return value

boolean True or false, depending on whether the given extension is supported.
No Exceptions

Interface SVGLangSpace

Interface SV GLangSpace defines an interface which applies to all elements which have attributes xml:lang and xml:space.

IDL Definition

i nterface SVG.angSpace {

attribute DOVString xm | ang;

/'l rai ses DOVException on setting
attri bute DOVBtri ng xnl space;

/'l rai ses DOVException on setting

b

Attributes
DOMString xmllang
Corresponds to attribute xml:lang on the given element.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOM String xmlspace
Corresponds to attribute xml:space on the given element.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGExternalResourcesRequired

Interface SV GExternal ResourcesRequired defines an interface which appliesto all elements where this element or one of its descendants can
reference an external resource.

IDL Definition

i nterface SVCGEXxternal ResourcesRequired {

readonly attribute SVGAni mat edBool ean ext er nal Resour cesRequi r ed;

};

Attributes
readonly SV GAnimatedBool ean external ResourcesRequired
Corresponds to attribute external ResourcesRequired on the given element.

Interface SVGFitToViewBox
Interface SVGFitToViewBox defines DOM ettributes that apply to elements which have XML attributes viewBox and preserveAspectRatio.
IDL Definition

i nterface SVGFit ToVi ewBox {

readonly attribute SVGAni mat edRect vi ewBox;
readonly attribute SVGAni mat edPreserveAspect Rati o preserveAspect Rati o;

};

Attributes
readonly SV GAnimatedRect viewBox
Corresponds to attribute viewBox on the given element.
readonly SV GAnimatedPreserveA spectRatio preserveAspectRatio
Corresponds to attribute preserveAspectRatio on the given element.

Interface SVGZoomAndPan

The SVGZoomAndPan interface defines attribute "zoomAndPan" and associated constants.
IDL Definition

i nterface SVGZoomAndPan {

/'l Zoom and Pan Types

const unsigned short SVG_ZOOVANDPAN UNKNOWN
const unsigned short SVG ZOOVANDPAN DI SABLE
const unsigned short SVG_ZOOVANDPAN MAGNI FY
const unsigned short SVG ZOOVANDPAN ZOOM

(TINTIT
Wk

attri bute unsigned short zoomAndPan;
/1 raises DOVException on setting

b

Definition group Zoom and Pan Types
Defined constants

SVG_ZOOMANDPAN_UNKNOWN The enumeration was set to avalue that is not one of predefined types. Itisinvalid to
attempt to define anew value of this type or to attempt to switch an existing value to this
type.

SVG_ZOOMANDPAN_DISABLE Correspondsto value disable.

SVG_ZOOMANDPAN_MAGNIFY Corresponds to value magnify.

SVG_ZOOMANDPAN_ZOOM Corresponds to value zoom.

Attributes
unsigned short zoomAndPan
Corresponds to attribute zoomAndPan on the given element. The value must be one of the zoom and pan constants specified above.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGViewSpec

The interface corresponds to an SVG View Specification.
IDL Definition

i nterface SVGVi ewSpec :
SVGZoomAndPan,
SVGFi t ToVi ewBox {

attribute SVGIransfornli st transform
/'l rai ses DOVException on setting

attri bute SVGEl enent vi ewTar get ;
/'l rai ses DOVException on setting
readonly attribute DOVString vi ewBoxSt ri ng;
readonly attribute DOVSBtring preserveAspect Rati oStri ng;
readonly attribute DOVString transfornftring;

readonly attribute DOVSBtring vi ewTar get Stri ng;

b

Attributes
SVGTransformList transform
Corresponds to the transform setting on the SV G View Specification.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
SVGElement viewTarget
Corresponds to the viewTarget setting on the SVG View Specification.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
readonly DOM String viewBoxString
Corresponds to the viewBox setting on the SV G View Specification.
readonly DOM String preserveAspectRatioString
Corresponds to the preserveA spectRatio setting on the SVG View Specification.
readonly DOM String transformString
Corresponds to the transform setting on the SV G View Specification.
readonly DOM String viewTargetString
Corresponds to the viewTarget setting on the SVG View Specification.

Interface SVGURIReference

Interface SVGURIReference defines an interface which applies to all elements which have the collection of XLink attributes, such as xlink:href,
which define a URI reference.

IDL Definition

i nterface SVGAURI Ref erence {

attribute DOVString xlinkType;
/'l rai ses DOVException on setting
attribute DOVString xlinkRole;
/'l rai ses DOVException on setting
attribute DOVBtring xlinkArcRol e;
/1 rai ses DOVException on setting
attribute DOVBtring xlinkTitle;
/'l rai ses DOVException on setting
attri bute DOVString xlinkShow,
/'l rai ses DOVException on setting
attribute DOVString xlinkActuate;
/1 rai ses DOVException on setting
readonly attribute SVGAni matedString href;

};

Attributes
DOMString xlinkType
Corresponds to attribute xlink:type on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOMString xlinkRole
Corresponds to attribute xlink:role on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

DOMString xlinkArcRole
Corresponds to attribute xlink:arcrole on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOMString xlinkTitle
Corresponds to attribute xlink:title on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOMString xlinkShow
Corresponds to attribute xlink:show on the given element.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOM String xlinkActuate
Corresponds to attribute xlink:actuate on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
readonly SV GAnimatedString href
Corresponds to attribute xlink:href on the given element.

Interface SVGCSSRule

SV G extends interface CSSRule with interface SV GCSSRule by adding an SVGColorProfileRule rule to allow for specification of |CC-based
color.

Itislikely that this extension will become part of a future version of CSS and DOM.
IDL Definition

interface SVGCSSRul e : css:: CSSRul e {
/1 Additional CSS Rul eType to support |
const unsigned short COLOR _PROFI LE RULE

b

ol or specifications

CC c
:7;

Definition group Additional CSS RuleTypeto support ICC color specifications
Defined constants

COLOR_PROFILE_RULE Theruleisan @color-profile.

Interface SVGRenderinglntent

The SVGRenderingl ntent defines the enumerated list of possible values for 'rendering-intent' attributes or descriptors.
IDL Definition

i nterface SVGRenderinglntent {

/'l Rendering Intent Types
const unsigned short RENDER
const unsigned short RENDERI ENT_AUTO

const unsigned short RENDER ENT_PERCEPTUAL

NG _| NTENT_UNKNOWN

NG _|I NT

NG _| NT
const unsigned short RENDERI NG | NTENT_RELATI VE_COLORI METRI C

NG _I NT

NG _| NT

const unsigned short RENDERI ENT_SATURATI ON
const unsigned short RENDER ENT_ABSOLUTE_COLORI METRI C

TR TER TR TR THNT
RONRO

Definition group Rendering Intent Types
Defined constants
RENDERING_INTENT_UNKNOWN Thetype is not one of predefined types. It isinvalid to attempt to

define anew value of thistype or to attempt to switch an existing
valueto thistype.

RENDERING_INTENT_AUTO Corresponds to a value of auto.
RENDERING_INTENT_PERCEPTUAL Corresponds to a value of perceptual.
RENDERING_INTENT_RELATIVE_COLORIMETRIC Correspondsto avalue of relative-colorimetric.
RENDERING_INTENT_SATURATION Corresponds to a value of saturation.

RENDERING_INTENT_ABSOLUTE_COLORIMETRIC Corresponds to avalue of absolute-colorimetric.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

5 Document Structure

Contents

« 5.1 Defining an SV.G document fragment: the 'svg' element

o 5.1.1 Overview
o 5.1.2 The'svg' element

« 5.2 Grouping and Naming Collections of Drawing Elements: the 'g' element

o 5.2.1 Overview
o 5.2.2The'qg element

« 5.3 References and the 'defs’ element
o 5.3.1 Overview
o 5.3.2 URI reference attributes
o 5.3.3The'defs element

o 5.4 The'desc' and 'title' elements

e 5.5 The'symbol' element

o 5.6 The'use element

« 5.7 The'image element

« 5.8 Conditional processing

o 5.8.1 Conditional processing overview
o 5.8.2 The'switch' element

o 5.8.3 The requiredFeatures attribute

o 5.8.4 The requiredExtensions attribute
o 5.8.5 The systeml anguage attribute

« 5.9 Common attributes

o 5.9.1 Theid attribute

o 5.9.2 The xml:lang and xml:space attributes

o 5.9.3 The external ResourcesRequired attribute
« 5.10 DOM interfaces

5.1 Defining an SVG document fragment: the 'svg' element

5.1.1 Overview

An SV G document fragment consists of any number of SV G elements contained within an 'svg' el ement.

An SV G document fragment can range from an empty fragment (i.e., no content inside of the 'svg' element), to avery simple SV G document
fragment containing asingle SV G graphics element such as a'rect’, to a complex, deeply nested collection of container elements and graphics

elements.

An SV G document fragment can stand by itself as a self-contained file or resource, in which case the SVG document fragment isan SVG
document, or it can be embedded inline as a fragment within a parent XML document.

file:///D|/Public/CR-SVG-20000802/indexlist.html

The following example shows simple SV G content embedded as a fragment within a parent XML document. Note the use of XML
namespaces to indicate that the 'svg' and 'ellipse’ elements belong to the SVG namespace:

<?xm version="1.0" standal one="yes" ?>
<parent xm ns="http://somepl ace. org"
xm ns:svg="http://ww. w3. org/ 2000/ svg" >
<l-- parent contents here -->
<svg: svg w dt h="4cnm' hei ght ="8cni >
<svg:ellipse cx="2cm' cy="4cn' rx="2cnm' ry="1cnl' />
</ svg: svg>
<l-- ... -->
</ parent >

This example shows a slightly more complex (i.e., it contains multiple rectangles) stand-alone, self-contained SVG document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="5cn' hei ght ="4cnt >
<desc>Four separate rectangles
</ desc>
<rect x="0.5cm" y="0.5cnt wi dth="2cni hei ght="1cni'/>
<rect x="0.5cm' y="2cnm w dth="1cnt height="1.5cnt/>
<rect x="3cni y="0.5cnm w dth="1.5cni" hei ght="2cni'/>
<rect x="3.5cnm' y="3cm' wi dth="1cnt hei ght="0.5cn{/>
</ svg>

View this example as SV G (SV G-enabled browsers only)

'svg' elements can appear in the middle of SV G content. Thisis the mechanism by which SVG document fragments can be embedded within
other SV G document fragments.

Another use for 'svg' elements within the middle of SV G content is to establish a new viewport and alter the meaning of unit identifiers. See
Establishing a new viewport and Redefining the meaning of unit identifiers.

5.1.2 The 'svg' element

<IENTITY % svgExt "" >

<! ELEMENT svg (desc]|title|netadata| defs]
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| vi ew| swi tch| al al t A yphDef |
script]|styl e| synbol | marker | cl i pPat h| mask|
linearGradient|radial Gadient|pattern|filter|cursor]|font]|
ani mat e| set | ani mat eMbt i on| ani nat eCol or | ani mat eTr ansf or n
color-profile|font-face
%eExt; %svgExt;)* >

<! ATTLI ST svg
xm ns CDATA #FI XED "http://ww. w3. or g/ 2000/ svg"
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext ernal Resour cesRequi red %Bool ean; #| MPLI ED
class % assList; #l MPLIED
style %styl eSheet; #l MPLI ED
%PresentationAttributes-All;
Vi ewBox %/i ewBoxSpec; #l MPLI ED
preserveAspect Rati o %°reserveAspect Rati oSpec; 'xM dYM d neet’
zoomAndPan (disable | magnify | zoon) 'nmagnify’
%gr aphi csEl ement Event s;

file:///D|/Public/CR-SVG-20000802/images/struct/StandAlone01.svg

%docunent Event s;

X Y% Coor di nate; #l| MPLI ED
y % Coordi nate; # MPLI ED

wi dth %.ength; #REQU RED

hei ght %.engt h; #REQUI RED

cont ent Scri pt Type % Content Type; "text/ecmascript”

content Styl eType % ontent Type; "text/css" >

Attribute definitions:
xmins [:prefix] = "resource-name"

Standard XML attribute for identifying an XML namespace. Refer to the "Namespacesin XML" Recommendation [XML-NS].
Animatable: no.

X = "<coordinate>"

(Has no meaning or effect on outermost 'svg' elements.)

The x-axis coordinate of one corner of the rectangular region into which an embedded 'svg' element is placed.
If the attribute is not specified, the effect isasif avalue of "0" were specified.

Animatable: yes.

y = "<coordinate>"

(Has no meaning or effect on outermost 'svg' elements.)

The y-axis coordinate of one corner of the rectangular region into which an embedded 'svg' element is placed.
If the attribute is not specified, the effect isasif avaue of "0" were specified.

Animatable: yes.

width = "<length>"

For outermost 'svg' elements, the intrinsic width of the SVG document fragment. For embedded 'svg' elements, the width of the
rectangular region into which the 'svg' element is placed.
A negative valueis an error (see Error processing). A value of zero disables rendering of the element.

Animatable: yes.

height = "<length>"

For outermost 'svg' elements, the intrinsic height of the SVG document fragment. For embedded 'svg' elements, the height of the
rectangular region into which the 'svg' element is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.

Animatable: yes.

Attributes defined el sewhere:

%langSpaceAttrs;, class, %ographicsElementEvents;, %odocumentEvents;, Y%testAttrs;, external ResourcesRequired, viewBox,
preserveAspectRatio, zoomAndPan, contentScriptType, contentStyleType, style, %PresentationAttributes-All;.

5.2 Grouping and Naming Collections of Drawing Elements: the ‘g’
element
5.2.1 Overview

The'g' element is the element for grouping and naming collections of drawing elements. If several drawing elements share similar attributes,
they can be collected together using a'g' element.

Grouping constructs, when used in conjunction with the 'desc’ and 'title' elements, provide information about document structure and
semantics. Documents that are rich in structure may be rendered graphically, as speech, or as braille, and thus promote accessibility.

A group of drawing elements, as well asindividual objects, can be given a name using the id attribute. Named groups are needed for several
purposes such as animation and re-usable objects.

An example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
“http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg W dt h="5cn' hei ght ="5cni' >
<desc>Two groups, each of two rectangl es
</ desc>
<g id="groupl" style="fill:red">
<rect x="1l1lcnl y="1cni w dth="1cnl hei ght="1cni />
<rect x="3cnf y="lcm' width="1cm' hei ght="1cni />
</ g>
<g id="group2" style="fill:blue">
<rect x="1lcnt y="3cni w dth="1cnf height="1cni />
<rect x="3cnt y="3cnt w dth="1cn height="1cni />
</ g>
</ svg>

View this example as SVG (SV G-enabled browsers only)

A 'g' element can contain other 'g' elements nested within it, to an arbitrary depth. Thus, the following is possible:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg W dt h="4in" hei ght="3in">
<desc>Groups can nest
</ desc>
<g>
<g>
<g>
</ g>
</ g>
</ g>
</ svg>

Any drawing element that is not contained within a'g' is treated (at |east conceptually) asif it werein its own group.

5.2.2 The 'g' element

<IENTITY %gExt "" >

<! ELEMENT g (desc|title| netadata| defs|
path|text|rect|circle|ellipse|line|polyline|lpolygon|
use| i mage| svg| g| vi ew| swi tch| a| al t d yphDef |
script|styl e|] synbol | mar ker | cl i pPat h| nask|
linearGradient|radial Gadient|pattern|filter|cursor|font]|
ani nat e| set | ani nat evbt i on| ani nat eCol or | ani mat eTr ansf or nj
color-profile|lfont-face
%eExt; %gExt;)* >

<I' ATTLI ST g
YstdAttrs;
YiestAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class %l asslList; #l MPLI ED
style %styl eSheet; #l MPLI ED
%Pr esent ati onAttributes-All:;
transform %ransforniist; #l MPLI ED
%gr aphi csEl enent Events; >

Attributes defined el sewhere:
YostdAttrs;, %langSpaceAttrs;, class, transform, %graphi csElementEvents;, %testAtirs;, external ResourcesRequired, style,

file:///D|/Public/CR-SVG-20000802/images/struct/grouping01.svg

%PresentationAttributes-All;.

5.3 References and the 'defs' element

5.3.1 Overview

SVG makes extensive use of URI references [URI] to other objects. For example, to fill arectangle with alinear gradient, you first define a
'linearGradient' element and giveit an ID, asin:

<linearGradient id="MyGadient">. ..</linearG adient>

Y ou then reference the linear gradient as the value of the 'fill' property for the rectangle, asin:

<rect style="fill:url (#MW/G adient)"/>
In SVG, the following facilities allow URI references:

« the'd element

« the'atGlyph' element

« the'animate' element

« the'animateColor' element

« the'animateMotion' element

« the'animateTransform' element

« the'clip-path' property

« the'cursor' element and 'cursor' property

« the'felmage’ element

« thefill' property

« the'filter' element and 'filter' property

« the'image element

« the'linearGradient' element

« the 'marker','marker-start','marker-mid' and 'marker-end' properties

« the'mask’ property

« the'pattern’ element

« the'radialGradient' element

« the'script' element

« the'src' descriptor on an @color-profile definition
« the'stroke property

« the'textpath' element
« the'tref' element
« the'set' element
o the'use element

URI references are defined in either of the following forms:

<URI - ref erence>
<URI - ref erence>

= [<absoluteURI > | <relativeURI>] ["#" <elenentlD>] -0or-
= [<absoluteURI > | <relativeURI>] ["#xpointer(id(" <elenentIiD> "))"]

where <elementI D> isthe ID of the referenced el ement.

(Note that the two forms above (i.e., #<elementl D> and #xpointer(id(<elementI D>))) are formulated in syntaxes compatible with "XML
Pointer Language (XPointer)" [XPTR]. These two formulations of URI references are the only XPointer formulations that are required in

SVG 1.0 user agents.)

SV G supports two types of URI references:

« loca URI references, where the URI reference does not contain an <absoluteURI> or <relativeURI> and thus only contains a
fragment identifier (i.e., #<elementID> or #xpointer(id<element! D>))

« non-local URI references, where the URI reference does contain an <absoluteURI> or <relativeURI>

The following rules apply to the processing of URI references:
« URI references to elements that do not exist shall be treated asinvalid references.

« URI references to elements which are inappropriate targets for the given reference shall be treated asinvalid references. For example,
the 'clip-path’ property can only refer to <clipPath> elements. The property setting clip-path:url(#MyElement) is an invalid reference if

the referenced element is not a <clipPath>.

Note that only arestricted set of characters are legal in a URI specification. In particular, spaces and non-ASCII values must be escaped. (See
[URI], section 2.1.)

It is recommended that, wherever possible, referenced elements be defined inside of a 'defs element. Among the elements that are always
referenced: 'altGlyphDef', 'clipPath', 'cursor’, filter', 'linearGradient’, 'marker’, 'mask’, 'pattern’, 'radial Gradient' and 'symbol’. Defining these
elementsinside of a'defs element promotes understandability of the SV G content and thus promotes accessihility.

5.3.2 URI reference attributes

A URI reference is specified within an href attribute in the XLink [XLINK] namespace. If the default prefix of 'xlink:" is used for attributesin
the XLink namespace, then the attribute will be specified as xlink:href. The value of this attribute is the URI of the desired resource.

Because href attributes contain URI references, some charactersin an href value that would normally be allowed by the rules of XML are
syntactically disallowed by the generic URI syntax. For instance, the following href valueisillegal but might be encountered nevertheless:

<a xlink:href="http://exanpl e. org/ Hikon">. .. </ a>

The disallowed charactersinclude all non-ASCII characters, plus the excluded characters listed in Section 2.4 of [RFC2396] except for the
crosshatch (#) and percent sign (%) characters. Values containing disallowed characters must be encoded specially, as follows:

1. Each disallowed character is converted to UTF-8 as one or more bytes.

2. Each of these bytesis escaped with the URI escaping mechanism (that is, converted to %HH, where HH is the hexadecimal notation
of the byte value).

3. Theoriginal character isreplaced by the resulting character sequence.

For locators into XML resources, the format of the fragment identifier (if any) used within the URI reference is specified by the X Pointer
specification [XPTR].

Additional XLink attributes can be specified that provide supplemental information regarding the referenced resource. These additional
attributes are included in the DTD in the following entity:

<IENTITY % x|l i nkRef Attrs
"xm ns: xl i nk CDATA #FI XED ' http://ww. w3. org/ 1999/ xl i nk’

xlink:type (sinple|extended|!|ocator|arc) 'sinple'
xl i nk: rol e CDATA #l MPLI ED
xlink:arcrol e CDATA #l MPLI ED
xlink:title CDATA #l MPLI ED
xl i nk: show (enbed) 'enbed'
xlink:actuate (onRequest|onLoad) 'onLoad " >

xmins [:prefix] = "resource-name”
Standard XML attribute for identifying an XML namespace. This attribute makes the XLink [XLink] namespace available to the
current element. Refer to the "Namespacesin XML" Recommendation [XML-NS].
Animatable: no.
xlink:type = 'ssmpl€e
Identifies the type of XLink being used. For hyperlinksin SVG, only simple links are available. Refer to the"XML Linking Language

(XLink)" [XLink].
Animatable: no.

xlink:role = '<uri>'

A URI reference that identifies some resource that describes the intended property. When no value is supplied, no particular role value
isto beinferred. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:arcrole = '<uri>'

A URI reference that identifies some resource that describes the intended property. The arcrole attribute corresponds to the [RDF]
notion of a property, where the role can be interpreted as stating that "starting-resource HAS arc-role ending-resource.” This
contextual role can differ from the meaning of an ending resource when taken outside the context of this particular arc. For example, a
resource might generically represent a"person,” but in the context of a particular arc it might have the role of "mother" and in the
context of adifferent arc it might have the role of "daughter." When no value is supplied, no particular role valueisto be inferred.
Refer to the "XML Linking Language (XLink)" [XLink].

Animatable: no.

xlink:title = '<string>'

Human-readable text describing the link. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:show = 'embed'

Indicates that the referenced resource is incorporated into the current document. Refer to the "XML Linking Language (XLink)"

[XLink].
Animatable: no.

xlink:actuate = 'onRequest | onL oad'

Indicates whether the contents of the referenced object are incorporated upon user action or automatically (i.e., without user action).
Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

5.3.3 The 'defs' element

The 'defs element is a container element for referenced elements. For understandability and accessibility reasons, it is recommended that,
whenever possible, referenced elements be defined inside of a'defs.

The content model for 'defs' is the same as for the 'g' element; thus, any element that can be achild of a'g' can also be achild of a'defs, and
vice versa.

When the current SV G document fragment is rendered as SV G on visual media, graphics elements that are descendants of a'defs' are not
drawn; thus, in this case, the 'display’ property does not apply to 'defs (i.e., thereis an implicit 'display:none’).

<IENTITY % def sExt "" >

<! ELEMENT defs (desc|title|netadata|defs]|
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| view swi tch|al altd yphDef |
script|styl e|] synbol | marker| cli pPat h| mask]|
linearGadient|radial Gadient|pattern|filter|cursor]|font]
ani mat e| set | ani nat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face
%ceExt ; Ydef sExt;)* >

<! ATTLI ST defs
Yst dAttrs;
YiestAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class %l asslList; #l MPLI ED
style %styl eSheet; #l MPLI ED
9%Pr esent ati onAttributes-All;
transform %ransforniist; #l MPLI ED
%r aphi csEl enent Events; >

Attributes defined el sewhere:

%stdAttrs;, YolangSpaceAttrs;, class, transform, %testAttrs;, external ResourcesRequired, style, %oPresentati onAttributes-All;,
%graphicsElementEvents;.

To provide some SV G user agents with an opportunity to implement efficient implementations in streaming environments, creators of SVG
content are encouraged to place all elements which are targets of local URI references within a'defs' element which is adirect child of one of
the ancestors of the referencing element. For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="8cni' hei ght ="3cni'>
<desc>Local URI references within ancestor's 'defs' elenent.</desc>
<def s>
<l i near Gradi ent id="G adient01">
<stop of fset="20% style="stop-col or: #39F"/>
<stop of fset="90% styl e="stop-color: #F3F"/>
</li near G adi ent >
</ def s>
<rect x="1lcnt y="1cni wi dth="6cnt' hei ght="1cn{
style="fill:url (#Gadient01)" />
</ svg>

View this example as SV G (SV G-enabled browsers only)

In the document above, the linear gradient is defined within a'defs element which is the direct child of the 'svg' element, which inturnisan
ancestor of the 'rect’ element which references the linear gradient. Thus, the above document conforms to the guideline.

5.4 The 'desc' and 'title' elements

Each container element or graphics element in an SV G drawing can supply a'desc' and/or a'title’ description string where the description is

text-only. When the current SV G document fragment is rendered as SVG on visual media, 'desc' and 'title' elements are not rendered as part of
the graphics. User agents may, however, for example, display the 'title' element as atooltip, as the pointing device moves over particular
elements. Alternate presentations are possible, both visua and aural, which display the 'desc’ and 'title’ elements but do not display 'path’

elements or other graphics elements. Thisis readily achieved by using a different (perhaps user) style sheet. For deep hierarchies, and for
following 'use’ element references, it is sometimes desirable to allow the user to control how deep they drill down into descriptive text.

<! ELEMENT desc (#PCDATA) >

<! ATTLI ST desc
st dAttrs;
% angSpaceAttrs;
class % assList; #l MPLI ED
style %styl eSheet; #l MPLI ED
%Gt ruct uredText; >

Attributes defined el sewhere:
Y%stdAttrs;, %langSpaceAttrs;, class, style.

<IELEMENT title (#PCDATA) >

<I ATTLI ST title
Y%st dAttrs;
% angSpaceAttrs;
class %l asslList; #l MPLI ED
style %styl eSheet; #l MPLI ED
U8t ruct uredText; >

Attributes defined el sewhere:
%stdAttrs;, YolangSpaceAttrs;, class, style.

file:///D|/Public/CR-SVG-20000802/images/struct/defs01.svg

The following is an example. In typical operation, the SVG user agent would not render the 'desc’ and 'title' elements but would render the
remaining contents of the 'g' element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg SYSTEM "htt p://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="4in" hei ght="3in">

<g>
<title>
Conpany sal es by region
</title>
<desc>
This is a bar chart which shows
conpany sal es by region.
</ desc>
<l-- Bar chart defined as vector data -->
</ g>
</ svg>

Description and title elements can contain marked-up text from other namespaces. Here is an example:

<?xm version="1.0" standal one="yes"?>
<svg W dt h="4i n" hei ght="3in"
xm ns="http://ww. w3. org/ 2000/ svg" >
<desc xm ns: nmydoc="http://exanpl e. org/ mydoc" >
<nydoc:title>This is an exanple SVG file</nydoc:title>
<nydoc: para>The gl obal description uses markup fromthe
<nydoc: enph>nydoc</ nydoc: enph> nanespace. </ nydoc: par a>
</ desc>
<g>
<l-- the picture goes here -->
</ g>
</ svg>

Authors should always provide a'title' child element to the outermost 'svg' element within a stand-alone SV G document. The 'title' child
element to an 'svg' element serves the purposes of identifying the content of the given SVG document fragment. Since users often consult

documents out of context, authors should provide context-rich titles. Thus, instead of atitle such as"Introduction”, which doesn’t provide
much contextual background, authors should supply atitle such as "Introduction to Medieval Bee-Keeping" instead. For reasons of
accessibility, user agents should always make the content of the 'title’ child element to the outermost 'svg' element available to users. The

mechanism for doing so depends on the user agent (e.g., as a caption, spoken).

The DTD definitions of many of SVG's elements (particularly, container and text elements) place no restriction on the placement or number
of the 'desc’ and 'title' sub-elements. This flexibility is only present so that there will be a consistent content model for container elements,

because some container elementsin SV G alow fox mixed content, and because the mixed content rules for XML [XML-MIXED] do not
permit the desired restrictions. Representations of future versions of the SV G language might use more expressive representations than DTDs
which alow for more restrictive mixed content rules. It is strongly recommended that at most one 'desc' and at most one 'title' element appear
asachild of any particular element, and that these elements appear before any other child elements (except possibly 'metadata’ elements) or
character data content. If user agents need to choose among multiple 'desc’ or 'title' elements for processing (e.g., to decide which string to use
for atooltip), the user agent shall choose the first one.

5.5 The 'symbol' element

The 'symbol' element is used to define graphical template objects which can be instantiated by a'use’ element.

The use of 'symbol’ elements for graphics that are used multiple timesin the same document adds structure and semantics. Documents that are
rich in structure may be rendered graphically, as speech, or as braille, and thus promote accessibility.

The key distinctions between a'symbol’ and a'd’ are:

« A 'symbol' element itself is not rendered. Only instances of a'symbol’ element (i.e., areference to a'symbol’ by a'use’ element) are
rendered.

« A 'symbol' element has attributes viewBox and preserveAspectRatio which allow a'symbol’ to scale-to-fit within a rectangular
viewport defined by the referencing 'use' element.

Closely related to the 'symbol’ element are the 'marker' and 'pattern’ elements.

<IENTI TY % synbol Ext "" >
<! ELEMENT synbol (desc|title|netadataldefs]

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| vi ew swi tch| a] alt G yphDef |

script]|styl e| synbol | marker | cl i pPat h| mask|

linearGradi ent|radial Gadient|pattern|filter|cursor]|font]
ani nat e| set | ani nat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face

% eExt ; %synbol Ext;)* >

<! ATTLI ST synbol
st dAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class %l asslList; #l MPLI ED
style %styl eSheet; #l MPLI ED
%Pr esent ati onAttributes-All:;
Vi ewBox %/i ewBoxSpec; #l MPLI ED
preserveAspect Rati o %°r eserveAspect Rati oSpec; 'xM dYM d neet’
%gr aphi csEl enent Events; >

Attributes defined elsewhere:

Y%stdAttrs;, YolangSpaceAttrs;, class, external ResourcesRequired, viewBox, preserveAspectRatio, style, YoPresentationAttributes-All;,
%graphicsElementEvents;.

5.6 The 'use' element

Any 'svg, 'symbol’, 'g’, graphics element or other 'use’ is potentially atemplate object that can be re-used (i.e., "instanced") in the SVG

document viaa'use' element. The 'use’ element references another element and indicates that the graphical contents of that element is
included/drawn at that given point in the document.

Unlike 'image, the 'use' element cannot reference entirefiles.

The'use' element has optional attributes x, y, width and height which are used to map the graphical contents of the referenced element onto a
rectangular region within the current coordinate system.

The effect of a'use’ element is asif the contents of the referenced element were deeply cloned into a separate non-exposed DOM tree which
had the 'use' element asits parent and all of the 'use’ element's ancestors as its higher-level ancestors. Because the cloned DOM treeis
non-exposed, the SV G Document Object Model (DOM) only contains the 'use’ element and its attributes. The SVG DOM does not show the
referenced element's contents as children of 'use’ element.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced element into a non-exposed DOM tree also
copies any property values resulting from the CSS cascade [CSS2-CASCADE] on the referenced element and its contents. CSS2 selectors can

be applied to the original (i.e., referenced) elements because they are part of the forma document structure. CSS2 selectors cannot be applied
to the (conceptually) cloned DOM tree because its contents are not part of the forma document structure.

Property inheritance, however, works as if the referenced element had been textually included as a deeply cloned child of the 'use’ element.
The referenced element inherits properties from the 'use’ element and the 'use’ element's ancestors. An instance of a referenced element does
not inherit properties from the referenced element's original parents.

If event attributes are assigned to referenced elements, then the actual target for the event will be the SV GElementinstance object within the
"instance tree" corresponding to the given referenced element.

The behavior of the 'visibility' property conforms to this model of property inheritance. Thus, specifying 'visibility:hidden' on a'use' element
does not guarantee that the referenced content will not be rendered. If the 'use’ element specifies 'visibility:hidden' and the element it
references specifies 'visibility:hidden' or 'visibility:inherit', then that one element will be hidden. However, if the referenced element instead

specifies'visibility:visible, then that element will be visible even if the 'use’ element specifies 'visibility:hidden'.
Animations on areferenced element will cause the instance to also be animated.

A 'use' element has the same visual effect asif the 'use’ element were replaced by the following generated content:
« Ifthe'use' element referencesa'symbol’ element:

In the generated content, the 'use’ will be replaced by 'g’, where al attributes from the 'use’ element except for x, y, width, height and
xlink:href are transferred to the generated 'g' element. An additional transformation translate(x,y) is appended to the end (i.e.,
right-side) of the transform attribute on the generated 'g', where x and y represent the values of the x and y attributes on the ‘use’
element. The referenced 'symbol’ and its contents are deep-cloned into the generated tree, with the exception that the 'symbol’ is
replaced by an 'svg'. This generated 'svg’ will aways have explicit values for attributes width and height. If attributes width and/or
height are provided on the 'use’ el ement, then these attributes will be transferred to the generated 'svg'. If attributes width and/or height
are not specified, the generated 'svg' element will use values of 100% for these attributes.

«» If the'use' element referencesan 'svg' element:

In the generated content, the 'use’ will be replaced by 'd’, where al attributes from the 'use’ element except for x, y, width, height and
xlink:href are transferred to the generated 'g' element. An additional transformation translate(x,y) is appended to the end (i.e.,
right-side) of the transform attribute on the generated 'g', where x and y represent the values of the x and y attributes on the 'use’
element. The referenced 'svg' and its contents are deep-cloned into the generated tree. If attributes width and/or height are provided on
the 'use' element, then these values will override the corresponding attributes on the 'svg' in the generated tree.

« Otherwise:

In the generated content, the 'use’ will be replaced by 'd', where al attributes from the 'use' element except for x, y, width, height and
xlink:href are transferred to the generated 'g' element. An additional transformation translate(x,y) is appended to the end (i.e.,
right-side) of the transform attribute on the generated 'g', where x and y represent the values of the x and y attributes on the 'use
element. The referenced object and its contents are deep-cloned into the generated tree.

For user agents that support Styling with CSS, the generated 'g' element carries along with it the "cascaded" property values on the 'use
element which result from the CSS cascade [CSS2-CASCADE]. Additionally, the copy (deep clone) of the referenced resource carries along

with it the "cascaded" property values resulting from the CSS cascade on the original (i.e., referenced) elements. Thus, the result of various
CSS selectors in combination with the class and style attributes are, in effect, replaced by the functional equivalent of a style attribute in the

generated content which conveys the "cascaded" property values.

Example Use01 below has asimple 'use’ on a 'rect'.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg wi dt h="10cnm' hei ght ="3cni >

<desc>Exanpl e Use01l - Sinple case of 'use' on a 'rect'</desc>
<def s>
<rect id="MyRect" wi dth="6cnl height="1cm'/>
</ def s>
<use x="2cm' y="1cnt xlink: href="#WRect" />
</ svg>

Example Use01

View this example as SV G (SV G-enabled browsers only)

The visual effect would be equivalent to the following document:

file:///D|/Public/CR-SVG-20000802/images/struct/Use01.svg

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="10cn' hei ght ="3cm'>

<desc>Exanpl e Use01l- Generat edContent - Sinple case of 'use' on a 'rect'</desc>
<l-- 'defs' section left out -->
<l-- Start of generated content. Replaces 'use' -->

<g transfornm="transl ate(2cm lcm">
<rect w dth="6cni height="1cm'/>

</ g>

<I-- End of generated content -->

</ svg>

View this example as SVG (SV G-enabled browsers only)

Example Use02 below has a'use' on a 'symbol’.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg wi dt h="10cn' hei ght ="3cni >

<desc>Exanpl e Use02 - 'use' on a 'synbol'</desc>
<def s>
<synbol id="M/Synbol" viewBox="0 0 20 20">
<desc>MySynbol - four rectangles in a grid</desc>

<rect x="1" y="1" wi dth="8" hei ght="8"/>
<rect x="11" y="1" wi dth="8" hei ght="8"/>
<rect x="1" y="11" wi dth="8" hei ght="8"/>
<rect x="11" y="11" w dth="8" height="8"/>
</ symbol >
</ def s>
<use x="4.5cm' y="1lcm' width="1cm' hei ght="1cni
xlink: hr ef ="#M/Synbol " />
</svg>

Example Use02

View this example as SV G (SV G-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg W dt h="10cnt hei ght ="3cn'>

<desc>Exanpl e Use02- Gener at edContent - 'use' on a 'synbol' </ desc>
<!-- 'defs' section left out -->
<l-- Start of generated content. Replaces 'use' -->

<g transform="transl ate(4.5cm lcm" >
<l-- Start of referenced 'synmbol'. 'synbol' replaced by 'svg',

file:///D|/Public/CR-SVG-20000802/images/struct/Use01-GeneratedContent.svg
file:///D|/Public/CR-SVG-20000802/images/struct/Use02.svg

with x,y,w dth, hei ght =0% 0% 100% 100% - - >
<svg wi dt h="1cni hei ght="1cnf
vi ewBox="0 0 20 20">
<rect x="1" y="1" wi dth="8" height="8"/>
<rect x="11" y="1" wi dth="8" hei ght="8"/>
<rect x="1" y="11" wi dth="8" hei ght="8"/>
<rect x="11" y="11" w dth="8" hei ght="8"/>
</ svg>
<!-- End of referenced synbol -->
</ g>
<l-- End of generated content -->

</ svg>

View this example as SV G (SV G-enabled browsers only)

Example Use03 illustrates what happens when a'use’ has a transform attribute.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="10cnt' hei ght ="3cm'>

<desc>Exanpl e Use03 - 'use' with a "transform attribute</desc>
<def s>

<rect id="MyRect" x="0" y="0" wi dth="6cnf height="1cnm'/>
</ def s>

<use xlink: href="#M/Rect"
transforme"transl ate(2cm.25cm rotate(10)" />
</ svg>

Example Use03

View this example as SVG (SV G-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. or g/ TR 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="10cnt hei ght="3cni >

<desc>Exanpl e Use03- GeneratedContent - 'use' with a "transform attribute</desc>
<!-- 'defs' section left out -->
<l-- Start of generated content. Replaces 'use' -->

<g transforn"transl ate(2cm . 25cn) rotate(10)">
<rect x="0" y="0" width="6cm hei ght="1cni'/>

</ g>

<l-- End of generated content -->

</ svg>

View this example as SVG (SV G-enabled browsers only)

Example Use04 illustrates a 'use' element with various methods of applying CSS styling.

file:///D|/Public/CR-SVG-20000802/images/struct/Use02-GeneratedContent.svg
file:///D|/Public/CR-SVG-20000802/images/struct/Use03.svg
file:///D|/Public/CR-SVG-20000802/images/struct/Use03-GeneratedContent.svg

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg W dt h="12cnm' hei ght ="3cn' vi ewBox="0 0 1200 300">
<desc>Exanpl e Use04 - 'use' with CSS styling</desc>
<defs style="/* rule 9 */ stroke-miterlimt: 10" >
<path id="MyPath" d="M300 50 L900 50 L900 250 L300 250"
cl ass="MWPat hd ass"
style="/* rule 10 */ stroke-dasharray: 300 100" />

</ def s>
<style type="text/css">
<! [CDATA[
/* rule 1 */ #WUse { fill: blue }
/[* rule 2 */ #MyPath { stroke: red }
/* rule 3 */ use { fill-opacity: .5}
/* rule 4 */ path{ stroke-opacity: .5 }
/* rule 5 */ .MUseC ass { stroke-linecap: round }
/* rule 6 */ .MPathC ass { stroke-linejoin: bevel }
/* rule 7 */ use > path{ shape-rendering: optimzeQuality }
/* rule 8 */ svg > path{ visibility: hidden }
11>
</style>

<g style="/* rule 11 */ stroke-wi dth: 40">
<use id="MyUse" xlink: href="#M/Pat h"
cl ass="MyUsed ass"
style="/* rule 12 */ stroke-dashoffset:50" />
</ g>
</ svg>

Example Use04

View this example as SVG (SV G-enabled browsers only)

The visual effect would be equivalent to the following document. Observe that some of the style rules above apply to the generated content
(i.e., rules 1-6, 10-12), whereas others do not (i.e., rules 7-9). The rules which do not affect the generated content are:

« Rules7 and 8: CSS selectors only apply to the formal document tree, not on the generated tree; thus, these selectors will not yield a
match.

« Rule 9: The generated tree only inherits from the ancestors of the 'use’ element and does not inherit from the ancestors of the
referenced element; thus, this rule does not affect the generated content.

In the generated content below, the selectors that yield a match have been transferred into inline 'styl€e' attributes for illustrative purposes.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"
"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="12cm' hei ght="3cn vi ewBox="0 0 1200 300">
<desc>Exanpl e Use04- GeneratedContent - 'use' with a '"transform attribute</desc>

<l-- 'style' and 'defs' sections left out -->

<g style="/* rule 11 */ stroke-wi dth: 40">

<lI-- Start of generated content. Replaces -->
<g style="/* rule 1 */ fill:Dblue;

/* rule 3 */ fill-opacity:.5;

/* rule 5 */ stroke-linecap:round;

use

file:///D|/Public/CR-SVG-20000802/images/struct/Use04.svg

/* rule 12 */ stroke-dashoffset:50" >
<path d="M300 50 L900 50 L900 250 L300 250"
style="/* rule 2 */ stroke:red;

/* rule 4 */ stroke-opacity:.5;

/* rule 6 */ stroke-linejoin: bevel;

/[* rule 10 */ stroke-dasharray: 300 100" />
</ g>
<!-- End of generated content -->

</ g>
</ svg>

View this example as SVG (SV G-enabled browsers only)

When a'use' references another element which is another ‘use’ or whose content contains a'use’ element, then the deep cloning approach
described aboveis recursive.

<IENTITY % useExt "" >
<! ELEMENT use (%lescTitl| eMet adat a;, (ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm

%geExt ; YuseExt;)*) >

<! ATTLI ST use
st dAttrs;
%l i nkRef Attrs;
xlink: href %JRI; #REQU RED
YiestAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % asslList; #l MPLI ED
style %styl eSheet; #l MPLI ED
%Pr esent ati onAttributes-All:;
transform %ransformnlist; #l MPLI ED
%@r aphi csEl enent Event s;
X Y Coordi nate; #l MPLI ED
y Y% Coordi nate; #l MPLI ED
wi dth %.ength; #l MPLI ED
hei ght %.ength; #l MPLIED >

Attribute definitions:
X = "<coordinate>"

The x-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

y = "<coordinate>"

The y-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

width = "<length>"

The width of the rectangular region into which the referenced element is placed.
Animatable: yes.

height = "<length>"

The height of the rectangular region into which the referenced element is placed.
Animatable: yes.

xlink:href = "<uri>"

A URI reference to an element/fragment within an SVG document.

file:///D|/Public/CR-SVG-20000802/images/struct/Use04-GeneratedContent.svg

Animatable: yes.

Attributes defined el sewhere:

Y%stdAttrs;, %langSpaceAttrs;, class, transform, %graphicsElementEvents;, %testAttrs;, external ResourcesRequired, %xlinkRefAttrs;,
style, YoPresentationAttributes-All;.

5.7 The 'image' element

The 'image’ el ement indicates that the contents of a complete file are to be rendered into a given rectangle within the current user coordinate
system. The 'image’ element can refer to raster image files such as PNG or JPEG or to fileswith MIME type of "image/svg-xml". Conforming

SV G viewers need to support at least PNG, JPEG and SV G format files.

When an 'image’ element references araster image file such as PNG or JPEG files, then the raster image is fitted into the region specified by
the x, y, width and height attribute such that the top/left corner of the raster image exactly aligns with coordinate (x,y), and the bottom/right

corner of the raster image exactly aligns with coordinate (x+width,y+height). When an 'image’ element references an SV G file, then the
'image’ element establishes a new viewport for the SV G file as described in Establishing a new viewport. The bounds for the new viewport
are defined by attributes x, y, width and height.

The resource referenced by the 'image’ element represents a separate document which generates its own parse tree and document object model
(if the resourceis XML). Thus, thereis no inheritance of propertiesinto the image.

Unlike 'use, the 'image’ element cannot reference elements within an SV G file.

<IENTITY % i mageExt "" >
<! ELEMENT i mage (%lescTitl eMetadat a;, (ani nmat e| set | ani mat eMot i on| ani mat eCol or | ani mat eTr ansf orm
%geExt ; % mageExt;)*) >

<! ATTLI ST i mage
Y%st dAttrs;
9%l i nkRef Attrs;
xlink:href %JRI; #REQU RED
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assList; #l MPLI ED
style %Gtyl eSheet; #l MPLI ED
%Pr esent ati onAttri but es- Graphics;
%Pr esent ati onAttribut es-Vi ewports;
transform %ransforniist; #l MPLI ED
%gr aphi csEl enent Event s;
X % Coor di nat e; #l MPLI ED
y %Coordi nate; #l MPLIED
wi dth %.ength; #REQU RED
hei ght %.engt h; #REQUI RED >

Attribute definitions:
X = "<coordinate>"

The x-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect isasif avaue of "0" were specified.
Animatable: yes.

y = "<coordinate>"

The y-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

width = "<length>"

The width of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.

Animatable: yes.
height = "<length>"

The height of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

xlink:href = "<uri>"

A URI reference.
Animatable: yes.

Attributes defined el sewhere:

%stdAttrs;, %olangSpaceAttrs;, class, transform, %graphicsElementEvents;, Y%testAttrs;, external ResourcesRequired, %oxlinkRefAttrs;,
style, %Presentati onAttributes-Graphics;, %PresentationAttributes-Viewports;.

An example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg W dt h="4in" hei ght="3in">
<desc>This graphic links to an external inage
</ desc>
<i mage x="200" y="200" wi dt h="100px" hei ght="100px"
xli nk: hr ef =" nyi mage. png" >
<title>My image</title>
</i mage>
</ svg>

5.8 Conditional processing

5.8.1 Conditional processing overview

SVG contains a'switch' element along with attributes requiredFeatures, requiredExtensions and systemL anguage to provide an ability to
specify aternate viewing depending on the capabilities of a given user agent or the user's language.

<IENTITY %testAttrs
"requiredFeat ures %-eaturelList; #l MPLIED
requi r edext ensi ons %kext ensi onLi st; #l MPLI ED
syst enLanguage % .anguageCodes; #| MPLIED' >

Attributes requiredFeatures, requiredextensions and systemL anguage act as tests and return either true or false results. The 'switch' renders
the first of its children for which all of these attributes test true. If the given attribute is not specified, then atrue value is assumed.

5.8.2 The 'switch' element

The 'switch' element evaluates the requiredFeatures, requiredExtensions and systemL anguage attributes on its direct child elementsin order,

and then processes and renders the first child for which these attributes evaluate to true. All others will be bypassed and therefore not
rendered. If the child element is a container element such asa'g’, then the entire subtreeis either processed/rendered or bypassed/not

rendered.

<IENTITY %switchExt "" >
<! ELEMENT swi tch (%descTitl eMet adat a; ,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| swi t ch| a| f or ei gnObj ect |
ani mat e| set | ani nat eMbt i on| ani mat eCol or | ani nat eTr ansf orm
%ceExt; ¥%switchExt;)*) >

<! ATTLI ST swi tch
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assList; #l MPLIED
style %Gtyl eSheet; #l MPLIED
%Pr esentati onAttributes-All;
transform %ransforniist; # MPLI ED
%@r aphi csEl enent Events; >

Attributes defined el sewhere:

%stdAttrs;, YolangSpaceAttrs;, class, transform, %graphicsElementEvents;, YtestAttrs;, external ResourcesRequired, style,
%Presentati onAttributes-All;.

For more information and an example, see Embedding foreign object types.

5.8.3 The requiredFeatures attribute

Definition of requiredFeatures:
requiredFeatures = list-of-features

Thevaueisalist of feature strings, with the individual values separated by white space. Determines whether al of the named features
are supported by the user agent. Only feature strings defined in this section (see below) are allowed. If al of the given features are
supported, then the attribute evaluates to true; otherwise, the current element and its children are skipped and thus will not be rendered
and cannot be referenced by another element.

Animatable: no.

All feature strings referring to language capabilities begin with " org.w3c.svg" . All feature strings referring to SVG DOM capabilities begin
with " org.w3c.dom.svg" .

The following are the feature strings for the requiredFeatures attribute. These same feature strings apply to the hasFeature method call that is
part of the SV G DOM's support for the DOMImplementation interface defined in [DOM2-CORE] (see Feature strings for the hasFeature

method call).
« Thefeature string " org.w3c.svg" indicates that the user agent supports at least one of the following (all of which are described

subsequently): " org.w3c.svg.lang”, " org.w3c.svg.dynamic”, " org.w3c.svg.static" or " org.w3c.dom.svg" . (Because the feature
string " org.w3c.svg" can be ambiguous in some circumstances, it is recommended that more specific feature strings be used.)

« Thefeature string " org.w3c.svg.lang" indicates that the user agent can parse and process al of the language features defined in this
specification. This value indicates that there is no language feature defined in this specification which will cause the user agent to fail
in its processing.

« Thefeature string " org.w3c.svg.static” indicates the availability of all of the language capabililities defined in:

o Basic Data Types and Interfaces

o Document Structure

0 Styling

o Coordinate Systems, Transformations and Units
o0 Paths

o Basic Shapes

o Text

o Painting: Filling, Stroking and Marker Symbols

o Color

o Gradients and Patterns

o Clipping, Masking and Compositing
o Filter Effects

o Fonts

o The'switch' element
o The requiredFeatures attribute
o The requiredExtensions attribute

o The systemlL anguage attribute

For SVG viewers, " org.w3c.svg.static" indicates that the viewer can process and render successfully all of the language features
listed above.

« Thefeature string " org.w3c.dom.svg.static" indicates the availability of all of the DOM interfaces and methods that correspond to
the language features for " or g.w3c.svg.static" .

« Thefeature string " org.w3c.svg.animation” includes all of the language capabilities defined for " or g.w3c.svg.static" plusthe
availability of all of the language capabililities defined in Animation. For SV G viewers running on media capable of rendering
time-based material, such as displays, " org.w3c.svg.animation" indicates that the viewer can process and render successfully all of
the corresponding language features.

« Thefeature string " org.w3c.dom.svg.animation” corresponds to the availability of DOM interfaces and methods that correspond to
the language features for " org.w3c.svg.animation™ .

« Thefeature string " or g.w3c.svg.dynamic" includes all of the language capabilities defined for " or g.w3c.svg.animation” plusthe
availability of al of the language capabililities and DOM interfaces defined in Relationship with DOM2 events, Linking and

Interactivity and Scripting. For SV G viewers running on media capable of rendering time-based material, such as displays,
"org.w3c.svg.dynamic" indicates that the viewer can process and render successfully all of the corresponding language features.

« Thefeature string " org.w3c.dom.svg.dynamic" corresponds to the availability of DOM interfaces and methods that correspond to the
language features for " org.w3c.svg.dynamic" .

« Thefeature string " org.w3c.svg.all" correspondsto the availability of all of the language capabilities defined in this specification.
« Thefeature string " org.w3c.dom.svg.all" corresponds to the availability of al of the DOM interfaces defined in this specification.

If the attribute is not present, then itsimplicit return valueis "true". If anull string or empty string value is given to attribute requiredFeatures,
the attribute returns "false”.

requiredrFeatures is often used in conjunction with the 'switch' element. If the requiredFeatures is used in other situations, then it represents a
simple switch on the given element whether to render the element or not.

5.8.4 The requiredExtensions attribute

The requiredExtensions attribute defines alist of required language extensions. Language extensions are capabilities within a user agent that
go beyond the feature set defined in this specification. Each extension isidentified by a URI reference.

Definition of requiredExtensions:

requiredFeatures = list-of-extensions
Thevaueisalist of URI references which identify the required extensions, with the individual values separated by white space.
Determines whether al of the named extensions are supported by the user agent. If all of the given extensions are supported, then the
attribute evaluates to true; otherwise, the current element and its children are skipped and thus will not be rendered and cannot be
referenced by another element.
Animatable: no.

If agiven URI reference contains white space within itself, that white space must be escaped.

If the attribute is not present, then itsimplicit return valueis "true". If anull string or empty string value is given to attribute
requiredExtensions, the attribute returns "false".

requiredExtensions is often used in conjunction with the 'switch' element. If the requiredExtensionsis used in other situations, then it
represents a simple switch on the given element whether to render the element or not.

The URI names for the extension should include versioning information, such as "http://example.org/SV GExtensionXY Z/1.0", so that script
writers can distinguish between different versions of a given extension.

5.8.5 The systemLanguage attribute

The attribute value is a commarseparated list of language names as defined in [RFC1766].

Evaluatesto "true" if one of the languages indicated by user preferences exactly equals one of the languages given in the value of this
parameter, or if one of the languages indicated by user preferences exactly equals a prefix of one of the languages given in the value of this
parameter such that the first tag character following the prefix is"-".

Evaluates to "false" otherwise.

Note: This use of a prefix matching rule does not imply that language tags are assigned to languages in such away that it is always true that if
auser understands a language with a certain tag, then this user will aso understand all languages with tags for which thistag is a prefix.

The prefix rule simply allows the use of prefix tagsif thisisthe case.

Implementation note: When making the choice of linguistic preference available to the user, implementers should take into account the fact
that users are not familiar with the details of language matching as described above, and should provide appropriate guidance. As an example,
users may assume that on selecting "en-gb", they will be served any kind of English document if British Englishis not available. The user
interface for setting user preferences should guide the user to add "en" to get the best matching behavior.

Multiple languages MAY be listed for content that is intended for multiple audiences. For example, content that is presented simultaneously
in the original Maori and English versions, would call for:

<text systenLanguage="mi, en"><!-- content goes here --></text>
However, just because multiple languages are present within the object on which the systemL anguage test attribute is placed, this does not
mean that it isintended for multiple linguistic audiences. An example would be a beginner's language primer, such as"A First Lesson in

Latin," which is clearly intended to be used by an English-literate audience. In this case, the systemL anguage test attribute should only
include "en".

Authoring note: Authors should realize that if severa alternative language objects are enclosed in a 'switch', and none of them matches, this
may lead to situations where no content is displayed. It is thus recommended to include a "catch-all" choice at the end of such a'switch' which
isacceptablein all cases.

For the systemL anguage attribute: Animatable: no.

5.9 Common attributes

5.9.1 The id attribute

Theid attribute is available on all SVG elements:

<IENTITY % stdAttrs
"id | D #l MPLI ED" >

Attribute definitions:
id = "name"

Standard XML attribute for assigning a unique name to an element. Refer to the "Extensible Markup Language (XML) 1.0"
Recommendation [XML 10].

Animatable: no.

5.9.2 The xml:lang and xml:space attributes

Elements that might contain character data content have attributes xml:lang and xml:space:

<IENTITY % | angSpaceAttrs
"xm : |l ang NMIOKEN #| MPLI ED
xm : space (defaul t|preserve) #l MPLIED' >

Attribute definitions:
xml:lang = "languagel D"

Standard XML attribute to specify the language (e.g., English) used in the contents and attribute values of particular elements. Refer to
the "Extensible Markup Language (XML) 1.0" Recommendation [XML10].

Animatable: no.

xml:space = "{default | preserve}”

Standard XML attribute to specify whether white space is preserved in character data. The only possible values are default and
preserve. Refer to the "Extensible Markup Language (XML) 1.0" Recommendation [XML 10] and to the discussion white space

handling in SVG.
Animatable: no.

5.9.3 The externalResourcesRequired attribute

Documents often reference and use the contents of other files (and other Web resources) as part of their rendering. In some cases, authors
want to specify that particular resources are required for a document to be considered correct.

Attribute external ResourcesRequired is available on all elements which potentialy can reference external resources. It specifies whether
referenced resources that are not part of the current document are required.

Attribute definition:
external ResourcesRequired = "false | true"

false
(The default value if no ancestor element has a value for this attribute.) Indicates that resources external to the current
document are optional. Document rendering can proceed even if external resources are unavailable to the current element and
its descendants.

true

Indicates that resources external to the current document are required. If an external resourceis not available, progressive
rendering is suspended until that resource and all other required resources become available, have been parsed and are ready to
be rendered. If atimeout event occurs on arequired resource, then the document goesinto an error state (see Error processing).

The document remains in an error state until all required resources become available.

This attribute applies to all types of resource references, including style sheets, color prorfiles (see Color profile descriptions) and fonts
specified by a URI Reference using a 'font-face' element or a CSS @font-face specification. In particular, if an element sets
external ResourcesRequired="true", then all style sheets must be available since any style sheet might affect the rendering of that element.

Attribute external ResourcesRequired is inheritable; thus,if set on a container element, its value will apply to the elements within the container
which do not specify avalue for this attribute.

Because setting external ResourcesRequired="true" on a container element can have the effect of disabling progressive display of the contents
of that container, tools that generate SV G content are cautioned against using simply setting external ResourcesRequired="true" on the
outermost 'svg' element on auniversal basis. Instead, it is better to specify external ResourcesRequired="true" on those particular graphics
elements or container elements which specify need the availability of external resourcesin order to render properly.

For external ResourcesRequired: Animatable: yes.

5.10 DOM interfaces

The following interfaces are defined below: SVGDocument, SVGSV GElement, SV GGElement, SV GDefsElement, SV GDescElement,
SV GTitleElement, SV GSymbol Element, SV GUseElement, SV GElementlnstance, SV GElementl nstanceL ist, SV GlmageElement,
SV GSwitchElement, GetSV GDocument.

Interface SVGDocument

When an 'svg' element is embedded inline as a component of a document from another namespace, such as when an 'svg' element is
embedded inline within an XHTML document [XHTML], then an SV GDocument object will not exist; instead, the root object in the

document object hierarchy will be a Document object of a different type, such as an HTMLDocument object.

However, an SVGDocument object will indeed exist when the root element of the XML document hierarchy is an 'svg' element, such as when

viewing a standalone SVG file (i.e., afilewith MIME type "image/svg-xml"). In this case, the SVGDocument object will be the root object of
the document object model hierarchy.

In the case where an SV G document is embedded by reference, such as when an XHTML document has an 'object’ element whose href
attribute references an SVG document (i.e., a document whose MIME typeis "image/svg-xml" and whose root element is thus an 'svg'
element), there will exist two distinct DOM hierarchies. The first DOM hierarchy will be for the referencing document (e.g., an XHTML
document). The second DOM hierarchy will be for the referenced SV G document. In this second DOM hierarchy, the root object of the
document object model hierarchy is an SV GDocument object.

The SV GDocument interface contains asimilar list of attributes and methods to the HTML Document interface described in the Document
Object Model (HTML) Level 1 chapter of the [DOM1] specification.

IDL Definition

i nterface SVGDocunent
Docunent ,
event s: : Docunent Event {

attribute DOVString title;
/'l rai ses DOVException on setting

readonly attribute DOVString referrer;
readonly attribute DOVStri ng donmi n;
readonly attribute DOMString URL;
readonly attribute SVGSVGEl ement rootEl enent;
H
Attributes
DOMString title

Thetitle of a document as specified by the title sub-element of the 'svg' root element (i.e., <svg><title>Hereisthe
title</title>...</svg>)

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
readonly DOM String referrer

Returns the URI of the page that linked to this page. The value is an empty string if the user navigated to the page directly (not
through alink, but, for example, via abookmark).

readonly DOM String domain

The domain name of the server that served the document, or anull string if the server cannot be identified by a domain name.
readonly DOM String URL

The complete URI of the document.
readonly SV GSV GElement rootElement

Theroot 'svg' element in the document hierarchy.

Interface SVGSVGEIement

A key interface definition is the SVGSV GElement interface, which is the interface that corresponds to the 'svg' element. Thisinterface

contains various miscellaneous commonly-used utility methods, such as matrix operations and the ability to control the time of redraw on
visual rendering devices.

SVGSVGElement extends ViewCSS and DocumentCSS to provide access to the computed values of properties and the override style sheet as
described in DOM2.

http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html

IDL Definition

i nterface SVGSVGEl enment
SVGEl enent
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGFi t ToVi ewBox,
SV&ZoomAndPan,
event s: : Event Tar get,
event s: : Docunent Event
css:: Vi enCSS,
css: : Docunent CSS {

readonly attribute SVGAni mat edLength x;
readonly attribute SVGAni mat edLength vy;
readonly attribute SVGAni mat edLength w dt h;
readonly attribute SVGAni mat edLengt h hei ght;

attribute DOVString content Scri pt Type;
/'l rai ses DOVException on setting
attribute DOVString content Styl eType;
/'] rai ses DOVException on setting
readonly attribute SVGRect Vi ewport ;
readonly attribute float pixelUnitToMIIinmeterX;
readonly attribute float pixelUnitToMIIlineterY;
readonly attribute float screenPixel ToMIli neterX;
readonly attribute float screenPixel ToMIIlineterY,;

attri bute bool ean useCurrentView,
/'l rai ses DOVException on setting
readonly attribute SVGVi ewSpec currentView,
attribute float currentScal e;
/'l rai ses DOVException on setting
attri bute SVGPoint currentTransl ate;
/'l rai ses DOVException on setting

unsi gned | ong suspendRedraw (in unsigned long max_wait_mlliseconds);

voi d unsuspendRedraw (in unsigned | ong suspend_handle_id)
rai ses(DOVException);
voi d unsuspendRedrawAl | ();
voi d forceRedraw ();
voi d pauseAni mations ();
voi d unpauseAni mations ();
bool ean ani mat i onsPaused ();
fl oat getCurrentTine ();
voi d setCurrentTime (in float seconds);
NodelLi st getlntersectionList (in SVGRect rect, in SVGEl enent referenceEl enent);
NodelLi st get Encl osureList (in SVCGRect rect, in SVGEl ement referenceEl ement);
bool ean checkl ntersection (in SVCGEl enent elenent, in SVGRect rect);
bool ean checkEncl osure (in SVCEl enent el enent, in SVCGRect rect);
voi d deSelectAll ();
SVG@L.engt h createSVG@.ength ();
SVGAngl e createSVGAngle ();
SVGPoi nt createSVGoint ();
SVGvat ri x createSvGvatrix ();
SVGRect createSVGRect ();
SVGIr ansform createSVGIransform ();
SVGIr ansform creat eSVGIransfornFromvatrix (in SVGvatrix matrix);
css: : REGBCol or createR@&Col or ();
SVAd CCCol or createSvVd@ CCCol or ();
El enent getEl enmentByld (in DOVBtring elenmentld);

I

Attributes

readonly SV GAnimatedL ength x
Corresponds to attribute x on the given 'svg' el ement.
readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'svg' element.
readonly SV GA nimatedL ength width
Corresponds to attribute width on the given 'svg' element.
readonly SV GAnimatedL ength height
Corresponds to attribute height on the given 'svg' element.
DOM String contentScriptType
Corresponds to attribute contentScriptType on the given 'svg' element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOM String contentStyleType
Corresponds to attribute contentStyleType on the given 'svg' el ement.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
readonly SV GRect viewport

The position and size of the viewport (implicit or explicit) that corresponds to this 'svg' element. When the user agent is
actually rendering the content, then the position and size values represent the actual values when rendering. The position and
size values are unitless values in the coordinate system of the parent element. If no parent element exists (i.e., 'svg' element
represents the root of the document tree), if this SVG document is embedded as part of another document (e.g., viathe HTML
'object’ element), then the position and size are unitless valuesin the coordinate system of the parent document. (If the parent
uses CSS or XSL layout, then unitless values represent pixel units for the current CSS or X SL viewport, as described in the
CSS2 specification.) If the parent element does not have a coordinate system, then the user agent should provide reasonable
default values for this attribute.

readonly float pixelUnitToMillimeterX

Size of apixel units (as defined by CSS2) along the x-axis of the viewport, which represents a unit somewhere in the range of
70dpi to 120dpi, and, on systems that support this, might actually match the characteristics of the target medium. On systems
where it isimpossible to know the size of apixel, a suitable default pixel sizeis provided.

readonly float pixelUnitToMillimeterY
Corresponding size of apixel unit along the y-axis of the viewport.
readonly float screenPixel ToMillimeterX

User interface (Ul) eventsin DOM Level 2 indicate the screen positions at which the given Ul event occurred. When the user
agent actually knows the physical size of a"screen unit", this attribute will express that information; otherwise, user agents
will provide a suitable default value such as .28mm.

readonly float screenPixel ToMillimeterY
Corresponding size of a screen pixel aong the y-axis of the viewport.
boolean useCurrentView

Theinitial view (i.e., before zooming and panning) of the current innermost SVG document fragment can be either the
"standard" view (i.e., based on attributes on the 'svg' element such as fitBoxToViewport) or to a"custom” view (i.e., a
hyperlink into a particular 'view' or other element - see Linking into SVG content: URI fragments and SV G views). If the

initial view isthe "standard" view, then this attribute isfalse. If theinitial view isa"custom" view, then this attribute is true.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly SVGViewSpec currentView

The definition of the initial view (i.e., before zooming and panning) of the current innermost SV G document fragment. The
meaning depends on the situation:

» [f theinitia view was a"standard" view, then:

= thevaluesfor viewBox, preserveAspectRatio and zoomAndPan within currentView will match the values for
the corresponding DOM attributes that are on SVGSV GElement directly

= thevaluesfor transform and viewTarget within currentView will be null
= [f theinitia view wasalink into a'view' element, then:

= thevaluesfor viewBox, preserveAspectRatio and zoomAndPan within currentView will correspond to the
corresponding attributes for the given 'view' el ement

= thevaluesfor transform and viewTarget within currentView will be null
= If theinitia view was alink into another element (i.e., other than a'view"), then:

= thevaluesfor viewBox, preserveAspectRatio and zoomAndPan within currentView will match the values for
the corresponding DOM attributes that are on SV GSV GElement directly for the closest ancestor 'svg' element

= the valuesfor transform within currentView will be null
= theviewTarget within currentView will represent the target of the link
= If theinitial view was alink into the SVG document fragment using an SV G view specification fragment identifier
(i.e., #svgView(...)), then:
= thevaluesfor viewBox, preserveAspectRatio, zoomAndPan, transform and viewTarget within currentView will
correspond to the values from the SV G view specification fragment identifier
float currentScale
This attribute indicates the current scale factor relative to the initial view to take into account user "magnification” or
""'zooming" and associated "panning" operations, as described under Magnification, zooming and panning. DOM attributes

currentScale and currentTransl ate are equivaent to the 2x3 matrix [ab c d e f] = [currentScale 0 O currentScale
currentTranslate.x currentTrandate.y]. If "magnification” is enabled (i.e., zoomAndPan="magnify"), then the effect isasif an
extra transformation were placed at the outermost level on the SV G document fragment (i.e., outside the outermost 'svg'

element). If "zooming" is enabled (i.e., zoomAndPan="zoom"), then the effect isasif an extra'g' element enclosed all of the
children and that 'g' element specified a transformation to achieve the desired zooming effect.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
SV GPoaint currentTrand ate
The corresponding transl ation factor that takes into account user "magnification”.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
M ethods
suspendRedraw

Takes atime-out value which indicates that redraw shall not occur until: (a) the corresponding
unsuspendRedraw(suspend_handle _id) call has been made, (b) an unsuspendRedrawAlI() call has been made, or (c) itstimer
has timed out. In environments that do not support interactivity (e.g., print media), then redraw shall not be suspended.
suspend_handle_id = suspendRedraw(max_wait_milliseconds) and unsuspendRedraw(suspend _handle_id) must be packaged
as balanced pairs. When you want to suspend redraw actions as a collection of SVG DOM changes occur, then precede the
changes to the SVG DOM with amethod call similar to suspend_handle_id = suspendRedraw(max_wait_milliseconds) and
follow the changes with a method call similar to unsuspendRedraw(suspend_handle_id). Note that multiple suspendRedraw
calls can be used at once and that each such method call is treated independently of the other suspendRedraw method calls.

Parameters

in unsigned long max_wait_milliseconds The amount of time in milliseconds to hold off before redrawing the device.
Values greater than 60 seconds will be truncated down to 60 seconds.

Return value

unsigned long A number which acts as a unique identifier for the given suspendRedraw() call. This value must be
passed as the parameter to the corresponding unsuspendRedraw() method call.

No Exceptions

unsuspendRedraw
Cancels a specified suspendRedraw() by providing a unique suspend_handle id.
Parameters

in unsigned long suspend_handle_id A number which acts as a unique identifier for the desired suspendRedraw() call.
The number supplied must be a value returned from a previous call to
suspendRedraw/()

No Return Value
Exceptions

DOMException This method will raise a DOM Exception with value NOT_FOUND_ERR if an invalid value (i.e., no
such suspend_handle_id is active) for suspend_handle_id is provided.

unsuspendRedrawAll

Cancels dl currently active suspendRedraw() method calls. This method is most useful at the very end of a set of SVG DOM
callsto ensure that al pending suspendRedraw() method calls have been cancelled.

No Parameters

No Return Value

No Exceptions
forceRedraw

In rendering environments supporting interactivity, forces the user agent to immediately redraw all regions of the viewport that
require updating.

No Parameters

No Return Value

No Exceptions
pauseAnimations

Suspends (i.e., pauses) al currently running animations that are defined within the SV G document fragment corresponding to
this'svg' element, causing the animation clock corresponding to this document fragment to stand still until it is unpaused.

No Parameters

No Return Value

No Exceptions
unpauseA nimations

Unsuspends (i.e., unpauses) currently running animations that are defined within the SVG document fragment, causing the
animation clock to continue from the time at which it was suspended.

No Parameters
No Return Value
No Exceptions
animationsPaused
Returnstrueif this SVG document fragment isin a paused state.
No Parameters
Return value
boolean Boolean indicating whether this SVG document fragment isin a paused state.
No Exceptions
getCurrentTime
Returns the current time in seconds relative to the start time for the current SV G document fragment.
No Parameters
Return value
float The current time in seconds.
No Exceptions
setCurrentTime
Adjusts the clock for this SVG document fragment, establishing a new current time.
Parameters
in float seconds The new current time in seconds relative to the start time for the current SV G document fragment.
No Return Value
No Exceptions
getintersectionList

Returns the list of graphics elements whose rendered content intersects the supplied rectangle, honoring the 'pointer-events
property value on each candidate graphics element.

Parameters

in SVGRect rect The test rectangle. The values arein the initial coordinate system for the current
'svg' element.

in SV GElement referenceElement If not null, then only return elements whose drawing order has them below the
given reference element.

No Return Value
No Exceptions
getEnclosureList

Returns the list of graphics elements whose rendered content is entirely contained within the supplied rectangle, honoring the
'pointer-events' property value on each candidate graphics element.

Parameters

in SVGRect rect The test rectangle. The values arein theinitial coordinate system for the current
'svg' element.

in SV GElement referenceElement If not null, then only return elements whose drawing order has them below the
given reference element.

No Return Value
No Exceptions
checklntersection

Returnstrue if the rendered content of the given element intersects the supplied rectangle, honoring the 'pointer-events
property value on each candidate graphics element.

Parameters
in SV GElement element The element on which to perform the given test.
in SVGRect rect Thetest rectangle. The values are in theinitial coordinate system for the current 'svg'
element.
No Return Value
No Exceptions

checkEnclosure

Returnstrue if the rendered content of the given element is entirely contained within the supplied rectangle, honoring the
'pointer-events' property value on each candidate graphics element.

Parameters

in SV GElement element The element on which to perform the given test.

in SVGRect rect Thetest rectangle. The values are in theinitial coordinate system for the current 'svg'
element.

No Return Value
No Exceptions
deSelectAll
Unselects any selected objects, including any selections of text strings and type-in bars.
No Parameters
No Return Value
No Exceptions
createSV GLength
Creates an SV GLength object outside of any document trees. The object isinitialized to the value of 0 user units.
No Parameters
Return value
SVGLength An SVGLength object.
No Exceptions
createSVGAnNgle
Creates an SV GANgle object outside of any document trees. The object isinitialized to the value 0 degrees (unitless).
No Parameters
Return value

SVGAnNgle An SVGAnNgle object.

No Exceptions
createSV GPoint

Creates an SV GPoint object outside of any document trees. The object isinitialized to the point (0,0) in the user coordinate
system.

No Parameters
Return value
SVGPoint An SVGPoint object.
No Exceptions
createSV GMatrix
Creates an SVGMatrix object outside of any document trees. The object isinitialized to the identity matrix.
No Parameters
Return value
SVGMatrix An SVGMatrix object.
No Exceptions
createSV GRect
Creates an SV GRect object outside of any document trees. The object isinitialized such that all values are set to 0 user units.
No Parameters
Return value
SVGRect An SVGRect object.
No Exceptions
createSVGTransform

Creates an SV GTransform object outside of any document trees. The object isinitialized to an identity matrix transform
(SVG_TRANSFORM_MATRIX).

No Parameters
Return value
SVGTransform An SV GTransform object.
No Exceptions
createSV GTransformFromMatrix

Creates an SV GTransform object outside of any document trees. The object isinitialized to the given matrix transform (i.e.,
SVG_TRANSFORM_MATRIX).

Parameters
in SVGMatrix matrix The transform matrix.
Return value
SVGTransform An SV GTransform object.
No Exceptions
createRGBColor
Creates an RGBColor object outside of any document trees. The object isinitialized to all zeroes.
No Parameters
Return value
css::RGBColor An RGBColor object.
No Exceptions
createSV GICCColor
Creates an SV GICCColor object outside of any document trees. The object isinitialized to an empty list of color values.
No Parameters
Return value
SVGICCColor An SVGICCColor object.
No Exceptions

getElementByld

Searches this SVG document fragment (i.e., the search isrestricted to a subset of the document tree) for an Element whose id
isgiven by elementld. If an Element isfound, that Element is returned. If no such element exists, returns null. Behavior is not
defined if more than one element has thisid.

Parameters

in DOM String elementld The unique id value for an element.
Return value

Element The matching element.
No Exceptions

Interface SVGGElement

The SVGGElement interface corresponds to the 'g' element.
IDL Definition

i nterface SVGGEl enent :
SVGEl enent ,
SVGTest s,
SVGLangSpace,
SVCGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events:: Event Target {};

Interface SVGDefsElement

The SV GDefsElement interface corresponds to the 'defs element.
IDL Definition

i nterface SVGDefsEl ement
SVCGEl enent
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events:: Event Target {};

Interface SVGDescElement
The SV GDescElement interface corresponds to the 'desc' element.
IDL Definition

i nterface SV@escEl emrent :
SVGE enent,
SVGLangSpace,
SVGStyl able {};

Interface SVGTitleElement

The SVGTitleElement interface corresponds to the 'title' element.
IDL Definition

interface SVGTitl eEl enent :
SVGEl enent
SVGLangSpace,
SVGStyl able {};

Interface SVGSymbolElement

The SV GSymbol Element interface corresponds to the ‘'symbol’ element.
IDL Definition

i nterface SVGSynbol El ermrent
SVCEl enent
SVGLangSpace,
SVCEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGFi t ToVi ewBox,
events:: Event Target {};

Interface SVGUseElement

The SV GUseElement interface corresponds to the 'use’ element.
IDL Definition

i nterface SVQUseEl ement
SVCEl enent
SVGURI Ref er ence,
SVGTest s,
SVGLangSpace,
SVCGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events: : Event Target {

readonly attribute SVGAni mat edLengt h X;

readonly attribute SVGAni matedLength v;

readonly attribute SVGAni mat edLength wi dth;

readonly attribute SVGAni mat edLength hei ght ;

readonly attribute SVCGElI ementl nstance instanceRoot;
readonly attribute SVGEl ement | nstance ani nat edl nst anceRoot ;

b

Attributes
readonly SV GAnimatedL ength x
Corresponds to attribute x on the given 'use' element.
readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'use' element.

readonly SV GA nimatedL ength width
Corresponds to attribute width on the given 'use' element.
readonly SV GAnimatedL ength height
Corresponds to attribute height on the given 'use’ element.
readonly SV GElementlnstance instanceRoot
Theroot of the "instance tree". See description of SV GElementInstance for a discussion on the instance tree.

readonly SV GElementl nstance animated| nstanceRoot

If the 'href' attribute is being animated, contains the current animated root of the "instance tree". If the 'href' attribute is not
currently being animated, contains the same value as 'instanceRoot'. The root of the "instance tree". See description of
SV GElementlnstance for a discussion on the instance tree.

Interface SVGElementinstance

For each 'use’ element, the SVG DOM maintains a shadow tree (the "instance tree") of objects of type SV GElementinstance. A

SV GElementInstance represents a single node in the instance tree. The root object in the instance tree is pointed to by the instanceRoot
attribute on the SV GUseElement object for the corresponding 'use’ element.

If the 'use’' element references a simple graphics element such as a'rect’, then there is only a single SV GElementInstance object, and the
correspondingElement attribute on this SV GElementlnstance object is the SVGRectElement that corresponds to the referenced 'rect' element.

If the 'use’ element references a'g’ which contains two 'rect’ elements, then the instance tree contains three SV GElementl nstance objects, a
root SV GElementlnstance object whose correspondingElement is the SV GGElement object for the 'd’, and then two child
SV GElementInstance objects, each of which has its correspondingElement that is an SV GRectElement object.

If the referenced object isitself a'use, or if there are 'use’ subelements within the referenced object, the instance tree will contain recursive
expansion of the indirect references to form a complete tree. For example, if a'use’ element references a'g’, and the '’ itself containsa'use,
and that 'use' references a 'rect’, then the instance tree for the original (outermost) 'use’ will consist of a hierarchy of SV GElementlinstance
objects, asfollows:

SVCEl enment | nst ance #1 (parent Node=null, firstChild=#2, correspondi ngEl enent is the 'g')
SVGEl enent | nst ance #2 (parent Node=#1, firstChild=#3, correspondi ngEl emrent is the other 'use')
SVCGEl enent | nst ance #3 (parent Node=#2, firstChild=null, corresponding Elenment is the 'rect')

IDL Definition

i nterface SVGEl enent | nstance : events::Event Target ({
readonly attribute SVGEl ement correspondi ngEl enent ;
readonly attribute SVGUseEl ement correspondi ngUseEl enent ;
readonly attribute SVGEl enentl| nstance parent Node;
readonly attribute SVGEl enent | nstanceli st chil dNodes;
readonly attri bute SVGEl enentlnstance firstChild,
readonly attribute SVGEl ermentlnstance | astChild;
readonly attribute SVGEl enent | nstance previousSibling;
readonly attribute SVGEl enent | nstance nextSibling;

b

Attributes
readonly SV GElement correspondingElement

The corresponding element to which this object is an instance. For example, if a'use’ element references a'rect’ element, then
an SV GElementlnstance is created, with its correspondingElement being the SV GElementinstance object for the 'rect’ element.

readonly SV GUseElement correspondingUseElement
The corresponding 'use’ element to which this SV GElementlnstance object belongs. When 'use’ elements are nested (e.g., a
'use' references another 'use’ which references a graphics element such as a 'rect'), then the correspondingUseElement is the
outermost 'use' (i.e., the one which indirectly references the 'rect’, not the one with the direct reference).

readonly SV GElementlnstance parentNode
The parent of this SV GElementlnstance within the instance tree. All SV GElementl nstance objects have a parent except the

SV GElementInstance which corresponds to the el ement which was directly referenced by the 'use’ el ement, in which case
parentNodeis null.
readonly SV GElementlnstanceList childNodes

An SVGElementlnstancelist that contains all children of this SV GElementlnstance within the instance tree. If there are no
children, thisis an SVGElementinstanceList containing no entries (i.e., an empty list).

readonly SV GElementlnstance firstChild
Thefirst child of this SV GElementInstance within the instance tree. If there is no such SV GElementlnstance, this returns null.

readonly SV GElementlnstance lastChild
The last child of this SV GElementlnstance within the instance tree. If there is no such SV GElementlnstance, this returns null.

readonly SV GElementlnstance previousSibling

The SV GElementInstance immediately preceding this SV GElementinstance. If thereis no such SV GElementlnstance, this
returns null.

readonly SV GElementlnstance nextSibling

The SV GElementlnstance immediately following this SV GElementinstance. If there is no such SV GElementlnstance, this
returns null.

Interface SVGElementinstanceList

The SV GElementinstanceList interface provides the abstraction of an ordered collection of SV GElementlnstance objects, without defining or
constraining how this collection isimplemented.

IDL Definition

i nterface SVCGEl enent | nst anceli st {
readonly attribute SVGEl ementl nstance | ength;

SVCEl enment | nstance item (in unsigned |ong index);

h

Attributes
readonly SV GElementInstance length
The number of SV GElementlnstance objectsin the list. The range of valid child indicesis 0 to length-1 inclusive.

M ethods
item
Returns the indexth item in the collection. If index is greater than or equal to the number of nodes in the list, this returns null.
Parameters
in unsigned long index Index into the collection.

Return value

SV GElementlnstance The SV GElementlnstance object at the indexth position in the SV GElementlnstanceList, or null
if that is not avalid index.

No Exceptions

Interface SVGImageElement

The SV GImageElement interface corresponds to the 'image’ el ement.
IDL Definition

i nterface SVA nageEl enent
SVCGEl enent

SVGURI Ref er ence,

SVGTest s,

SVG@LangSpace,

SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,

SVGTIr ansf or mabl e,

events:: Event Target {

readonly attribute SVGAni mat edLength x;
readonly attribute SVGAni mat edLength v;
readonly attribute SVGAni nat edLength wi dth;
readonly attribute SVGAni mat edLength hei ght;

b

Attributes

readonly SV GAnimatedL ength x

Corresponds to attribute x on the given 'image’ element.
readonly SVGAnimatedLengthy

Corresponds to attribute y on the given ‘image’ element.
readonly SV GAnimatedL ength width

Corresponds to attribute width on the given 'image’ el ement.
readonly SV GA nimatedL ength height

Corresponds to attribute height on the given ‘image’ element.

Interface SVGSwitchElement

The SVGSwitchElement interface corresponds to the 'switch' element.
IDL Definition

i nterface SVGSwi t chEl erment
SVCGEl enent
SVGTest s,
SVG@LangSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events:: Event Target {};

Interface GetSVGDocument
In the case where an SV G document is embedded by reference, such as when an XHTML document has an 'object’ element whose href (or
equivalent) attribute references an SV G document (i.e., a document whose MIME typeis "image/svg-xml" and whose root element is thus an

'svg' element), the SV G user agent is required to implement the GetSV GDocument interface for the element which referencesthe SVG
document (e.g., the HTML 'object’ or comparable referencing elements).

IDL Definition

i nterface Get SVGocunent {

SVG@ocunent get SVGocunent ()
rai ses(DOVException);
b

Methods

getSV GDocument

Returns the SV GDocument object for the referenced SV G document.

No Parameters
Return value

SVGDocument The SV GDocument object for the referenced SVG document.
Exceptions
DOMException NOT_SUPPORTED_ERR: No SV GDocument object is available.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

6 Styling

Contents

6.1 SVG's styling properties

6.2 Usage scenarios for styling

6.3 Alternative ways to specify styling properties

6.4 Specifying properties using the presentation attributes

6.5 Entity definitions for the presentation attributes
6.6 Styling with XSL

6.7 Styling with CSS

6.8 Facilitiesfrom CSS and XSL used by SVG

6.9 Referencing external style sheets

6.10 The 'style’ element

6.11 The class attribute

6.12 The style attribute

6.13 Specifying the default style sheet language
6.14 Property inheritance

6.15 The scope/range of styles
6.16 User agent style sheet
6.17 Aural style sheets

6.18 DOM interfaces

6.1 SVG's styling properties

SV G uses styling properties to describe many of its document parameters. Styling properties define how the graphics elementsin the SVG content

areto berendered. SV G uses styling properties for the following:

SV G shares many of its styling properties with CSS [CSS2] and XSL [XSL]. Except for any additional SV G-specific rules explicitly mentioned in
this specification, the normative definition of properties that are shared with CSS and XSL is the definition of the property from the CSS2

Parameters which are clearly visual in nature and thus lend themselves to styling. Examples include all attributes that define how an object
is"painted," such asfill and stroke colors, linewidths and dash styles.

Parameters having to do with text styling such as 'font-family' and 'font-size'.
Parameters which impact the way that graphical elements are rendered, such as specifying clipping paths, masks, arrowheads, markers and

filter effects.

specification [CSS2].

The following properties are shared between CSS2 and SVG. Most of these properties are also defined in XSL:

Font properties:
o font
o ‘font-family'
o ‘font-size
o ‘font-size-adjust'
o ‘font-stretch’

file:///D|/Public/CR-SVG-20000802/indexlist.html

o ‘font-style
o ‘font-variant'
o ‘font-weight'
o Text properties:
o 'direction’
o 'letter-spacing'
0 ‘'text-decoration’
o ‘unicode-bidi’
o ‘'word-spacing'
« Other properties for visual media:
o 'clip' (Only applicable to outermost 'svg’)

o 'color'is used to provide a potential indirect value (currentColor) for the fill', 'stroke', 'stop-color', 'flood-color', 'lighting-color'

properties. (The SV G properties which support color alow a color specification which is extended from CSS2 to accommodate color
definitionsin arbitrary color spaces. See Color profile descriptions.

o ‘cursor'

0 'display'

o 'overflow' (Only applicable to elements which establish a new viewport)
o 'visibility'

The following SV G properties are not defined in [CSS2]. The complete normative definitions for these properties are found in this specification:
« Clipping, Masking and Compositing properties:
o 'clip-path’
o ‘clip-rule
0 ‘mask’
o 'opacity’
« Filter Effects properties:

o ‘enable-background'

o ‘filter'
o ‘'flood-color'

o 'flood-opacity’
o 'lighting-color'
« Gradient properties:
0 'stop-color'
0 'stop-opacity’
« Interactivity properties:
0 'pointer-events
« Painting properties:
o 'color-interpolation'
o 'color-rendering'
o fill*
o fill-opacity'
o fill-rule
o 'image-rendering'
o ‘'marker'

o 'marker-end'
o 'marker-mid'
o 'marker-start'

o 'shape-rendering
0 'stroke
0 'stroke-dasharray’
0 'stroke-dashoffset’
0 'stroke-linecap'
o 'stroke-lingoin’
o 'stroke-miterlimit'
o 'stroke-opacity'
o 'stroke-width'
0 'text-rendering'

« Text properties:
o ‘'alignment-baseline
0 'baseline-shift'
o 'dominant-baseline

o 'glyph-orientation-horizontal'

o 'glyph-orientation-vertical'

0 'text-anchor'
o 'writing-mode'

A table that lists and summarizes the styling properties can be found in the Property Index.

6.2 Usage scenarios for styling

SV G has many usage scenarios, each with different needs. Here are three common usage scenarios:
1. SVG content used as an exchange format (style sheet language-independent):
In some usage scenarios, reliable interoperability of SVG content across software tools is the main goal. Since support for a particular style
sheet languages is not guaranteed across all implementations, it is a requirement that SV G content can be fully specified without the use of a
style sheet language.
2. SVG content generated asthe output from XSLT [XSLT]:

XSLT offersthe ability to take a stream of arbitrary XML content as input, apply potentially complex transformations, and then generate
SV G content as output. XSLT can be used to transform XML data extracted from databases into an SV G graphical representation of that
data. It isarequirement that fully specified SVG content can be generated from XSLT.

3. SVG content styled with CSS[CSS2]:

CSSisawidely implemented declarative language for assigning styling properties to XML content, including SVG. It represents a
combination of features, simplicity and compactness that makes it very suitable for many applications of SVG. It is arequirement that CSS
styling can be applied to SV G content.

6.3 Alternative ways to specify styling properties

Styling properties can be assigned to SVG elements in the following two ways:
» Presentation attributes
Styling properties can be assigned using SV G's presentation attributes. For each styling property defined in this specification, thereisa

corresponding XML presentation attribute available on all relevant SV G elements. Detailed information on the presentation attributes can be
found in Specifying properties using the presentation attributes.

The presentation attributes are style sheet language independent and thus are applicable to usage scenario 1 above (i.e., tool
interoperability). Because it is straightforward to assign valuesto XML attributes from XSLT, the presentation attributes are well-suited to

usage scenario 2 above (i.e., SVG generation from XSLT). (See Styling with XSL below.)

Conforming SV G Interpreters and Conforming SVG Viewers are required to support SV G's presentation attributes.

« CSS
To support usage scenario 3 above, SV G content can be styled with CSS. For more information, see Styling with CSS.

Conforming SV G Interpreters and Conforming SVG Viewers that support CSS styling of generic (i.e., text-based) XML content are
required to support CSS styling of SV G content.

6.4 Specifying properties using the presentation attributes

For each styling property defined in this specification (see Property Index), there is a corresponding XML attribute (the presentation attribute) with
the same namethat is available on all relevant SV G elements. For example, SVG has a 'fill' property that defines how to paint the interior of a
shape. There is a corresponding presentation attribute with the same name (i.e., fill) that can be used to specify avalue for the fill' property on a
given element.

The following example shows how the fill' and 'stroke' properties can be assigned to a rectangle using the fill and stroke presentation attributes. The
rectangle will be filled with red and outlined with blue:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="10cn hei ght ="5cni >
<rect x="2cn' y="1lcn' wi dth="6cm' height="3cn' fill="red" stroke="blue"/>
</svg>

View this example as SV G (SV G-enabled browsers only)

The presentation attributes offer the following advantages:

« Broad support. All versions of Conforming SV G Interpreters and Conforming SV G Viewers are required to support the presentation
attributes.

« Simplicity. Styling properties can be attached to elements by simply providing a value for the presentation attribute on the proper elements.

« Restyling. SVG content that uses the presentation attributes is highly compatible with downstream processing using XSLT [XSLT] or
supplemental styling by adding CSS style rules to override some of the presentation attributes.

« Convenient generation using XSLT [XSLT]. In some cases, XSLT can be used to generate fully styled SV G content. The presentation
attributes are compatible with convenient generation of SVG from XSLT.

In some situations, SV G content that uses the presentation attributes has potential limitations versus SV G content that is styled with a style sheet
language such as CSS (see Styling with CSS). In other situations, such aswhen an XSLT style sheet generates SV G content from semantically rich
XML source files, the limitations below may not apply. Depending on the situation, some of the following potential limitations may or may not
apply to the presentation attributes:

« Styling attached to content. The presentation attributes are attached directly to particular e ements, thereby diminishing potential
advantages that comes from abstracting styling from content, such as the ability to restyle documents for different uses and environments.

« Flattened data modél. In and of themselves, the presentation attributes do not offer the higher level abstractions that you get with a styling
system, such as the ability to define named collections of properties which are applied to particular categories of elements. The result is that,
in many cases, important higher level semantic information can be lost, potentially making document reuse and restyling more difficult.

« Potential increasein file size. Many types of graphics use similar styling properties across multiple elements. For example, a company
organization chart might assign one collection of styling properties to the boxes around temporary workers (e.g., dashed outlines, red fill),
and adifferent collection of styling properties to permanent workers (e.g., solid outlines, blue fill). Styling systems such as CSS alow
collections of properties to be defined once in afile. With the styling attributes, it might be necessary to specify presentation attributes on
each different element.

« Potential difficulty when embedded into a CSS-styled parent document. When SV G content is embedded in other XML, and the desire
isto style all aspects of the compound document with CSS, use of the presentation attributes might introduce complexity and difficulty. In
this case, it is sometimes easier if the SVG content does not use the presentation attributes and instead is styled using CSS facilities.

For user agents that support CSS, the presentation attributes must be trans ated to corresponding CSS style rules according to rules described in
section 6.4.4 of the CSS2 specification, Precedence of non-CSS presentational hints; thus, the presentation attributes will participate in the CSS2

cascade as if they were replaced by corresponding CSS style rules placed at the start of the author style sheet with a specificity of zero. In general,
this means that the presentation attributes have lower priority than other CSS style rules specified in author style sheets or style attributes.

file:///D|/Public/CR-SVG-20000802/images/styling/PresentationAttributes.svg
http://www.w3.org/TR/REC-CSS2/cascade.html#q12
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/cascade.html

User agents that do not support CSS must ignore any CSS style rules defined in CSS style sheets and style attributes. In this case, the CSS cascade
does not apply. (Inheritance of properties, however, does apply. See Property inheritance.)

6.5 Entity definitions for the presentation attributes
The following entities are defined in the DTD for all of the presentation attributesin SVG:

<l-- The followi ng presentation attributes apply to container elenents. -->
<IENTITY % Presentati onAttri butes-Containers
"enabl e- background %Enabl eBackgr oundVal ue; #l MPLIED " >

<!-- The follow ng presentation attributes apply to 'feFlood elenments. -->
<IENTITY % PresentationAttributes-feFl ood
"fl ood-col or %BVGCol or; #l MPLI ED
fl ood-opacity % pacityVal ue; # MPLIED " >

<!-- The following presentation attributes apply to filling and stroking operations. -->
<IENTITY % PresentationAttributes-Fill Stroke
"fill 9Paint; # MPLIED
fill-opacity %OpacityVal ue; #l MPLI ED
fill-rule % ipFillRule; # MPLIED
stroke %aint; #l MPLIED
stroke-dasharray %strokeDashArrayVal ue; #l MPLI ED
stroke-dashof f set %St rokeDashOr f set Val ue; #l MPLI ED
stroke-linecap (butt | round | square | inherit) #l MPLIED
stroke-linejoin (mter | round | bevel | inherit) #l MPLIED
stroke-mterlimt %5trokeMterlLimtValue; #l MPLIED
stroke-opacity %pacityVal ue; #l MPLI ED
stroke-w dt h %&t r okeW dt hval ue; #l MPLIED " >

<!-- The followi ng presentation attributes have to do with selecting a font to use. -->
<IENTITY % PresentationAttri butes-Font Sel ection
"font-fam |y %ontFam | yVal ue; #l MPLI ED
font-size %ontSi zeVal ue; #l MPLI ED
font-size-adjust %ontSi zeAdj ust Val ue; #I MPLI ED
font-stretch (normal | wider | narrower | ultra-condensed | extra-condensed |
condensed | seni-condensed | sem -expanded | expanded |
extra-expanded | ultra-expanded | inherit) #l MPLIED

font-style (normal | italic | oblique | inherit) #l MPLIED
font-variant (normal | small-caps | inherit) # MPLI ED
font-weight (normal | bold | bolder | lighter | 100 | 200 | 300 |

400 | 500 | 600 | 700 | 800 | 900 | inherit) #I MPLIED " >

<l-- The followi ng presentation attributes apply to gradient 'stop' elenents. -->
<IENTITY % PresentationAttributes-G adients
"st op- col or %SVGCol or; #l MPLI ED
st op-opacity % pacityValue; # MPLIED " >

<!-- The followi ng presentation attributes apply to graphics el enents. -->
<IENTITY % PresentationAttri butes-G aphics
"clip-path % i pPat hval ue; #l MPLI ED
clip-rule %dipFillRule; # MPLIED
col or %ol or; #I MPLI ED
color-interpolation (auto | sRGB | linearRG | inherit) #l MPLIED
color-rendering (auto | optim zeSpeed | optim zeQuality | inherit) #l MPLI ED
cursor 9% Cursor Val ue; #l MPLI ED
display (inline | block | list-item| run-in | conpact | marker |
table | inline-table | table-row group | table-header-group |
tabl e-footer-group | table-row | table-colum-group | table-colum |
table-cell | table-caption | none | inherit) #l MPLIED
filter %-ilterValue; #l MPLIED
i mge-rendering (auto | optim zeSpeed | optimizeQuality | inherit) #l MPLIED
mask %vhaskVal ue; #l MPLI ED
opacity % pacityVal ue; #l MPLI ED

poi nter-events (visiblePainted | visibleFill | visibleStroke | visibleFillStroke | visible |

painted | fill | stroke | fillstroke | all | none | inherit) #l MPLIED
shape-rendering (auto | optim zeSpeed | crispEdges | geonetricPrecision | inherit) #l MPLIED
text-rendering (auto | optinizeSpeed | optimnizelLegibility | geonetricPrecision | inherit)

#1 MPLI ED
visibility (visible | hidden | inherit) # MPLIED " >

<!--The followi ng presentation attributes apply to 'feDiffuseLighting' and 'feSpecularlLighting
el erents. -->
<IENTITY % Presentati onAttributes-LightingEffects

"lighting-col or %VGCol or; # MPLIED " >

<!-- The followi ng presentation attributes apply to marker operations. -->
<IENTITY % Presentati onAttri butes-Mrkers
"mar ker -start %vhar ker Val ue; #l MPLI ED
mar ker-m d %ar ker Val ue; #| MPLI ED
mar ker - end %har ker Val ue; #l MPLIED " >

<l-- The followi ng presentation attributes apply to text content elenents. -->
<IENTITY % PresentationAttributes-Text Content El enents
"al i gnnent - baseline (baseline | top | before-edge | text-top | text-before-edge |
mddle | bottom| after-edge | text-bottom | text-after-edge |

i deographic | lower | hanging | mathematical | inherit) #l MPLIED
basel i ne-shift %Basel i neShi ftVal ue; # MPLI ED
direction (Itr | rtl | inherit) # MPLIED

gl yph-orientation-horizontal %3 yphOrientationHorizontal Val ue; #l MPLI ED
gl yph-orientation-vertical %3 yphOientationVertical Val ue; #l MPLI ED

| etter-spaci ng %paci ngVal ue; #l MPLI ED

t ext - decor ati on %lext Decor ati onVal ue; #l MPLI ED

uni code-bidi (normal | enbed | bidi-override | inherit) #l MPLIED
wor d- spaci ng ¥%Spaci ngVval ue; #l MPLIED " >

<!-- The followi ng presentation attributes apply to "text' elenents. -->
<IENTITY % Presentati onAttributes-TextEl ements
"dom nant - basel i ne (auto | autosense-script | no-change | reset|

i deographic | lower | hanging | mathematical | inherit) # MPLIED
text-anchor (start | mddle | end | inherit) # MPLI ED
witing-node (Ir-tb | rl-tb | tb-rl | Ir | r1I | tb | inherit) # MPLIED " >
<!-- The followi ng presentation attributes apply to elenents that establish viewports. -->

<IENTITY % Presentati onAttri butes-Vi eworts
"clip % ipVal ue; #l MPLI ED
overflow (visible | hidden | scroll | auto | inherit) # MPLIED " >

<l--The follow ng represents the conplete |list of presentation attributes. -->

<IENTITY % Presentati onAttri butes-All
"9%r esent ati onAttri but es- Cont ai ners;

%°r esent ati onAttri but es-feFl ood;
oPr esent ati onAttri butes-Fill Stroke;
%°r esent ati onAttri but es- Font Sel ecti on;
%°r esent ati onAttri but es- Gradi ents;
%°resent ati onAttri but es- Graphi cs;
%°resentati onAttributes-LightingEffects;
%°r esent ati onAttri but es- Markers;
%°r esent ati onAttri but es- Text Cont ent El enrent s;
%°r esent ati onAttri but es- Text El enents; " >

6.6 Styling with XSL

XSL style sheets (see [XSLT]) define how to transform XML content into something else, usually other XML. When XSLT isused in conjunction

with SV G, sometimes SV G content will serve as both input and output for XSL style sheets. Other times, XSL style sheets will take non-SVG
content asinput and generate SV G content as output.

The following example uses an external XSL style sheet to transform SV G content into modified SV G content (see Referencing externa style
sheets). The style sheet sets the 'fill' and 'stroke’ properties on all rectangles to red and blue, respectively:

nystyl e. xsl

<?xm version="1.0" standal one="no"?>
<xsl :styl esheet xm ns: xsl="http://ww.w3. org/ 1999/ XSL/ Transf ornm' version="1.0">

<!-- Add DOCTYPE -->
<xsl:tenplate match="/">
<xsl :text disabl e-output-escapi ng="yes">& t;! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
“http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" > ;
</ xsl:text>
<xsl : appl y-tenpl at es/ >
</ xsl : tenpl at e>

<l-- Add styling to all 'rect' elements -->
<xsl:tenplate match="rect">
<xsl : copy>
<xsl :copy-of select="@"/>
<xsl:attribute name="fill">red</xsl:attribute>
<xsl:attribute nane="stroke">bl ue</xsl:attribute>
</ xsl : copy>
</ xsl : tenpl at e>

<I-- default is to copy input element -->
<xsl:tenplate match="*| @|text()">
<xsl : copy>
<xsl:apply-tenplates select="*|@|text()"/>
</ xsl : copy>
</ xsl : tenpl at e>
</ xsl : styl esheet >

SVG file to be transformed by nystyle. xsl

<?xm version="1.0" standal one="no"?>
<svg wi dt h="10cn hei ght ="5cni' >

<rect x="2cn' y="1lcnm" w dth="6cm' hei ght="3cni/>
</ svg>

SVG content after applying nystyle. xsl

<?xm version="1.0" encodi ng="utf-8""?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000802/ / EN'
“http://ww w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="10cn hei ght ="5cni >
<rect x="2cn' y="1cn' w dth="6cm' height="3cn fill="red" stroke="blue"/>
</ svg>

6.7 Styling with CSS

SV G implementations that support CSS are required to support the following:
« External CSS style sheets referenced from the current document (see Referencing external style sheets)

« Internal CSS style sheets (i.e., style sheets embedded within the current document, such as within an SV G 'style' element)
« Inlinestyle (i.e., CSS property declarations within a style attribute on a particular SVG element)

The following example shows the use of an external CSS style sheet to set the fill' and 'stroke’ properties on al rectangles to red and blue,
respectively:

nystyl e. css

rect {
fill: red;
stroke; blue

}

SVG file referencing nystyle.css

<?xm version="1.0" standal one="no"?>
<?xm - styl esheet href="nystyle.css" type="text/css"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="10cnt hei ght ="5cni >
<rect x="2cnm' y="1lcm' wi dth="6cni" hei ght="3cni/>
</ svg>

View this example as SV G (SV G-enabled browsers only)

CSS style sheets can be embedded within SVG content inside of a'style' element. The following example uses an internal CSS style sheet to
achieve the same result as the previous example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"

"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="10cni hei ght ="5cni >

<def s>
<style type="text/css"><![CDATA
rect {
fill: red;

stroke: blue

}
]11></style>
</ def s>
<rect x="2cnt' y="1lcm' w dth="6cm' hei ght="3cnl/>
</ svg>

View this example as SVG (SV G-enabled browsers only)

Note how the CSS style sheet is placed within a CDATA construct (i.e., <! [CDATA[...]]>), whichisnecessary since CSS style sheets are not
expressed in XML.

Implementations that support CSS are a so required to support CSSinline style. Similar to the style attributein HTML, CSSinline style can be
declared within a style attribute in SV G by specifying a semicolon-separated list of property declarations, where each property declaration has the
form "name: value'.

The following example shows how the fill' and 'stroke’ properties can be assigned to a rectangle using the style attribute. Just like the previous
example, the rectangle will be filled with red and outlined with blue:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"
"http://ww.w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="10cn hei ght ="5cni >
<rect x="2cni' y="1lcnt w dt h="6cn' hei ght="3cnt
style="fill:red; stroke:blue"/>
</svg>

View this example as SV G (SV G-enabled browsers only)

In an SVG user agent that supports CSS style sheets, the following facilities from [CSS2] must be supported:
o CSS2 selectors within style sheets (reference: [Selectors]).

» External CSS style sheets [XML-SS], CSS style sheets within 'style' elements and CSS declaration blocks within style attributes attached to
specific SVG elements.

o CSS2 rulesfor assigning property values, cascading and inheritance.
« @font-face, @media, @import and @charset rules within style sheets.

« CSS2's dynamic pseudo-classes :hover, :active and :focus and pseudo-classes :first-child, :visited, :link and :lang. The remaining CSS2
pseudo-classes, including those having to do with generated content, are not part of the SV G language definition. (Note: an SV G element
gainsfocus when it is selected. See Text selection.)

« For the purposes of aural media, SV G represents a CSS-stylable XML grammar. In user agents that support aural style sheets, CSS aural

file:///D|/Public/CR-SVG-20000802/images/styling/ExternalCSSStyleSheet.svg
file:///D|/Public/CR-SVG-20000802/images/styling/InternalCSSStyleSheet.svg
http://www.w3.org/TR/html4/present/styles.html#h-14.2.2
file:///D|/Public/CR-SVG-20000802/images/styling/StyleAttribute.svg
http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/media.html#at-media-rule
http://www.w3.org/TR/REC-CSS2/cascade.html#at-import
http://www.w3.org/TR/REC-CSS2/syndata.html#x66
http://www.w3.org/TR/REC-CSS2/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/REC-CSS2/selector.html#q15
http://www.w3.org/TR/REC-CSS2/generate.html
http://www.w3.org/TR/REC-CSS2/aural.html

style properties can be applied as defined in [CSS2]. (See Aural style sheets.)

SV G defines an @color-profile at-rule [CSS2-ATRULES] for defining color profiles so that ICC color profiles can be applied to CSS-styled SVG
content.

6.8 Facilities from CSS and XSL used by SVG

SV G shares various relevant properties and approaches common to CSS and XSL, plus the semantics of many of the processing rules.
SVG shares the following facilities with CSS and XSL:

« Shared properties. Many of SVG's properties are shared between CSS2, XSL and SVG. (Seelist of shared properties).

« Syntax rules. (The normative references are [CSS2 syntax and basic data types] and [The grammar of CSS2].)

« Allowable datatypes. (The normative reference is [CSS2 syntax and basic data types]), with the exception that SV G allows <length> and
<angle> values without a unit identifier. See Units.)

« |nheritance rules.

« The color keywords from CSS2 that correspond to the colors used by objectsin the user's environment. (The normative reference is [CSS2
system colorg].)

« For implementations that support CSS styling of SVG content, then that styling must be compatible with various other rulesin CSS. (See
Styling with CSS))

6.9 Referencing external style sheets

External style sheets are referenced using the mechanism documented in "Associating Style Sheets with XML documents Version 1.0" [XML-SS)].

6.10 The 'style' element

The'style' element allows style sheets to be embedded directly within SV G content. SVG's 'style’ element has the same attributes as the
corresponding element in HTML (see HTML's 'style’ element).

<! ELEMENT styl e (#PCDATA) >
<I ATTLI ST style
st dAtLtrs;
xm : space (preserve) #FIXED "preserve"
type % Cont ent Type; #REQUI RED
nedi a %vedi aDesc; # MPLI ED
title %ext; #l MPLIED >

Attribute definitions:
type = content-type

This attribute specifies the style sheet language of the element's contents. The style sheet language is specified as a content type (e.g.,
"text/css"), as per [REC2045]. Authors must supply a value for this attribute; thereis no default value.

Animatable: no.
media = media-descriptors

This attribute specifies the intended destination medium for style information. It may be a single media descriptor or a comma-separated list.
The default value for this attribute is "screen”. The set of recognized media-descriptors are the list of media types recognized by CSS2
[CSS2 Recognized media types).

Animatable: no.

title = advisory-title

(For compatibility with [HTML4]) This attribute specifies an advisory title for the 'style’ element.
Animatable: no.

Attributes defined el sewhere:

http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/grammar.html
http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors
http://www.w3.org/TR/html4/present/styles.html#h-14.2.3
http://www.w3.org/TR/REC-CSS2/media.html#media-types

Y%stdAttrs;, xml:space.

The syntax of style data depends on the style sheet language.

Some style sheet languages might allow awider variety of rulesin the 'style’ element than in the style attribute. For example, with CSS, rules can be
declared within a'style’ element that cannot be declared within a style attribute.

An example showing the 'style' element is provided above (see example).

6.11 The class attribute

Attribute definitions:
class=list

This attribute assigns a class name or set of class names to an element. Any number of elements may be assigned the same class nhame or
names. Multiple class names must be separated by white space characters.
Animatable: yes.

The class attribute assigns one or more class names to an element. The element may be said to belong to these classes. A class hame may be shared
by several element instances. The class attribute has several roles:

« Asastyle sheet selector (when an author wishes to assign style information to a set of elements).
« For general purpose processing by user agents.

In the following example, the 'text' element is used in conjunction with the class attribute to markup document messages. M essages appear in both
English and French versions.

<!-- English nmessages -->

<text class="info" |lang="en">Variable declared tw ce</text>

<text class="warning" |ang="en">Undecl ared vari abl e</t ext>

<text class="error" |lang="en">Bad syntax for variable nane</text>

<!-- French nessages -->

<text class="info" lang="fr">Variabl e décl arée deux fois</text>
<text class="warning" |lang="fr">Variable indéfinie</text>

<text class="error" lang="fr">Erreur de syntaxe pour vari abl e</text>

In an SVG user agent that supports CSS styling, the following CSS style rules would tell visual user agentsto display informational messagesin
green, warning messages in yellow, and error messages in red:

text.info { color: green }
text.warning { color: yellow}
text.error { color: red }

6.12 The style attribute

The style attribute allows per-element style rules to be specified directly on a given element. When CSS styling is used, CSSinline style is specified
by including semicolon-separated property declarations of the form "name : value" within the style attribute

Attribute definitions:

style = style
This attribute specifies style information for the current element. The style attribute specifies style information for asingle element. The
style sheet language of inline style rulesis given by the value of attribute contentStyleType on the 'svg' element. The syntax of style data

depends on the style sheet language.
Animatable: no.

The style attribute may be used to apply a particular style to an individual SVG element. If the style will be reused for several elements, authors
should use the 'style’ element to regroup that information. For optimal flexibility, authors should define stylesin external style sheets.

An example showing the style attribute is provided above (see example).

6.13 Specifying the default style sheet language

The contentStyleType attribute on the 'svg' element specifies the default style sheet language for the given document fragment.

contentStyleType = "%ContentType;"

Identifies the default style sheet language for the given document. This attribute sets the style sheet language for the style attributes that are
available on many elements. The value %ContentType; specifies a mediatype, per [REC2045]. The default valueis "text/css".
Animatable: no.

6.14 Property inheritance

Whether or not the user agent supports CSS, property inheritance in SV G follows the property inheritance rules defined in the CSS2 specification.
The normative definition for property inheritance is section 6.2 of the CSS2 specification (see Inheritance).

The definition of each property indicates whether the property can inherit the value of its parent.

In SVG, asin CSS2, most elements inherit computed values [CSS2-COMPUTED)]. For cases where something other than computed values are
inherited, the property definition will describe the inheritance rules. For specified values [CSS2-SPECIFIED] which are expressed in user units, in
pixels (e.g., "20px") or in absolute values [CSS2-COMPUTEDY], the computed val ue equal s the specified value. For specified values which use
certain relative units (i.e., em, ex and percentages), the computed value will have the same units as the value to which it isrelative. Thus, if the
parent element has a 'font-size' of "10pt" and the current element has a 'font-size' of "120%", then the computed value for ‘font-size' on the current
element will be"12pt". In cases where the referenced value for relative unitsis not expressed in any of the standard SV G units (i.e., CSS units or
user units), such as when a percentage is used relative to the current viewport or an object bounding box, then the computed value will bein user
units.

Note that SV G has some facilities wherein a property which is specified on an ancestor element might effect its descendant element, even if the
descendant element has a different assigned value for that property. For example, if a'clip-path' property is specified on an ancestor element, and
the current element has a 'clip-path’ of 'none, the ancestor's clipping path still applies to the current element because the semantics of SVG state that
the clipping path used on a given element is the intersection of all clipping paths specified on itself and all ancestor elements. The key concept is
that property assignment (with possible property inheritance) happens first. After properties values have been assigned to the various elements, then
the user agent applies the semantics of each assigned property, which might result in the property assignment of an ancestor element affecting the
rendering of its descendants.

6.15 The scope/range of styles

The following define the scope/range of style sheets:
Stand-alone SVG document

There is one parse tree. Style sheets defined anywhere within the SV G document (in style elements or style attributes, or in external style
sheets linked with the style sheet processing instruction) apply across the entire SV G document.

Stand-alone SVG document embedded in an HTML or XML document with the'img', 'object’' (HTML) or 'image’ (SVG) elements

There are two completely separate parse trees; one for the referencing document (perhaps HTML or XHTML), and one for the SVG
document. Style sheets defined anywhere within the referencing document (in style elements or style attributes, or in external style sheets
linked with the style sheet processing instruction) apply across the entire referencing document but have no effect on the referenced SVG
document. Style sheets defined anywhere within the referenced SV G document (in style elements or style attributes, or in external style
sheets linked with the style sheet processing instruction) apply across the entire SV G document, but do not affect the referencing document
(perhaps HTML or XHTML). To get the same styling across both the [X]HTML document and the SV G document, link them both to the
same style shest.

Stand-alone SVG content textually included in an XML document

There isasingle parse tree, using multiple namespaces; one or more subtrees are in the SV G namespace. Style sheets defined anywhere
within the XML document (in style elements or style attributes, or in external style sheets linked with the style sheet processing instruction)
apply across the entire document, including those parts of it in the SV G namespace. To get different styling for the SVG part, use the style
attribute, or put an ID on the 'svg' element and use contextual CSS selectors, or use XSL selectors.

6.16 User agent style sheet

The user agent shall maintain a user agent style sheet [CSS2-CASCADE-RULES] for elementsin the SVG namespace for visual media
[CSS2-VISUAL]. The user agent style sheet below is expressed using CSS syntax; however, user agents are required to support the behavior that
corresponds to this default style sheet even if CSS style sheets are not supported in the user agent:

http://www.w3.org/TR/REC-CSS2/cascade.html#inheritance

svg, synbol, marker, pattern, view, use, inmage, nmask { overflow hidden }
svg { width:attr(wi dth); height:attr(height) }

Thefirst line of the above user agent style sheet will cause theinitial clipping path to be established at the bounds of the initial viewport.
Furthermore, it will cause new clipping paths to be established at the bounds of the listed elements, all of which are elements that establish a new
viewport. (Refer to the description of SVG's use of the ‘overflow' property for more information.)

The second line of the above user agent style sheet will cause the width and height attributes on the 'svg’ element to be used as the default values for
the 'width' and 'height' properties during [CSS2-LAY OUT].

6.17 Aural style sheets

For the purposes of aural media, SV G represents a stylable XML grammar. In user agents that support CSS aural style sheets, aural style properties
[CSS2-AURAL] can be applied as defined in [CSS2].

Aural style properties can be applied to any SVG element that can contain character data content, including 'desc, 'title, 'tspan'. 'tref'. 'glyphRun’ and
‘textPath’. On user agents that support aural style sheets, the following [CSS2] properties can be applied:

‘azimuth' [CSS2-azimuth]

‘cue [CSS2-cug]

‘cue-after' [CSS2-cue-after]
‘cue-before’ [CSS2-cue-before]
‘elevation’ [CSS2-elevation
'pause’ [CSS2-pause
'pause-after' [CSS2-pause-after
'pause-before’ [CSS2-pause-before]
"pitch’ [CSS2-pitch
'pitch-range’ [CSS2-pitch-range
'play-during' [CSS2-play-during]
'richness [CSS2-richness]
'speak’ [CSS2-speak]
'speak-header’ [CSS2-speak-header]
‘speak-numeral’ [CSS2-speak-numeral]
‘speak-punctuation’ [CSS2-speak-punctuation]
'speech-rate’ [CSS2-speech-rate]
'stress’ [CSS2-stress)
'voice-family’ [CSS2-voice-family]
‘volume' [CSS2-volume]

For user agents that support aural style sheets and also support [DOM2], the user agent is required to support the DOM interfaces defined in
[DOM2-CSS] that correspond to aural properties [CSS2-AURAL]. (See Relationship with DOM2 CSS object model.)

6.18 DOM interfaces

The following interfaces are defined below: SV GStyleElement.

Interface SVGStyleElement
The SV GStyleElement interface corresponds to the 'style’ element.

IDL Definition

interface SVGStyl eEl ement : SVCEl ement {
attribute DOVBtring xmnl space;
/'l raises DOVException on setting
attribute DOVString type;

/'l raises DOVException on setting
attribute DOVString nedi a;

/'l raises DOVException on setting
attribute DOVString title;

/'l raises DOVException on setting

}s

Attributes
DOM String xmlspace
Corresponds to attribute xml:space on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOMString type
Corresponds to attribute type on the given 'style' element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOMString media
Corresponds to attribute media on the given 'style' element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOMString title
Corresponds to attribute title on the given 'style’ element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

7/ Coordinate Systems, Transformations and Units

Contents

o 7.1 Introduction
o 7.2Theinitia viewport

e 7.3 Theinitia coordinate system

« 7.4 Coordinate system transformations

« 7.5 Nested transformations

« 7.6 Thetransform attribute

« 7.7 TheviewBox attribute

« 7.8 The preserveAspectRatio attribute

o 7.9 Establishing a new viewport

e 7.10 Units

o 7.11 Redefining the meaning of unit identifiers

o 7.12 Object bounding box units

« 7.13 Processing rules when using absolute unit identifiers and percentages
o 7.14 DOM interfaces

7.1 Introduction

For al media, the SV G canvas describes "the space where the SV G content isrendered.” The canvasisinfinite for each dimension of the
space, but rendering occurs relative to a finite rectangular region of the canvas. This finite rectangular region is called the SV G viewport.
For visual media[CSS2-VISUAL], the SVG viewport is the viewing area where the user sees the SV G content.

The size of the SV G viewport (i.e., its width and height) is determined by a negotiation process (see Establishing the size of theinitial
viewport) between the SVG document fragment and its parent (real or implicit). Once that negotiation process is completed, the SVG
user agent is provided the following information:

« aninteger value that represents the width in "pixels" of the viewport
« aninteger value that represents the height in "pixels’ of the viewport
« (highly desirable but not required) areal number value that indicates how many millimeters a"pixel" represents

Using the above information, the SV G user agent determines the viewport, an initial viewport coordinate system and an initial user
coordinate system such that the two coordinates systems are identical. Both coordinates systems are established such that the origin
matches the origin of the viewport, and one unit in the initial coordinate system equals one "pixel" in the viewport. (See Initial coordinate
system.) The viewport coordinate system is also called viewport space and the user coordinate system is also called user space.

Lengthsin SVG can be specified as:
« (if no unit identifier is provided) values in user space -- for example, "15"
« (if aunitidentifier is provided) alength expressed as an absolute or relative unit measure -- for example, "15mm" or "5em"

The supported length unit identifiers are: em, ex, px, pt, pc, cm, mm, in, and percentages.

A new user space (i.e., anew current coordinate system) can be established at any place within an SV G document fragment by specifying

file:///D|/Public/CR-SVG-20000802/indexlist.html

transformations in the form of transformation matrices or simple transformation operations such as rotation, skewing, scaling and
tranglation. Establishing new user spaces via coordinate system transformations are fundamental operationsto 2D graphics and represent

the usual method of controlling the size, position, rotation and skew of graphic objects.

New viewports also can be established. By establishing a new viewport, you can redefine the meaning of some of the various unit
identifiers (px, pt, pc, cm, mm, in, and percentages) and provide a new reference rectangle for "fitting" a graphic into a particular
rectangular area. ("Fit" means that a given graphic is transformed in such away that its bounding box in user space aligns exactly with
the edges of a given viewport.)

7.2 The initial viewport

The SV G user agent negotiates with its parent user agent to determine the viewport into which the SV G user agent can render the
document. In some circumstances, SV G content will be embedded in or referenced by a containing document. This containing document
might include attributes, properties and/or other parameters (explicit or implicit) which specify or provide hints about the dimensions of
the viewport for the SV G content. SV G content itself is required to specify information about the appropriate viewport region for the
content via the width and height XML attributes that are required on every 'svg' element. The negotiation process uses any information
provided by the containing document and the SV G content itself to choose the viewport location and size.

When the SV G content is embedded inline within a containing document, and that document is styled using CSS, then if there are CSS
[CSS2] positioning properties [CSS2-POSN] specified on the outermost 'svg' element that are sufficient to establish the width of the
viewport, then these positioning properties establish the viewport's width; otherwise, the width attribute on the outermost 'svg' element
establishes the viewport's width. Similarly, if there are CSS [CSS2] positioning properties [CSS2-POSN] specified on the outermost 'svg'
element that are sufficient to establish the height of the viewport, then these positioning properties establish the viewport's height;
otherwise, the height attribute on the outermost 'svg' element establishes the viewport's height.

If the width or height attributes on the outermost 'svg' element are in user units (i.e., no unit identifier has been provided), then the value
is assumed to be equivalent to the same number of "px" units (see Units).

In the following example, an SV G graphic is embedded within a parent XML document which is formatted using CSS layout rules. Since
CSS positioning properties are not provided on the outermost 'svg' element, the width="100px" and height="200px" attributes determine
the size of the initial viewport:

<?xm version="1. 0" standal one="yes"?>
<parent xm ns="http://some.url">

<l-- SVG graphic -->
<svg xm ns="http://ww. w3. or g/ 2000/ svg'

wi dt h="100px" hei ght ="200px" >

<pat h d="ML00, 100 Q00, 400, 300, 100"/ >

<l-- rest of SVG graphic would go here -->
</ svg>

</ par ent >

Theinitia clipping path for the SV G document fragment is established according to the rules described in The initial clipping path.

7.3 The initial coordinate system

For the outermost 'svg' element, the SV G user agent determines an initial viewport coordinate system and an initial user coordinate
system such that the two coordinates systems are identical. The origin of both coordinate systemsis at the origin of the viewport, and one
unit in theinitial coordinate system equals one "pixel” in the viewport. In most cases, such as stand-alone SV G documents or SVG
document fragments embedded within XML parent documents where the parent's layout is determined by CSS [CSS2] or XSL [XSL],
theinitial viewport coordinate system (and therefore the initial user coordinate system) hasits origin at the top/left of the viewport, with
the positive x-axis pointing towards the right, the positive Y axis pointing down, and text rendered with an "upright" orientation, which
means glyphs are oriented such that Roman characters and full-size ideographic characters for Asian scripts have the top edge of the
corresponding glyphs oriented upwards and the right edge of the corresponding glyphs oriented to the right.

Example Initial Coords below shows that the initial coordinate system has the origin at the top/left with the x-axis pointing to the right
and the y-axis pointing down. Theinitial user coordinate system has one user unit equal to the parent (implicit or explicit) user agent's
"pixel".

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"

"http://ww. w3. org/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="300px" hei ght="100px" >

<desc>Exanple Initial Coords - SVG s initial coordinate systenx/desc>

<g style="fill:none; stroke:black; stroke-w dth:3">
<line x1="0" y1="1.5" x2="300" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="100" />

</ g>

<g style="fill:red; stroke:none">
<rect x="0" y="0" width="3" height="3" />
<rect x="297" y="0" w dth="3" height="3" />
<rect x="0" y="97" wi dth="3" height="3" />

</ g>

<g style="font-size:14 font-famly: Verdana">
<text x="10" y="20">(0,0)</text>
<text x="240" y="20">(300,0)</text>
<text x="10" y="90">(0, 100)</text>

</ g>

</ svg>

(0,0) (300,0)

(0,100)

Example Initial Coords
View this example as SVG (SV G-enabled browsers only)

7.4 Coordinate system transformations

A new user space (i.e., anew current coordinate system) can be established by specifying transformationsin the form of atransform
attribute on a container element or graphics element. The transform attribute transforms all user space coordinates and lengths on the
given element and all of its ancestors. Transformations can be nested, in which case the effect of the transformations are cumulative.
The following demonstrates simple transformations:

Example OrigCoordSys bel ow shows a document without transformations. The text string is specified in the initial coordinate system.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLI C "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="400px" hei ght ="150px" >
<desc>Exanpl e OrigCoordSys - Sinple transformations: original picture</desc>
<g style="fill:none; stroke:black; stroke-w dth:3">
<l-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</ g>
<g>
<text x="30" y="30" style="font-size:20 font-famly: Verdana">
ABC (orig coord systen)
</text>

file:///D|/Public/CR-SVG-20000802/images/coords/InitialCoords.svg

</ g>
</ svg>

ABC (orig coord system)

Example OrigCoordSys
View this example as SV G (SV G-enabled browsers only)

Example NewCoordSys establishes a new user coordinate system by specifying transform="translate(50,50)" on the third 'g' element
below. The new user coordinate system hasiits origin at location (50,50) in the original coordinate system. The result of this
transformation is that the coordinate (30,30) in the new user coordinate system gets mapped to coordinate (80,80) in the original
coordinate system (i.e., the coordinates have been translated by 50 unitsin X and 50 unitsin Y).

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000802/ / EN"
“http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="400px" hei ght ="150px" >
<desc>Exanpl e NewCoor dSys - New user coordi nate systenx/desc>
<g style="fill:none; stroke:black; stroke-w dth:3">
<l-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</ g>
<g>
<text x="30" y="30" style="font-size:20 font-famly:Verdana">
ABC (orig coord systen)
</text>
</ g>
<l-- Establish a new coordi nate system which is
shifted (i.e., translated) fromthe initial coordinate
system by 50 user units al ong each axis. -->
<g transform="transl at e(50, 50) ">
<g style="fill:none; stroke:red; stroke-w dth:3">
<l-- Draw lines of length 50 user units al ong
t he axes of the new coordinate system-->
<line x1="0" y1="0" x2="50" y2="0" style="stroke:red"/>
<line x1="0" y1="0" x2="0" y2="50" />
</ g>
<text x="30" y="30" style="font-size:20 font-famly: Verdana">
ABC (transl ated coord system
</text>
</ g>
</ svg>

file:///D|/Public/CR-SVG-20000802/images/coords/OrigCoordSys.svg

ABC (orig coord system)

ABC (translated coord system)

Example NewCoordSys

View this example as SV G (SV G-enabled browsers only)

Example RotateScale illustrates ssmple rotate and scale transformations. The example defines two new coordinate systems:
« onewhichistheresult of atrandation by 50 unitsin X and 30 unitsin Y, followed by arotation of 30 degrees
« another which isthe result of atrandation by 200 unitsin X and 40 unitsin Y, followed by a scale transformation of 1.5.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLI C "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG- 20000802/ DTDI svg- 20000802. dt d" >
<svg w dt h="400px" hei ght ="120px" >
<desc>Exanpl e RotateScal e - Rotate and scal e transforns</desc>
<g style="fill:none; stroke:black; stroke-w dth:3">
<l-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="120" />
</ g>
<l-- Establish a new coordi nate system whose origin is at (50, 30)
inthe initial coord. systemand which is rotated by 30 degrees. -->
<g transforme"transl at e(50, 30)">
<g transform="rotate(30)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" style="font-size:20; font-fanily: Verdana; fill:blue">
ABC (rotate)
</text>
</ g>
</ g>
<l-- Establish a new coordi nate system whose origin is at (200, 40)
inthe initial coord. systemand which is scaled by 1.5. -->

<g transforme"transl at e(200, 40) ">
<g transforme"scale(1l.5)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" yl1="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" style="font-size:20; font-famly:Verdana; fill:blue">
ABC (scal e)
</text>
</ g>
</ g>

</ svg>

file:///D|/Public/CR-SVG-20000802/images/coords/NewCoordSys.svg

scale)
(7 rﬂf&(‘@)

Example RotateScale

View this example as SV G (SV G-enabled browsers only)

Example Skew defines two coordinate systems which are skewed relative to the origin coordinate system.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"
"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="400px" hei ght ="120px" >
<desc>Exanpl e Skew - Show effects of skewX and skewy</desc>
<g style="fill:none; stroke:black; stroke-w dth:3">
<l-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="120" />
</ g>
<l-- Establish a new coordi nate system whose origin is at (30, 30)
inthe initial coord. systemand which is skewed in X by 30 degrees. -->
<g transforme"transl ate(30, 30)">
<g transfornme"skewX(30)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" yl1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" style="font-size:20; font-famly:Verdana; fill:blue">
ABC (skewX)
</text>
</ g>
</ g>
<l-- Establish a new coordi nate system whose origin is at (200, 30)
inthe initial coord. systemand which is skewed in Y by 30 degrees. -->

<g transforme"transl at e(200, 30)">
<g transfornme"skewyY(30)">
<g style="fill:none; stroke:red; stroke-wi dth:3">
<line x1="0" yl1="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" style="font-size:20; font-fanmly:Verdana; fill:blue">
ABC (skewY)
</text>
</ g>
</ g>

</ svg>

file:///D|/Public/CR-SVG-20000802/images/coords/RotateScale.svg

T‘J\%\&E‘H\R\ FEQ(
Sk E‘W‘Y)

Example Skew
View this example as SV G (SV G-enabled browsers only)

Mathematically, all transformations can be represented as 3x3 transformation matrices of the following form:

oo
o0 0N
= =h (D

Since only six values are used in the above 3x3 matrix, a transformation matrix is also expressed asavector: [ab cd ef].

Transformations map coordinates and lengths from a new coordinate system into a previous coordinate system:

=I°:pnrEn.eltln::--::-r-dS',.-'s. a ¢ € . xnech-c-rdS-,li
'f!"prEHCDDrdS'g.rE f— b d f II5"'nEwI::|:»|:rr.|:|‘5-,r~5
0 0 1 1

Simple transformations are represented in matrix form as follows:
« Trandationis equivalent to the matrix

1 0 tx
0 1 ty
0 0 1

or [1001tx ty], where tx and ty are the distances to translate coordinatesin X and Y, respectively.

« Scaling is equivalent to the matrix

sx 0 O
0 sy O
0 0 1

or [sx 00 sy 00]. Oneunit inthe X and Y directions in the new coordinate system equals sx and sy units in the previous
coordinate system, respectively.

« Rotation about the origin is equivalent to the matrix

cos(a) -sin(a) 0
sin{a) cos(a) 0
0 0 1

file:///D|/Public/CR-SVG-20000802/images/coords/Skew.svg

or [cos(a) sin(a) -sin(a) cos(a) 0 0], which has the effect of rotating the coordinate system axes by angle a.

« A skew transformation along the x-axis is equivalent to the matrix

1 tan(a) 0
0 1 0
o 0 1

or [1 0tan(a) 1 0 0], which has the effect of skewing X coordinates by angle a.

« A skew transformation along the y-axisis equivalent to the matrix

1 0 0
tan(a) 1 0
0 0 1

or [1tan(a) 0 1 0 0], which has the effect of skewing Y coordinates by angle a.

7.5 Nested transformations

Transformations can be nested to any level. The effect of nested transformations is to post-multiply (i.e., concatenate) the subsequent
transformation matrices onto previously defined transformations:

xpreu — d1C1 € dpCa €2 Xeurr
Yorew | == | D1idafy | * | Badafz | * | Yeurr
1 001 001 1

For each given element, the accumulation of all transformations that have been defined on the given element and all of its ancestors up to
and including the el ement which established the current viewport (usually, the 'svg' element which is the most immediate ancestor to the

given element) is called the current transformation matrix or CTM. The CTM thus represents the mapping of current user coordinates to
viewport coordinates:

__ laas a,c; e, a,c, e,
CTM = |vat || o] <] o,
001 001 ™ 001

Xviewport —_— . Xuserspace
Yviewport — Yuserspace
1 1

Example Nested illustrates nested transformations.

<?xm version="1. 0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000802/ / EN"

"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="400px" hei ght ="150px" >

<desc>Exanpl e Nested - Nested transfornations</desc>

<g style="fill:none; stroke:black; stroke-w dth:3">

<l-- Draw the axes of the original coordinate system-->
<line x1="0" yl1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />

</ g>
<l-- First, atranslate -->
<g transform="transl at e(50.90)">
<g style="fill:none; stroke:red; stroke-w dth:3">

<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />

</ g>

<text x="0" y="0" style="font-size:16; font-famly: Verdana">
....Transl ate(1)

</text>
<!-- Second, a rotate -->
<g transforme"rotate(-45)">
<g style="fill:none; stroke:green; stroke-w dth:3">

<line x1="0" yl1="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />

</ g>

<text x="0" y="0" style="font-size:16; font-famly: Verdana">
....Rotate(2)

</text>

<l-- Third, another translate -->

<g transforme"transl ate(130, 160) ">
<g style="fill:none; stroke:blue; stroke-w dth:3">

<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</ g>

<text x="0" y="0" style="font-size:16; font-famly:Verdana">
....Transl ate(3)

</text>
</ g>
</ g>
</ g>
</ svg>
l-,\
&Y >
¥ 1535
@}
slate(1)
Example Nested

View this example as SVG (SV G-enabled browsers only)

In the example above, the CTM within the third nested transformation (i.e., the transform="translate(130,160)") consists of the
concatenation of the three transformations, as follows:

file:///D|/Public/CR-SVG-20000802/images/coords/Nested.svg

CTM — translate(50,90), rotate(-45), translate(130,160)

_[1 o050 707 .707 0 0
— 0 1 90 -?U}' ?D}' 'D 1
0 0 1 0
__ [707 707 255.03
= |-.707 .707 111.21
o o0 1

Xinitial | Xuserspace
'}l"umtlal 1!!"u serspace

7.6 The transform attribute

The value of the transform attribute is a <transform-list>, which is defined as alist of transform definitions, which are applied in the
order provided. Theindividual transform definitions are separated by whitespace and/or acomma. The available types of transform
definitions include:

matrix(<a> <c> <d> <e> <f>), which specifies atransformation in the form of atransformation matrix of six values.
matrix(a,b,c,d,e f) isequivalent to applying the transformation matrix [ab c d ef].

trandl ate(<tx> [<ty>]), which specifies atrandlation by tx and ty.
scale(<sx> [<sy>]), which specifies a scale operation by sx and sy. If <sy> isnot provided, it is assumed to be equal to <sx>.

rotate(<rotate-angle> [<cx> <cy>]), which specifies arotation by <rotate-angle> degrees about a given point.

If optional parameters <cx> and <cy> are not supplied, the rotate is about the origin of the current user coordinate system. The
operation corresponds to the matrix [cos(a) sin(a) -sin(a) cos(a) 0 0].

If optional parameters <cx> and <cy> are supplied, the rotate is about the point (<cx>, <cy>). The operation represents the
equivalent of the following specification: trandate(<cx>, <cy>) rotate(<rotate-angle>) trandate(-<cx>, -<cy>).

skewX (<skew-angle>), which specifies a skew transformation along the x-axis.

skewY (<skew-angle>), which specifies a skew transformation along the y-axis.

All numeric values are real <number>s.

If alist of transforms is provided, then the net effect isas if each transform had been specified separately in the order provided. For
example,

<g transform"transl ate(-10,-20) scale(2) rotate(45) translate(5,10)">
<l-- graphics elenents go here -->

</ g>

isfunctionally equivalent to:

<g transforme"transl ate(-10,-20)">
<g transforme"scal e(2)">
<g transforme"rotate(45)">
<g transforme"transl ate(5,10)">
<l-- graphics elenents go here -->
</ g>
</ g>
</ g>
</ g>

The transform attribute is applied to an element before processing any other coordinate or length values supplied for that element. In the
element

<rect x="10" y="10" wi dt h="20" hei ght="20" transfornm="scal e(2)"/>

the x, y, width and height values are processed after the current coordinate system has been scaled uniformly by afactor of 2 by the
transform attribute. Attributes x, y, width and height (and any other attributes or properties) are treated as values in the new user
coordinate system, not the previous user coordinate system. Thus, the above 'rect’ element is functionally equivalent to:

<g transform="scal e(2)">
<rect x="10" y="10" wi dt h="20" hei ght="20"/>
</ g>

The following is the Backus-Naur Form (BNF) for values for the transform attribute. The following notation is used:
« *:00rmore
« +:1o0r more
« 2200r1

« (): grouping
o | separates aternatives
« double quotes surround literals

transformlist:
wsp* transforns? wsp*

transf or ms:
transform
| transform conmma-wsp+ transformnms

transform

mat ri x

| translate
| scale
| rotate
| skewX
| skewY

mat ri x:

"matri x" wsp* "(" wsp*
nunber coma-wsp
nunber coma-wsp
nunber comma-wsp
nunber comma-wsp
nunber coma-wsp
nunber wsp* ")"

transl ate:
"transl ate" wsp* "(

wsp* number (conma-wsp nunber)? wsp* ")

scal e:
n Scal eII V\Bp* n (

wsp* number (conma-wsp nunber)? wsp* ")

rotate:
"rotate" wsp* "(

wsp* nurber (conma-wsp nunber coma-wsp nunber)? wsp* ")

skewX:
"skewX" wsp* "(

wsp* number wsp* ")

skewy:

"skewY" wsp* "(" wsp* number wsp* ")"
nunber :

si gn? integer-constant

| sign? floating-point-constant

comra- Wsp:
(wsp+ comma? wsp*) | (comma wsp*)

conma:

i nt eger-constant:
di gi t - sequence

fl oati ng- poi nt-const ant:
fractional -constant exponent?
| digit-sequence exponent

fractional -constant:
di gi t-sequence? ".
| digit-sequence "."

di gi t - sequence
exponent :
("e" | "E'") sign? digit-sequence

sign:
n +ll | n - n

di gi t - sequence:
digit
| digit digit-sequence

digit:
"O" | 1" | "2" | "3" | “"4" | "5 | "6" | "7" | "8 | "9

wsp:
(#x20 | #x9 | #xD | #xA)

For the transform attribute:
Animatable: yes.

See the 'animateTransform' element for information on animating transformations

7.7 The viewBox attribute

It is often desirable to specify that a given set of graphics stretch to fit a particular container element. The viewBox attribute provides this
capability.

All elements that establish a new viewport (see elements that establish viewports) have attribute viewBox. The value of the viewBox
attribute isalist of four numbers <min-x>, <min-y>, <width> and <height>, separated by whitespace and/or a comma, which specify a
rectangle in user space which should be mapped to the bounds of the viewport established by the given element, taking into account
attribute preserveAspectRatio. If specified, an additional transformation is applied to all descendants of the given element to achieve the

specified effect.

A negative value for <width> or <height> is an error (see Error processing). A value of zero disables rendering of the element.

Example ViewBox illustrates the use of the viewBox attribute on the outermost 'svg' element to specify that the SV G content should
stretch to fit bounds of the viewport.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
“http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="300px" hei ght ="200px"
vi ewBox="0 0 1500 1000" preserveAspectRati o="none" >
<desc>Exanpl e Vi ewBox - uses the vi ewBox
attribute to automatically create an initial user coordinate
system whi ch causes the graphic to scale to fit into the
viewport no natter what size the viewport is.</desc>

<l-- This rectangle goes from(0,0) to (1500,1000) in user space.
Because of the viewBox attribute above,
the rectangle will end up filling the entire area
reserved for the SVG content. -->

<rect x="0" y="0" width="1500" hei ght="1000" style="fill:yellow" />

<l-- Alarge, red triangle -->
<path style="fill:red" d="M 750, 100 L 250,900 L 1250,900 z"/>

<l-- Atext string that spans nost of the viewort -->
<text x="100" y="600" style="font-size:150; font-fanily: Verdana">
Stretch to fit

</text>
</ svg>
Rendered into Rendered into
viewport with viewport with
width=300px, width=150px,
height=200px height=200px

Str fit | St fit

Example ViewBox

View this example as SV G (SV G-enabled browsers only)

The effect of the viewBox attribute is that the user agent automatically supplies the appropriate transformation matrix to map the
specified rectangle in user space to the bounds of the viewport. To achieve the effect of the example on the left, with viewport
dimensions of 300 by 200 pixels, the user agent needs to automatically insert a transformation which scalesboth X and Y by 0.2. The

effect is equivalent to having a viewport of size 300px by 200px and the following supplemental transformation in the document, as
follows:

<?xnml version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"

file:///D|/Public/CR-SVG-20000802/images/coords/ViewBox.svg

"http://ww. w3. org/ TR/ 2000/ CR- SVG- 20000802/ DTDI svg- 20000802. dt d" >
<svg w dt h="300px" hei ght="200px" >

<g transforme"scal e(0.2)">
<!-- Rest of docunment goes here -->

</ g>
</ svg>
To achieve the effect of the example on the right, with viewport dimensions of 150 by 200 pixels, the user agent needs to automatically

insert a transformation which scales X by 0.1 and Y by 0.2. The effect is equivalent to having a viewport of size 150px by 200px and the
following supplemental transformation in the document, as follows:

<?xnml version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"

"http://ww. w3. org/ TR/ 2000/ CR- SVG- 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="150px" hei ght ="200px" >

<g transforme"scale(0.1 0.2)">
<l-- Rest of docunent goes here -->

</ g>
</ svg>

(Note: in some cases the user agent will need to supply atrandlate transformation in addition to a scale transformation. For example, on
an outermost 'svg’, atrandate transformation will be needed if the viewBox attributes specifies values other than zero for <min-x> or

<min-y>.)
For the viewBox attribute:

Animatable: yes.

7.8 The preserveAspectRatio attribute

In some cases when using the viewBox attribute, it is desirable that the graphics stretch to fit non-uniformly to take up the entire
viewport. In other cases when using the viewBox attribute, it is desirable that uniform scaling be used for the purposes of preserving the
aspect ratio of the graphics.

Attribute preserveAspectRatio="<align> [<meetOrSlice>]", which is available for all elements that establish a new viewport (see
elements that establish viewports), indicates whether or not to force uniform scaling. preserveAspectRatio only applies when avalue has

been provided for viewBox on the same element. If attribute viewBox is not provided, then preserveAspectRatio isignored.

The <align> parameter indicates whether to force uniform scaling and, if so, the alignment method to use in case the aspect ratio of the
viewBox doesn't match the aspect ratio of the viewport. The <align> parameter must be one of the following strings:

« none - Do not force uniform scaling. Scale the graphic content of the given element non-uniformly if necessary such that the
element's bounding box exactly matches the viewport rectangle.
(Note: if <align> is none, then the optional <meetOrSlice> value isignored.)

« XMinYMin - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.

Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

« XMidYMin - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.

Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

« XMaxYMin - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.

Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

« XMinYMid - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.

Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

« xMidYMid (the default) - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.

Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

« XMaxYMid - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

« XMinYMax - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.

Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

« xMidYMax - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.

Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

« XMaxYMax - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.
Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

The <meetOrSlice> parameter is optional and, if provided, is separated from the <align> value by one or more spaces and then must be
one of the following strings:

« meet (the default) - Scale the graphic such that:
0 aspect ratiois preserved
0 the entire viewBox is visible within the viewport

o theviewBox is scaled up as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the graphic does not match the viewport, some of the viewport will extend beyond the bounds of
the viewBox (i.e., the areainto which the viewBox will draw will be smaller than the viewport).

« dlice- Scalethe graphic such that:
0 aspect ratio is preserved
o the entire viewport is covered by the viewBox
o theviewBox is scaled down as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the viewBox does not match the viewport, some of the viewBox will extend beyond the bounds
of the viewport (i.e., the areainto which the viewBox will draw is larger than the viewport).

Example PreserveAspectRatio illustrates the various options on preserveAspectRatio. To save space, XML entities have been defined for
the three repeated graphic objects, the rectangle with the smile inside and the outlines of the two rectangles which have the same
dimensions as the target viewports. The example creates several new viewports by including 'svg' sub-elements embedded inside the

outermost 'svg' element (see Establishing a new viewport). The smile is drawing the text string ":)" rotated 90 degrees.

<?xm version="1.0" standal one="no"?>
<! DCCTYPE svg PUBLI C "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" [
<IENTITY Smle "
<rect x=".5" y=".5 wdth=29 height=39" style="fill:yellow, stroke:red />
<g transforne' rotate(90)' >
<text x='"10" y='10" style='font-family:Verdana;
font-wei ght:bold; font-size:14'>:)</text>

</ g>">
<IENTITY Viewportl "<rect x=".5" y=.5" width=" 49" height=" 29
style="fill:none; stroke:blue'/>">
<IENTITY Viewport2 "<rect x='.5" y=".5" width= 29" height="59
style="fill:none; stroke:blue />">
1>

<svg w dt h="480px" hei ght ="270px" style="font-famnily: Verdana; font-size:8">
<desc>Exanpl e PreserveAspectRati o - denonstrate avail abl e opti ons</desc>
<text x="10" y="30">SVG to fit</text>
<g transforme"transl ate(20, 40)">&Sni | e; </ g>

<text x="10" y="110">Viewport 1</text>
<g transforme"transl ate(10, 120) " >&Vi ewport 1; </ g>
<text x="10" y="180">Vi ewport 2</text>
<g transforme"transl at e(20, 190) " >&Vi ewport 2; </ g>
<text x="100" y="30">--------------- nmeet --------------- </text>
<g transforne"transl ate(100, 60)"><text y="-10">xM n*</text>&Vi ewport 1;
<svg preserveAspectRati o="xM nYM n neet" vi ewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></ g>
<g transforn¥"transl ate(170, 60)"><text y="-10">xM d*</text>&Vi ewport 1;
<svg preserveAspectRati o="xM dYM d neet" vi ewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sm | e; </ svg></ g>
<g transfornme"transl at e(240, 60) "><text y="-10">xMax*</text >&Vi ewport 1;
<svg preserveAspect Rati o="xMaxYMax nmeet" vi ewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></ g>
<text x="330" y="30">---------- neet ---------- </text>
<g transforn¥"transl ate(330, 60)"><text y="-10">*YM n</text>&Vi ewport 2;
<svg preserveAspectRati o="xM nYM n neet" vi ewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sm | e; </ svg></ g>
<g transforne"transl at e(380, 60) " ><text y="-10">*YM d</text >&Vi ewport 2;
<svg preserveAspectRati o="xM dYM d neet" vi ewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></ g>
<g transforn¥"transl ate(430, 60)"><text y="-10">*YMax</text>&Vi ewport 2;
<svg preserveAspect Rati o="xMaxYMax neet" vi ewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></ g>
<text x="100" y="160">---------- slice -~--------- </text>
<g transform="transl ate(100, 190) "><text y="-10">xM n*</t ext >&Vi ewport 2;
<svg preserveAspectRati o="xM nYM n slice" viewBox="0 0 30 40"
wi dt h="30" hei ght="60">&Sni | e; </ svg></ g>
<g transforn¥"transl ate(150, 190) " ><t ext y="-10">xM d*</t ext>&Vi ewport 2;
<svg preserveAspectRati o="xM dYM d slice" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></ g>
<g transforme"transl at (200, 190) "><t ext y="-10">xMax*</text>&Vi ewport 2;
<svg preserveAspect Rati o="xMaxYMax slice" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Smi | e; </ svg></ g>
<text x="270" y="160">--------------- slice --------------- </text>
<g transforn¥"transl ate(270, 190) " ><text y="-10">*YM n</text>&Vi ewport1;
<svg preserveAspectRati o="xM nYM n slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></ g>
<g transforme"transl at e(340, 190) "><text y="-10">*YM d</t ext >&Vi ewport1;
<svg preserveAspectRati o="xM dYM d slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Smi | e; </ svg></ g>
<g transforne"transl ate(410, 190) " ><t ext y="-10">*YMax</t ext>&Vi ewport1;
<svg preserveAspect Rati o="xMaxYMax slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></ g>

</ svg>
SWGtofith —eeeemeeeee MEeL —mmmmmmmmmmmeem e mest ----------
. wMin® spid* sl *min *mid *Ymax
o
~ ~ ~ et .
L - am
Viewpaort 1 e
---------- slice ------—--- —mmmmmmm o= SliCE - -
Wewpork 2 AMin® osMid® xMax® i i i

el B el D Wi

o e o

Example PreserveAspectRatio

View this example as SV G (SV G-enabled browsers only)

For the preserveAspectRatio attribute:

Animatable: yes.

7.9 Establishing a new viewport

At any point in an SVG drawing, you can establish a new viewport into which all contained graphicsis drawn by including an 'svg'
element inside SV G content. By establishing a new viewport, you also implicitly establish a new viewport coordinate system, a new user
coordinate system, new meanings for many of the unit identifiers and, potentially, a new clipping path.

The bounds of the new viewport are defined by the x, y, width and height attributes on the element establishing the new viewport, such as
an 'svg' element. Both the new viewport coordinate system and the new user coordinate system have their origins at (x, y), wherex and 'y
represent the value of the corresponding attributes on the element establishing the viewport. The orientation of the new viewport
coordinate system and the new user coordinate system correspond to the orientation of the current user coordinate system for the element
establishing the viewport. A single unit in the new viewport coordinate system and the new user coordinate system are the same sizeasa
single unit in the current user coordinate system for the element establishing the viewport.

Hereisan example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLI C "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dth="4in" hei ght="3in">
<desc>Thi s SVG draw ng enbeds anot her one,
t hus establishing a new vi ewport
</ desc>
<l-- The followi ng statenment establishing a new viewport
and renders SVG drawing B into that viewport -->
<svg x="25% y="25% width="50% height="50% >
<l-- drawi ng B goes here -->
</ svg>
</ svg>

For an extensive example of creating new viewports, see Example PreserveAspectRatio.

In addition to the 'svg' element, any elements which are defined such that they are processed in the same manner as an 'svg' element also
establish anew viewport. In particular:

« A 'symbol' element define new viewports whenever they are instanced by a'use’ element.

« An'image element that references an SV G file will result in the establishment of atemporary new viewport since the referenced
resource by definition will have an 'svg' element.

« A ‘foreignObject’ element creates a new viewport for rendering the content that is within the element.

Whether a new viewport also establishes a new additional clipping path is determined by the value of the 'overflow' property on the

element which establishes the new viewport. If a clipping path is created to correspond to the new viewport, the clipping path's geometry
is determined by the value of the 'clip' property. Also, see Clip to viewport vs. clip to viewBox.

7.10 Units

All coordinates and lengthsin SV G can be specified with or without a unit identifier.

If a coordinate or length value is a number without a unit identifier (e.g., "25"), then the given coordinate or length is assumed to be in
user units (i.e., avaluein user space). For example:

<text style="font-size: 50">Text size is 50 user units</text>

file:///D|/Public/CR-SVG-20000802/images/coords/PreserveAspectRatio.svg

If coordinate or length value is a number following by a unit identifier (e.g., "25cm" or "15em™), then the given coordinate represents
either an absolute length in viewport units or arelative length (i.e., avalue relative to some other distance measurement). Thelist of unit
identifiersin SV G matches the list of unit identifiersin CSS: em, ex, px, pt, pc, cm, mm, in and percentages.

Asin CSS, the em and ex unit identifiers are relative to the current font's font-size and x-height, respectively.

When the various absolute unit identifiers (i.e., px, pt, pc, cm, mm, in) are used, the coordinate and length val ues represent values within
the viewport coordinate system and do not change their meaning as transformations alter the current coordinate system. Thus, "12pt" can
be made to represent exactly 12 points on the actual visual medium even if the user coordinate system has been scaled.

Example AbsoluteUnits illustrates how absolute units do not scale even when transformations are applied.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"
"“http://ww. w3. org/ TR 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="450px" hei ght ="150px" style="font-famnly: Verdana">
<desc>Exanpl e AbsoluteUnits - Absolute units and coordinate transformations
</ desc>
<l-- Draw an outline of the drawing in blue -->
<rect x="1" y="1" w dth="448" hei ght="148" style="fill:none; stroke:blue"/>

<l-- The following two text elements will both draw with a
font height of 12 pixels -->

<text x="20" y="25" style="font-size: 12; fill: black">
This draws 12 pi xel s high.

</text>

<text x="20" y="50" style="font-size: 12px; fill: red">
This draws 12 pi xel s high.

</text>

<!-- Now scal e the coordinate systemby 2. -->
<g transforn¥"scal e(2)">

<l-- The following text will actually draw 24 pixels high
because each unit in the new coordi nate system equal s
2 units in the previous coordi nate system -->

<text x="20" y="50" style="font-size: 12; fill:green">
This draws 24 pixels high.
</text>
<l-- The following text will actually still draw 12 pi xels high
because the unit identifier has been provided. -->
<text x="20" y="62.5" style="font-size: 12px; fill:blue">
This draws 12 pi xel s high.
</text>
</ g>
</ svg>

This draws 12 pixels high.
This draws 12 pixels high.

This draws 24 pixels high.

This draws 12 pixels high.

Example AbsoluteUnits

View this example as SV G (SV G-enabled browsers only)

file:///D|/Public/CR-SVG-20000802/images/coords/AbsoluteUnits.svg

When the current SVG document fragment has not yet been subject to transformations (e.g., when you have a standalone SVG document
or an SV G document fragment embedded directly within a XML document styled with CSS2 or XSL), then the initial value for a px unit
must be set in conformance with the rules for px units as described in [CSS2 lengths]. If the SV G implementation is part of a user agent
which provides for styling XML documents using CSS2-compatible px units, then the SVG user agent should get itsinitia value for a px
unit to match the value used for other XML styling operations.

Note that use of px units can cause inconsistent visual results on different systems; thus, px units are only recommended for situations
where positioning must be aligned relative to the device pixel grid, such aswhen SV G content needs to align visually with other
pixel-aligned XML content.

7.11 Redefining the meaning of unit identifiers

The process of establishing a new viewport, such as when thereis an 'svg’ element inside of another SV G 'svg’, changes the meaning of
the following unit identifiers: px, pt, pc, cm, mm, in, and % (percentages). A "pixel" (the px unit) becomes equivalent to asingle unit in
the user coordinate system for the given 'svg' element. The meaning of the other absolute unit identifiers (pt, pc, cm, mm, in) are
determined as an appropriate multiple of a px unit using the actual size of px unit (as passed from the parent user agent to the SV G user
agent). Any percentage values that are relative to the current viewport will also represent new values.

Example AbsoluteUnitsRedefined illustrates how absolute unitsidentifiers have their meaning changed when a new viewport is
established.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000802/ / EN"
“http://ww. w3. org/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="480px" hei ght ="225px" style="font-famnl|y: Verdana">
<desc>Exanpl e Absol ut eUni t sRedefined - Transformation with establishment of a new vi ewport
</ desc>
<l-- Draw an outline of the drawing in blue -->
<rect x="1" y="1" w dth="478" hei ght="223" style="fill:none; stroke:blue"/>

<l-- The following two text elements will both draw with a
font height of 12 pixels -->
<text x="20" y="25" style="font-size: 12; fill: black">
This draws 12 pixel s high.
</text>
<text x="20" y="50" style="font-size: 12px; fill: red">
This draws 12 pi xel s high.
</text>
<l-- This tine, scale the coordinate systemby 3. -->
<g transform"scal e(3)">
<l-- Establish a new viewport and thus change the neani ng of
sone unit identifiers. -->
<svg x="0" y="25" wi dth="160" hei ght="50">
<!-- Draw an interior outline of the viewort in browmn -->
<rect x="1" y="1" wi dth="158" hei ght ="48"
style="fill:none; stroke:brown; stroke-w dth:.33333"/>
<l-- The following two text elenments will both draw with a

font height of 36 screen pixels. The first text el ement
defines its height in user coordinates, which have been
scal ed by 3. The second text elenent defines its height

in px units, which have been redefined to be three tines
as big as screen pixels due the <svg> el ement establi shing

a new vi ewport. -->
<text x="2" y="20" style="font-size: 12; fill:mgenta">
This draws 36 pixels high.
</text>
<text x="2" y="40" style="font-size: 12px; fill:cyan">
This draws 36 pixels high.
</text>

</ svg>

http://www.w3.org/TR/REC-CSS2/syndata.html#length-units

</ g>
</ svg>

This draws 12 pixels high.
This draws 12 pixels high.

This draws 36 pixels high.

Example AbsoluteUnitsRedefined

View this example as SV G (SV G-enabled browsers only)

7.12 Object bounding box units

The following elements offer the option of expressing coordinate values and lengths as fractions (and, in some cases, percentages) of the
bounding box (via keyword objectBoundingBox) on a given element:

Element

Attribute

Effect

'linearGradient’

gradientUnits="objectBoundingBox"

Indicates that the attributes which specify the gradient vector (x1, y1, X2, y2)

represent fractions or percentages of the bounding box of the element to which
the gradient is applied.

'radial Gradient’

gradientUnits="objectBoundingBox"

Indicates that the attributes which specify the center (cx, cy), the radius (r) and
focus (fx, fy) represent fractions or percentages of the bounding box of the
element to which the gradient is applied.

patternUnits="objectBoundingBox"

Indicates that the attributes which define how to tile the pattern (x, y, width,
height) and that the user coordinate system for the contents of the patternis
established using the bounding box of the element to which the patternis
applied.

clipPathUnits="objectBoundingBox"

Indicates that the user coordinate system for the contents of the 'clipPath’
element is established using the bounding box of the element to which the
clipping path is applied.

maskUnits="objectBoundingBox"

Indicates that the user coordinate system for the contents of the 'mask’ element
is established using the bounding box of the element to which the mask is
applied.

filterUnits="objectBoundingBox"

Indicates that the attributes which define the filter effects region (x, y, width,
height) represent fractions or percentages of the bounding box of the element to
which the filter is applied.

primitiveUnits="objectBoundingBox"

Indicates that the various length values within the filter primitives represent
fractions or percentages of the bounding box of the element to which thefilter is

applied.

When keyword objectBoundingBox is used, then the effect is as if a supplemental transformation matrix were inserted into the list of
nested transformation matrices to create a new user coordinate system.

First, the (minx,miny) and (maxx,maxy) coordinates are determined for the referencing element and al of its descendants. The values

file:///D|/Public/CR-SVG-20000802/images/coords/AbsoluteUnitsRedefined.svg

minx, miny, maxx and maxy are determined by computing the maximum extent of the shape of the element in X and Y with respect to
the user coordinate system for the referencing e ement. The bounding box is the tightest fitting rectangle aligned with the axes of the
referencing element's user coordinate system that entirely encloses the referencing element and its descendants. The bounding box is
computed exclusive of any values for clipping, masking, filter effects, opacity and stroke-width. For curved shapes, the bounding box
encloses all portions of the shape, not just end points. For 'text’ elements, for the purposes of the bounding box calculation, each glyphis
treated as a separate graphics element. The calculations assume that al glyphs occupy the full glyph cell. For example, for horizontal
text, the calculations assume that each glyph extends vertically to the full ascent and descent values for the font.

Then, coordinate (0,0) in the new user coordinate system is mapped to the (minx,miny) corner of the tight bounding box within the user
coordinate system of the referencing element and coordinate (1,1) in the new user coordinate system is mapped to the (maxx,maxy)
corner of the tight bounding box of the referencing element. In most situations, the following transformation matrix produces the correct
effect:

[(maxx-minx) 0 O (maxy-niny) mnx mny]

When percentages are used with keyword objectBoundingBox, a percentage represents the same value as the corresponding decimal
value (e.g., 50% means the same as 0.5).

Keyword objectBoundingBox should not be used when the geometry of the referencing element has no width or no height, such asthe
case of ahorizontal or vertical line, even when the line has actual thickness when viewed due to having a non-zero stroke width since
stroke width isignored for bounding box calculations. When the geometry of the referencing element has no width or height and
objectBoundingBox is specified, then the given effect (e.g., agradient or afilter) will beignored.

7.13 Processing rules when using absolute unit identifiers and
percentages

Even when coordinates and lengths in SVG have an absolute unit identifier or represent a percentage (see Units), these values are first
mapped into user space, and then processing occurs as if the values had been specified as the corresponding value in user space.

For coordinates and lengthsin SV G which have an absolute unit identifier or represent a percentage of the viewport, the values are
converted into user space values as follows:

« For any x-coordinate value or width value (xXValuelnV PSpace) expressed using an absolute unit identifier, first convert
xVauelnVPSpace into viewport pixel units using the SV G user agent's standard conversion factor from pixelsto real world units
(e.g., millimeters) to yield xVauelnVPPixels. Then transform the points (0,0) and (xValuelnVPPixels,0), from viewport space to
current user space using the inverse of the current transformation matrix, yielding two pointsin userspace Q1 and Q2. Do a
distance calculation between Q1 and Q2 (sgrt((Q2x-Q1x)** 2 + (Q2y-Q1y)**2)) and use that as the value for the given operation.

« For any y-coordinate value or height value (yValuelnVPSpace) expressed using an absolute unit identifier, then use the same
method as above, except use points (0,0) and (0,yVauelnV PPixels) instead.

« For any x-coordinate value or width value (xVauelnV PSpace) expressed as a percentage of the viewport, transform the points
(0,0) and (percentageV alue* vpWidthinPixels,0), from viewport space to current user space using the inverse of the current
transformation matrix, yielding two pointsin userspace Q1 and Q2. Do a distance cal culation between Q1 and Q2
(sart((Q2x-Q1x)** 2 + (Q2y-Qly)**2)) and use that as the value for the given operation.

« For any y-coordinate value or height value (yVa uelnVPSpace) expressed as a percentage of the viewport, then use the same
method as above, except use points (0,0) and (0, percentageV alue* vpHeightInPixels) instead.

« For any other length value in viewport space (IlengthV PSpace), the following approach is used to give appropriate weighting to
the contribution of the two dimensions of the viewport. First, convert lengthV PSpace into viewport pixel units using the SVG user
agent's standard conversion factor from pixelsto real world units (e.g., millimeters) to yield lengthV PPixels. Calculate the
distance from (0,0) and (vpWidthinPixels,vpHeightInPixels) in viewport space using the formula:
vpDiagL engthV PPixel s=sgrt(vpWidthinPixels** 2 + vpHeightInPixels** 2). Using the inverse of the current transformation
matrix, determine the pointsin user space (P1x,Ply) and (P2x,P2y) which correspond to the points (0,0) and
(vpWidthinPixels,vpHeightInPixels) in viewport space. Calculate the distance from (P1x,P1y) and (P2x,P2y) in user space using
the formula: vpDiagL engthUserSpace=sqrt((P2x-P1x)** 2 + (P2y-Ply)** 2)). Then, convert the original viewport-relative length
into alength in user space using the formula: lengthUserSpace = lengthV PPixels *

(vpDiagL engthUserSpace/vpDiagL engthV PPixels).

« If aviewport-relative percentage value is given, then use the same method as above, except calculate lengthV PPixels as
lengthV PPixel s=percentageV alue* sgrt(vpWidthPixels** 2 + vpHeightPixel st * 2)/sqrt(2).
Any values expressed as fractions or percentages of the current object bounding box are mapped to corresponding values in user space as
follows:

« For any x-coordinate value or width value, determine the minimum and maximum x-coordinates in user space for the object
bounding box (bboxXMinUserSpace and bboxX MaxUserSpace, respectively). An x-coordinate value is converted into a

coordinate in user space using the formula bboxXMinUserSpace+percentageV al ue* (bboxX M axUser Space-bboxX MinUserSpace)
and awidth valueis converted into alength in user space using the formula
percentageV alue* (bboxX M axUser Space-bboxX MinUser Space).

For any y-coordinate value or width value, determine the minimum and maximum y-coordinatesin user space for the object
bounding box (bboxY MinUserSpace and bboxY MaxUserSpace, respectively). A y-coordinate value is converted into a
coordinate in user space using the formula bboxY MinUserSpace+percentageV alue* (bboxY M axUser Space-bboxY MinUserSpace)
and aheight value is converted into alength in user space using the formula

percentageV alue* (bboxY MaxUser Space-bboxY MinUser Space).

For any other length value expressed as a fraction or percentage of the current object bounding box, determine the minimum and
maximum x and y coordinates in user space for the object bounding box (bboxXMinUserSpace, bboxXMaxUser Space,

bboxY MinUserSpace and bboxY MaxUserSpace), cal culate bboxWidth=bboxX M axUser Space-bboxX MinUserSpace and
bboxHei ght=bboxY MaxUserSpace-bboxY MinUserSpace, and then map the fraction or percentage of the current object bounding
box to alength in user space using the formula percentageV alue* sgrt(bboxWidth** 2 + bboxHeight** 2)/sqrt(2).

7.14 DOM interfaces

The following interfaces are defined below: SV GPoint, SVGMatrix, SVGTransformList, SVGAnimatedTransformList, SVGTransform,
SV GPreserveAspectRatio, SV GAnimatedPreserveAspectRatio.

Interface SVGPoint

Many of the SVG DOM interfaces refer to objects of class SVGPoint. An SVGPoint is an (x,y) coordinate pair. When used in matrix
operations, an SVGPoint is treated as a vector of the form:

IDL Definition

i nterface SVGPoi nt {

attribute float x;

/1 rai ses DOVException on setting
attribute float y;

/1 raises DOVException on setting

SVGPoi nt matrixTransform (in SVGvatrix matrix);

Attributes

1
float x
The x coordinate.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y
They coordinate.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

M ethods

matrixTransform

Applies a2x3 matrix transformation on this SV GPoint object and returns a new, transformed SV GPoint object:

newpoi nt = matrix * thispoint
Parameters
in SVGMatrix matrix The matrix which isto be applied to this SV GPoint object.
Return value
SVGPoint A new SV GPoint object.
No Exceptions

Interface SVGMatrix

Many of SVG's graphics operations utilize 2x3 matrices of the form:

[a c €]
[bdf]

which, when expanded into a 3x3 matrix for the purposes of matrix arithmetic, become:

[a c €]
[bdf]
[0 0 1]

IDL Definition

interface SVGwatrix {

SVGVat r i
SVGVat r i

SVGWAL ri
SVGWAL ri
SVG\At r i
SVGWAL ri
SVGWVAL ri

SVG\WAL r i
SVGWAL ri
SVGWAL ri
SVGWAL r i

b

Attributes

float a

attribute
attribute
attribute
attribute
attribute

attribute

float a;

/1l raises
fl oat b;

/1l raises
float c;

/'l raises
float d;

/1 raises
float e;

/'l raises
float f;

/'l raises

DOVExcepti on on setting
DOVException on setting
DOVException on setting
DOVExcepti on on setting
DOVException on setting

DOVException on setting

X X X X X x

X X X X

multiply (
i nverse (

in SVGAGwatri x secondMatri x

)

rai ses(SVGException);

translate (
scal e (

scal eNonUni f orm (
in float angle);
in float x,

rotate (

r ot at eFr onvect or

in float x,
in float scal eFactor);
in float scal eFact or X,

(

rai ses(SVCGException);

flipX ();
flipYy ()
skewX (in
skewY (in

f
f

infloat y);

in float

in float y)

| oat angle);
I

oat angle)

The a component of the matrix.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

float b

scal eFactorY);

The b component of the matrix.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float c
The ¢ component of the matrix.
Exceptions on setting
DOMException NO_ MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float d
The d component of the matrix.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float e
The e component of the matrix.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float f
The f component of the matrix.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
Methods
multiply
Performs matrix multiplication. This matrix is post-multiplied by another matrix, returning the resulting new matrix.
Parameters
in SVGMatrix secondMatrix The matrix which is post-multiplied to this matrix.
Return value
SVGMatrix The resulting matrix.
No Exceptions
inverse
Returns the inverse matrix.
No Parameters
Return value
SVGMatrix Theinverse matrix.
Exceptions
SVGException SVG_MATRIX_NOT_INVERTABLE: Raised if this matrix is not invertable.
trandate
Post-multiplies a trand ation transformation on the current matrix and returns the resulting matrix.
Parameters

infloat x The distance to trandate along the x-axis.
infloaty The distance to trandate along the y-axis.

Return value
SVGMatrix The resulting matrix.

No Exceptions
scae
Post-multiplies a uniform scale transformation on the current matrix and returns the resulting matrix.

Parameters
in float scaleFactor Scale factor in both X and Y.
Return value
SVGMatrix The resulting matrix.
No Exceptions
scaleNonUniform
Post-multiplies a non-uniform scale transformation on the current matrix and returns the resulting matrix.
Parameters

in float scaleFactorX Scalefactorin X.
in float scaleFactorY Scalefactorin.

Return value
SVGMatrix The resulting matrix.
No Exceptions
rotate
Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix.
Parameters
infloat angle Rotation angle.
Return value
SVGMatrix The resulting matrix.
No Exceptions
rotateFromV ector

Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix. The rotation angle is
determined by taking (+/-) atan(y/x). The direction of the vector (X,y) determines whether the positive or negative angle
valueis used.

Parameters

infloat x The X coordinate of the vector (x,y). Must not be zero.
infloaty TheY coordinate of the vector (x,y). Must not be zero.

Return value
SVGMatrix The resulting matrix.
Exceptions
SVGEXxception SVG_INVALID_VALUE _ERR: Raised if one of the parameters has an invalid value.
flipX
Post-multiplies the transformation [-1 0 0 1 0 0] and returns the resulting matrix.
No Parameters
Return value
SVGMatrix The resulting matrix.
No Exceptions
flipY
Post-multiplies the transformation [1 0 0 -1 0 0] and returns the resulting matrix.
No Parameters
Return value
SVGMatrix The resulting matrix.
No Exceptions
skewX
Post-multiplies a skewX transformation on the current matrix and returns the resulting matrix.

Parameters
in float angle Skew angle.
Return value
SVGMatrix The resulting matrix.
No Exceptions
skewY
Post-multiplies a skewY transformation on the current matrix and returns the resulting matrix.
Parameters
in float angle Skew angle.
Return value
SVGMatrix The resulting matrix.
No Exceptions

Interface SVGTransformList

SVGTransformList maintains an ordered list of SV GTransform objects. The SVGTransformList and SV GTransform interfaces
correspond to the various attributes which specify a set of transformations, such as the transform attribute which is available for many of
SVG's elements.

The various methods inherited from SV GList, which are defined in SV GList to accept parameters and return values of type Object, must
receive parameters of type SV GTransform and return values of type SV GTransform.

IDL Definition

i nterface SVGIransfornlist : SVA.ist {
SVGTr ansf orm cr eat eSVGIT ansf ornfFromvatrix (in SVGvatrix matrix);
SVGIransform consol i date ();

};

M ethods
createSV GTransformFromM atrix

Creates an SV GTransform object which isinitialized to transform of type SVG_TRANSFORM_MATRIX and whose
values are the given matrix.

Parameters
in SVGMatrix matrix The matrix which defines the transformation.
Return value
SVGTransform The returned SV GTransform object.
No Exceptions
consolidate

Consolidates the list of separate SV GTransform objects by multiplying the equivalent transformation matrices together to
result in alist consisting of asingle SV GTransform object of type SVG_TRANSFORM_MATRIX.

No Parameters
Return value

SVGTransform The resulting SV GTransform object which becomes single item in the list. If the list was empty,
then avalue of null is returned.

No Exceptions

Interface SVGAnimatedTransformList

Used for the various attributes which specify a set of transformations, such as the transform attribute which is available for many of
SVG's elements, and which can be animated.

IDL Definition

i nterface SVGAni mat edTransformnli st {

attri bute SVGIransfornLi st baseVal;
/1 rai ses DOVException on setting
readonly attribute SVGIransfornLi st aninval;

b

Attributes
SVGTransformList baseVa
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly SV GTransformList animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the
given attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGTransform

SVGTransform is the interface for one of the component transformations within a SV GTransformList; thus, a SV GTransform object
corresponds to a single component (e.g., "scale(..)" or "matrix(...)") within atransform attribute specification.

IDL Definition

i nterface SVGIransform {

/1 Transform Types

const unsi gned short SVG TRANSFORM UNKNOMW
const unsi gned short SVG TRANSFORM MATRI X
const unsi gned short SVG TRANSFORM TRANSLATE
const unsi gned short SVG TRANSFORM SCALE
const unsi gned short SVG TRANSFORM ROTATE
const unsi gned short SVG TRANSFORM SKEWK
const unsi gned short SVG TRANSFORM SKEWY

IR T T TR TR TR
QR wNEO

readonly attribute unsigned short type;
readonly attribute SVGvatrix matri x;
readonly attribute float angl e;

void setMatrix (in SVGvatrix matrix);

void setTranslate (in float tx, in float ty);

void setScale (in float sx, in float sy);

void setRotate (in float angle, in float cx, in float cy);
void setSkewX (in float angle);

void setSkewY (in float angle);

}s

Definition group Transform Types
Defined constants

SVG_TRANSFORM_UNKNOWN The unit typeis not one of predefined types. It isinvalid to attempt to define a new
value of thistype or to attempt to switch an existing value to this type.

SVG_TRANSFORM_MATRIX A "matrix(...)" transformation.
SVG_TRANSFORM_TRANSLATE A "trandate(...)" transformation.
SVG_TRANSFORM_SCALE A "scalg(...)" transformation.
SVG_TRANSFORM_ROTATE A "rotate(...)" transformation.
SVG_TRANSFORM_SKEWX A "skewX(...)" transformation.

SVG_TRANSFORM_SKEWY A "skewY(...)" transformation.
Attributes
readonly unsigned short type
The type of the value as specified by one of the constants specified above.
readonly SV GMatrix matrix

The matrix that represents this transformation.

For SVG_TRANSFORM_MATRIX, the matrix containsthe a, b, c, d, e, f values supplied by the user.

For SVG_TRANSFORM_TRANSLATE, e and f represents the trandlation amounts (a=1,b=0,c=0,d=1).

For SVG_TRANSFORM_SCALE, aand d represents the scale amounts (b=0,c=0,e=0,f=0).

For SYG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and SVG_TRANSFORM_SKEWY, a, b, cand d
represent the matrix which will result in the given transformation (e=0,f=0).

readonly float angle

A convenience attribute for SVG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and
SVG_TRANSFORM_SKEWY. It holds the angle that was specified.
For SVG_TRANSFORM_MATRIX, SVG_TRANSFORM_TRANSLATE and SVG_TRANSFORM_SCALE, angle will

be zero.
Methods
setMatrix
Setsthe transform type to SVG_TRANSFORM_MATRIX, with parameter matrix defining the new transformation.
Parameters
in SVGMatrix matrix The new matrix for the transformation.
No Return Value
No Exceptions
setTrandate
Setsthe transform typeto SVG_TRANSFORM_TRANSLATE, with parameters tx and ty defining the translation
amounts.
Parameters
infloat tx Thetrandation amount in X.
infloat ty Thetranslation amountin.
No Return Vaue
No Exceptions
setScale
Setsthe transform type to SVG_TRANSFORM _SCALE, with parameters sx and sy defining the scale amounts.
Parameters
infloat sx Thescaefactorin X.
infloat sy Thescalefactorin.
No Return Vaue
No Exceptions
setRotate

Sets the transform type to SVG_TRANSFORM_ROTATE, with parameter angle defining the rotation angle and
parameters cx and cy defining the optional centre of rotation.

Parameters
infloat angle The rotation angle.

infloatcx The x coordinate of centre of rotation.
infloatcy They coordinate of centre of rotation.
No Return Value
No Exceptions
setSkewX
Sets the transform type to SVG_TRANSFORM_SKEWX, with parameter angle defining the amount of skew.
Parameters

in float angle The skew angle.

No Return Value
No Exceptions
setSkewY
Setsthe transform type to SVG_TRANSFORM_SKEWY , with parameter angle defining the amount of skew.
Parameters

in float angle The skew angle.

No Return Value
No Exceptions

Interface SVGPreserveAspectRatio

The SV GPreserveA spectRatio interface corresponds to the preserveAspectRatio attribute, which is available for some of SVG's elements.
IDL Definition

i nterface SVGPreserveAspectRatio {

/1 Alignnent Types
const unsi gned short SVG PRESERVEASPECTRATI O UNKNOWN =
const unsi gned short SVG PRESERVEASPECTRATI O NONE
const unsi gned short SVG PRESERVEASPECTRATI O XM NYM N
const unsi gned short SVG PRESERVEASPECTRATI O XM DYM N
const unsi gned short SVG PRESERVEASPECTRATI O XMAXYM N
const unsi gned short SVG PRESERVEASPECTRATI O XM NYM D
const unsi gned short SVG PRESERVEASPECTRATI O XM DYM D
const unsi gned short SVG PRESERVEASPECTRATI O XMAXYM D
const unsi gned short SVG PRESERVEASPECTRATI O XM NYMAX
const unsi gned short SVG PRESERVEASPECTRATI O XM DYMAX
const unsi gned short SVG PRESERVEASPECTRATI O XNMAXYMAX
/1 Meet-or-slice Types

const unsigned short SVG MEETORSLI CE_ UNKNOWN = O;
const unsi gned short SVG MEETORSLI CE_MEET =

const unsi gned short SVG MEETORSLI CE _SLI CE =

e

BoxNoohwNR

e

1,
2;

attribute unsigned short align;

/1 rai ses DOVException on setting
attribute unsigned short neetOrSlice;

/1l raises DOVException on setting

s

Definition group Alignment Types
Defined constants

SVG_PRESERVEASPECTRATIO_UNKNOWN The enumeration was set to avalue that is not one of predefined
types. It isinvalid to attempt to define a new value of thistype or to
attempt to switch an existing value to this type.

SVG_PRESERVEASPECTRATIO_NONE Corresponds to value 'none' for attribute preserveAspectRatio.
SVG_PRESERVEASPECTRATIO_XMINYMIN Corresponds to value 'xMinY Min' for attribute

preserveAspectRatio.
SVG_PRESERVEASPECTRATIO_XMIDYMIN Corresponds to value 'xMidY Min' for attribute
preserveAspectRatio.
SVG_PRESERVEASPECTRATIO XMAXYMIN Corresponds to value 'xMaxY Min' for attribute
preserveAspectRatio.
SVG_PRESERVEASPECTRATIO_XMINYMID Corresponds to value 'xMinY Mid' for attribute
preserveAspectRatio.
SVG_PRESERVEASPECTRATIO_XMIDYMID Corresponds to value 'xMidY Mid' for attribute
preserveAspectRatio.
SVG_PRESERVEASPECTRATIO_XMAXYMID Corresponds to value 'xMaxY Mid' for attribute
preserveAspectRatio.
SVG_PRESERVEASPECTRATIO_XMINYMAX Corresponds to value 'xMinY Max' for attribute
preserveAspectRatio.
SVG_PRESERVEASPECTRATIO XMIDYMAX Corresponds to value 'xMidY Max' for attribute
preserveAspectRatio.
SVG_PRESERVEASPECTRATIO_XMAXYMAX Corresponds to value 'xMaxY Max' for attribute
preserveAspectRatio.

Definition group Meet-or-slice Types
Defined constants

SVG_MEETORSLICE_UNKNOWN The enumeration was set to avalue that is not one of predefined types. Itisinvalid
to attempt to define a new value of this type or to attempt to switch an existing
value to this type.

SVG_MEETORSLICE_MEET Corresponds to value 'meet’ for attribute preserveAspectRatio.
SVG_MEETORSLICE_SLICE Corresponds to value 'dlice' for attribute preserveAspectRatio.

Attributes
unsigned short align
The type of the alignment value as specified by one of the constants specified above.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
unsigned short meetOrSlice
The type of the meet-or-dlice value as specified by one of the constants specified above.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGAnimatedPreserveAspectRatio

Used for attributes of type SV GPreserveAspectRatio which can be animated.
IDL Definition

i nterface SVGAni mat edPreserveAspect Rati o {

attribute SVGPreserveAspect Rati o baseVal ;
/1 raises DOVException on setting
readonly attribute SVGPreserveAspect Rati o ani nval ;

};

Attributes
SV GPreserveAspectRatio baseVal
The base value of the given attribute before applying any animations.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.

readonly SV GPreserveAspectRatio animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the
given attribute or property is not currently being animated, contains the same value as 'baseVal'.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

8 Paths

Contents

« 8.1 Introduction
o 8.2 The'path' element

» 8.3 Path Data

u]

O

0

O

8.3.1 General information about path data

8.3.2 The "moveto" commands

8.3.3 The "closepath" command

8.3.4 The"lineto" commands

8.3.5 The curve commands

8.3.6 The cubic Bézier curve commands

8.3.7 The quadratic Bézier curve commands

8.3.8 The dlliptical arc curve commands
8.3.9 The grammar for path data

« 8.4 Distance along a path

« 8.5 DOM interfaces

8.1 Introduction

Paths represent the outline of a shape which can be filled, stroked, used as a clipping path, or any combination of the three. (See Filling, Stroking and Paint

Servers and Clipping, Masking and Compositing.)

A path is described using the concept of a current point. In an analogy with drawing on paper, the current point can be thought of as the location of the pen.
The position of the pen can be changed, and the outline of a shape (open or closed) can be traced by dragging the penin either straight lines or curves.

Paths represent the geometry of the outline of an object, defined in terms of moveto (set a new current point), lineto (draw a straight line), curveto (draw a
curve using a cubic Bézier), arc (elliptical or circular arc) and closepath (close the current shape by drawing aline to the last moveto) elements. Compound
paths (i.e., a path with subpaths, each consisting of a single moveto followed by one or more line or curve operations) are possible to alow effects such as

"donut holes" in objects.

This chapter describes the syntax, behavior and DOM interfaces for SVG paths. Various implementation notes for SV G paths can be found in 'path’ el ement
implementation notes and Elliptical arc implementation notes.

A path is defined in SV G using the 'path’ element.

8.2 The 'path' element

file:///D|/Public/CR-SVG-20000802/indexlist.html

<IENTITY % pat hExt "" >
<! ELEMENT path (%lescTitl| eMetadata;, (ani nat e| set| ani mat eMbti on| ani mat eCol or | ani mat eTr ansf orm
%geExt ; Ypat hExt;)*) >

<! ATTLI ST path
Y%st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
cl ass % assList; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%PresentationAttributes-Fill Stroke;
%Pr esent ati onAttri but es- G aphics;
%Pr esent ati onAttri but es- Markers;
transform %ransforniist; #l MPLIED
%@r aphi csEl enent Event s;
d 9%at hDat a; #REQUI RED
pat hLengt h %unber; #| MPLI ED >

Attribute definitions:
d = "path data"

The definition of the outline of a shape. See Path data.
Animatable: yes. Path data animation is only possible when each path data specification within an animation specification has exactly the same list of

path data commands as the d attribute. If an animation is specified and the list of path data commands is not the same, then the animation
specification isin error (see Error Processing). The animation engine interpolates each parameter to each path data command separately based on the

attributes to the given animation element. Flags and booleans are interpolated as fractions between zero and one, with any non-zero value considered
to be avalue of oneltrue.
pathLength = "<number>"

The author's computation of the total length of the path, in user units. Thisvalue is used to calibrate the user agent's own distance-along-a-path

calculations with that of the author. The user agent will scale all distance-along-a-path computations by the ratio of pathLength to the user agent's
own computed value for total path length. pathLength potentially affects calculations for text on a path, motion animation and various stroke

operations.
A negative value is an error (see Error processin
Animatable: yes.

Attributes defined el sewhere:

Y%stdAttrs;, %langSpaceAttrs;, class, transform, %graphicsElementEvents;, %testAttrs;, external ResourcesRequired, style,
Y% Presentati onAttributes-Fill Stroke; %PresentationAttributes-Graphics; %PresentationAttributes-Markers;.

8.3 Path data

8.3.1 General information about path data

A path is defined by including a'path’ element which contains ad="(path data)" attribute, where the d attribute contains the moveto, line, curve (both
cubic and quadratic Béziers), arc and closepath instructions.

The following example specifies a path in the shape of atriangle. (The M indicates a moveto, the L 'sindicate lineto's, and the z indicates a closepath:

Example triangle01 specifies a path in the shape of atriangle. (The M indicates a moveto, the L 's indicate lineto's, and the z indicates a closepath).

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"
"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dth="4cnf hei ght ="4cnf' vi ewBox="0 0 400 400">
<title>Exanple triangl e0l- sinple exanple of a "path' </title>
<desc>A path that draws a rectangl e</desc>
<rect x="1" y="1" wi dth="398" hei ght="398"

style="fill:none; stroke:blue"/>
<path d="M 100 100 L 300 100 L 200 300 z"
style="fill:red; stroke:blue; stroke-w dth:3"/>

</ svg>

Example triangle01
View this example as SV G (SV G-enabled browsers only)

Path data values can contain newline characters and thus can be broken up into multiple lines to improve readability. Because of line length limitations with
certain related tools, it is recommended that SV G generators split long path data strings across multiple lines, with each line not exceeding 255 characters.
Also note that newline characters are only allowed at certain places within a path data value.

The syntax of path datais very abbreviated in order to allow for minimal file size and efficient downloads, since many SV G files will be dominated by their
path data. Some of the ways that SV G attempts to minimize the size of path data are as follows:
« All instructions are expressed as one character (e.g., amoveto is expressed asan M)

« Superfluous white space and separators such as commas can be eliminated (e.g., "M 100 100 L 200 200" contains unnecessary spaces and could be
expressed more compactly as "M 100 100L 200 200")

« The command letter can be eliminated on subsequent commands if the same command is used multiple timesin arow (e.g., you can drop the second
"L"in"M 100 200 L 200 100 L -100 -200" and use "M 100 200 L 200 100 -100 -200" instead)

« Relative versions of all commands are available (uppercase means absol ute coordinates, |owercase means rel ative coordinates)

« Alternate forms of lineto are available to optimize the specia cases of horizontal and vertical lines (absolute and relative)

« Alternate forms of curve are available to optimize the special cases where some of the control points on the current segment can be determined
automatically from the control points on the previous segment

The path data syntax is a prefix notation (i.e., commands followed by parameters). The only alowable decimal point isaperiod (".") and no other delimiter
characters are alowed. (For example, the following is an invalid numeric value in a path data stream: "13,000.56". Instead, say: "13000.56".)

In the tables below, the following notation is used:
« (): grouping of parameters
« +: 1 or more of the given parameter(s) is required

The following sections list the commands.

8.3.2 The "moveto" commands

The "moveto" commands (M or m) establish anew current point. The effect is asif the "pen" were lifted and moved to anew location. A path data segment
must begin with either one of the "moveto" commands or one of the "arc" commands. Subseguent "moveto” commands (i.e., when the "moveto” is not the
first command) represent the start of a new subpath:

Command ’ Name ’Parameters Description

Start a new sub-path at the given (x,y) coordinate. M (uppercase) indicates that absolute coordinates will
follow; m (lowercase) indicates that relative coordinates will follow. If arelative moveto (m) appears asthe
first element of the path, then it istreated as a pair of absolute coordinates. If a moveto is followed by multiple
pairs of coordinates, the subsequent pairs are treated as implicit lineto commands.

M (absolute)

m (relative) moveto | (xy)+

8.3.3 The "closepath” command

The "closepath” (Z or z) causes an automatic straight line to be drawn from the current point to theinitial point of the current subpath. "Closepath" differsin
behavior from what happens when "manually” closing a subpath viaa"lineto" command in how 'stroke-lingjoin’ and 'stroke-linecap' are implemented. With

"closepath”, the end of the final segment of the subpath is"joined" with the start of the initial segment of the subpath using the current value of
'stroke-lingjoin’ . If you instead "manually” close the subpath viaa"lineto" command, the start of the first segment and the end of the last segment are not

joined but instead are each capped using the current value of 'stroke-linecap':

’ Command ’ Name ’ Parameters ’ Description
Zor closepath | (none) Close the current subpath by drawing a straight line from the current point to current subpath's most recent
z SEp starting point (usually, the most recent moveto point).

file:///D|/Public/CR-SVG-20000802/images/paths/triangle01.svg

8.3.4 The "lineto" commands

The various "lineto" commands draw straight lines from the current point to a new point:

Command Name Parameters Description
Draw aline from the current point to the given (x,y) coordinate which becomes the new current point.
L (absolute) lineto (xy)+ L (uppercase) indicates that absolute coordinates will follow; | (lowercase) indicates that relative
| (relative) y coordinates will follow. A number of coordinates pairs may be specified to draw a polyline. At the end
of the command, the new current point is set to the final set of coordinates provided.
Draws a horizontal line from the current point (cpx, cpy) to (X, cpy). H (uppercase) indicates that
H (absolute) horizontal lineto | x+ absolute coordinates will follow; h (lowercase) indicates that relative coordinates will follow. Multiple
h (relative) x values can be provided (although usually this doesn't make sense). At the end of the command, the
new current point becomes (x, cpy) for the fina value of x.
Draws avertica line from the current point (cpx, cpy) to (cpx, ¥). V (uppercase) indicates that absolute
V (absolute) vertical lineto + coordinates will follow; v (lowercase) indicates that relative coordinates will follow. Multipley values
v (relative) y can be provided (although usually this doesn't make sense). At the end of the command, the new
current point becomes (cpx, y) for the final value of y.

8.3.5 The curve commands

These three groups of commands draw curves:

« Cubic Bézier commands (C, ¢, Sand s). A cubic Bézier segment is defined by a start point, an end point, and two control points.

« Quadratic Bézier commands (Q, q, T and T). A quadratic Bézier segment is defined by a start point, an end point, and one control point.

« Elliptical arc commands (A and a). An elliptical arc segment draws a segment of an ellipse.

8.3.6 The cubic Bézier curve commands

The cubic Bézier commands are as follows:

Command

Name

Parameters

Description

C (absolute)
c (relative)

curveto

(x1ylx2y2xy)+

Draws a cubic Bézier curve from the current point to (x,y) using (x1,y1) as the control
point at the beginning of the curve and (x2,y2) as the control point at the end of the
curve. C (uppercase) indicates that absolute coordinates will follow; ¢ (lowercase)
indicates that relative coordinates will follow. Multiple sets of coordinates may be
specified to draw a polybezier. At the end of the command, the new current point
becomes the final (x,y) coordinate pair used in the polybezier.

S (absolute)
s (relative)

shorthand/smooth curveto

(x2y2xy)+

Draws a cubic Bézier curve from the current point to (X,y). The first control point is
assumed to be the reflection of the second control point on the previous command
relative to the current point. (If thereis no previous command or if the previous
command was not an C, ¢, Sor s, assume thefirst control point is coincident with the
current point.) (x2,y2) isthe second control point (i.e., the control point at the end of
the curve). S (uppercase) indicates that absolute coordinates will follow; s (lowercase)
indicates that relative coordinates will follow. Multiple sets of coordinates may be
specified to draw a polybezier. At the end of the command, the new current point
becomesthe final (x,y) coordinate pair used in the polybezier.

Example cubic01 shows some simple uses of cubic Bézier commands within a path. Note that the control point for the"S" command is computed
automatically as the reflection of the control point for the previous "C" command relative to the start point of the "'S" command.

<?xm version="1.0"

st andal one="no" ?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >

<svg wi dt h="5cn{
<title>Exanpl e cubic01-

hei ght ="4cm' vi ewBox="0 0 500 400">
cubic Bezier commands in path data</title>

<desc>Pi cture showi ng a sinple exanple of path data

using both a "C
al ong with annotations showi ng the control
and end poi nts</desc>
<style type="text/css"><![CDATA
.Border { fill:none;
. Connect { fill:none;

and an

stroke: bl ue;
stroke: #888888;

"S" command,

points

stroke-width:1 }
stroke-width:2 }

.Sanpl ePath { fill:none; stroke:red; stroke-width:5 }
.EndPoint { fill:none; stroke:#888888; stroke-width:2 }
.Gl Point { fill:#888888; stroke:none }
.AutoCtl Point { fill:none; stroke:blue; stroke-width:4 }
. Label { font-size:22; font-famly: Verdana }

11></styl e>

<rect class="Border" x="1" y="1" w dt h="498" hei ght="398" />

<pol yl i ne cl ass="Connect" poi nts="100,200 100, 100" />
<pol yl i ne cl ass="Connect" poi nts="250,100 250, 200" />
<pol yl i ne cl ass="Connect" poi nts="250,200 250, 300" />
<pol yl i ne cl ass="Connect" poi nts="400, 300 400, 200" />
<pat h cl ass="Sanpl ePat h" d="ML00, 200 C100, 100 250, 100 250, 200
S400, 300 400, 200" />

<circle class="EndPoi nt" cx="100" cy="200" r="10" />
<circle class="EndPoi nt" cx="250" cy="200" r="10" />
<circle class="EndPoi nt" cx="400" cy="200" r="10" />
<circle class="Ct| Poi nt" cx="100" cy="100" r="10" />
<circle class="Ct| Poi nt" cx="250" cy="100" r="10" />
<circle class="Ct| Poi nt" cx="400" cy="300" r="10" />
<circle class="AutoCt| Point" cx="250" cy="300" r="9" />
<text class="Label" x="25" y="70">ML00, 200 C100, 100 250, 100 250, 200</t ext >
<text class="Label" x="325" y="350"

styl e="t ext-anchor: m ddl e">S400, 300 400, 200</t ext >

</svg>

M100,200 C100,100 250,100 250,200
[L

o]
5400, 300 400, 200

Example cubic0l
View this example as SV G (SV G-enabled browsers only)

The following picture shows some how cubic Bézier curves change their shape depending on the position of the control points. The first five examples
illustrate a single cubic Bézier path segment. The example at the lower right shows a"C" command followed by an"S" command.

file:///D|/Public/CR-SVG-20000802/images/paths/cubic01.svg

A L, A

M100,200 C100, 100 400,100 400,200 ME00, 200 C675, 100 975,100 900,200
L
L] »
M100,500 C25,400 475,400 400,500 ME00, 500 Ce00, 350 900,650 200,500
.
» |

M100,800 C175,700 325,700 400,300

o [
ME00,E00 CE25, 700 725,700 750,800
5875,900 900,800

View this example as SV G (SV G-enabled browsers only)

8.3.7 The quadratic Bézier curve commands

The quadratic Bézier commands are as follows:

Command Name Parameters Description

Draws a quadratic Bézier curve from the current point to (x,y) using (x1,y1)
as the control point. Q (uppercase) indicates that absolute coordinates will
follow; q (lowercase) indicates that relative coordinates will follow.
Multiple sets of coordinates may be specified to draw a polybezier. At the
end of the command, the new current point becomes the final (x,y)
coordinate pair used in the polybezier.

Q (absolute)

q (relative) quadratic Bézier curveto (x1ylxy)+

Draws a quadratic Bézier curve from the current point to (x,y). The control
point is assumed to be the reflection of the control point on the previous
command relative to the current point. (If there is no previous command or
if the previous command wasnot aQ, g, T or t, assume the control point is
coincident with the current point.) T (uppercase) indicates that absolute
coordinates will follow; t (lowercase) indicates that relative coordinates will
follow. At the end of the command, the new current point becomes the final
(x,y) coordinate pair used in the polybezier.

T (absolute)

t (relative) Shorthand/smooth quadratic Bézier curveto | (x y)+

Example quad01 shows some simple uses of quadratic Bézier commands within a path. Note that the control point for the "T" command is computed
automatically as the reflection of the control point for the previous "Q" command relative to the start point of the "T" command.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg wi dt h="12cn{ hei ght ="6cnf vi ewBox="0 0 1200 600" >
<titl e>Exanpl e quadOl - quadratic Bezier commands in path data</title>
<desc>Pi cture showing a "Q a "T" conmand,
along wi th annotations showi ng the control points
and end poi nt s</desc>
<rect x="1" y="1" width="1198" hei ght="598"
style="fill:none; stroke:blue; stroke-w dth:1"/>

<pat h d="M200, 300 400, 50 600, 300 T1000, 300"
style="fill:none; stroke:red; stroke-w dth:5" />

file:///D|/Public/CR-SVG-20000802/images/paths/cubic02.svg

<I-- End points -->

<g style="fill:black">
<circle cx="200"
<circle cx="600"
<circle cx="1000" cy="300" r="10"/>

</ g>

<!-- Control

cy="300" r="10"/>
cy="300" r="10"/>

points and lines fromend points to control

<g style="fill:#888888">
<circle cx="400" cy="50" r="10"/>
<circle cx="800" cy="550" r="10"/>

</ g>

<pat h d="M200, 300 L400, 50 L600, 300

L800, 550 L1000, 300"

style="fill:none; stroke:#888888; stroke-w dth:2"/>

</ svg>

points -->

Example quad01

View this example as SVG (SV G-enabled browsers only)

8.3.8 The elliptical arc curve commands

The elliptical arc commands are as follows:

Command

Name

Parameters

Description

A (absolute)
a (relative)

elliptical arc

(rx ry x-axis-rotation large-arc-flag sweep-flag x y)+

Draws an elliptical arc from the current point to (X, y). The size
and orientation of the ellipse are defined by two radii (rx, ry) and
an x-axis-rotation, which indicates how the ellipse asawholeis
rotated relative to the current coordinate system. The center (cx,
cy) of the dllipseis calculated automatically to satisfy the
constraints imposed by the other parameters. lar ge-ar c-flag and
sweep-flag contribute to the automatic calculations and help
determine how the arc is drawn.

Example arcs01 shows some simple uses of arc commands within a path.

<?xm version="1.0"
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg wi dt h="12cnt he
<title>Exampl e arcsO1 - arc conmands in path data</title>
<desc>Picture of a pie chart with two pie wedges and
a picture of aline with arc blips</desc>
<rect x="1" y="1" width="1198" hei ght="398"
style="fill:

<pat h d="MB00, 200
style="fill:
<path d="M75, 175
style="fill:

st andal one="no" ?>

i ght="4cnm' vi ewBox="0 0 1200 400">

none; stroke:blue; stroke-width:1"/>

h-150 a150, 150 0 1,0 150,-150 z"

red; stroke:blue; stroke-w dth:5"/>
v-150 al50,150 0 0,0 -150,150 z"

yel | ow; stroke: bl ue; stroke-w dth:5"/>

file:///D|/Public/CR-SVG-20000802/images/paths/quad01.svg

<path d="M00, 350 | 50, -25
a25,25 -30 0,1 50,-25 1|
a25,50 -30 0,1 50,-25 1|
a25,75 -30 0,1 50,-25 1|

50, - 25
50, - 25
50, - 25

a25,100 -30 0,1 50,-25 1 50,-25"
style="fill:none; stroke:red; stroke-w dth:5" />
</ svg>

Example arcs01

View this example as SV G (SV G-enabled browsers only)

The elliptical arc command draws a section of an ellipse which meets the following constraints:
« thearc starts at the current point
« thearc endsat point (x, y)
« thedlipse hasthe two radii (rx, ry)

« thex-axis of the ellipseisrotated by x-axis-rotation relative to the x-axis of the current coordinate system.
For most situations, there are actually four different arcs (two different ellipses, each with two different arc sweeps) that satisfy these constraints.

lar ge-ar c-flag and sweep-flag indicate which one of the four arcs are drawn, as follows:

« Of the four candidate arc sweeps, two will represent an arc sweep of greater than or equal to 180 degrees (the "large-arc"), and two will represent an
arc sweep of lessthan or equal to 180 degrees (the "small-arc"). If large-arc-flag is'1', then one of the two larger arc sweeps will be chosen;

otherwise, if large-arc-flag is'0', one of the smaller arc sweeps will be chosen,

« If sweep-flagis'l', then the arc will be drawn in a"positive-angle" direction (i.e., the ellipse formula x=cx+rx* cos(theta) and y=cy+ry*sin(theta) is
evaluated such that theta starts at an angle corresponding to the current point and increases positively until the arc reaches (x,y)). A value of 0 causes
the arc to be drawn in a"negative-angl€e" direction (i.e., theta starts at an angle value corresponding to the current point and decreases until the arc

reaches (x,y)).

The following illustrates the four combinations of lar ge-ar c-flag and sweep-flag and the four different arcs that will be drawn based on the values of these

flags. For each case, the following path data command was used:

<path d="M 125,75 al00,50 0 ?,? 100, 50"
style="fill:none; stroke:red; stroke-w dth:6"/>

where"?,?" isreplaced by "0,0" "0,1" "1,0" and "1,1" to generate the four possible cases.

Are start Mre start Arc start”

Are end '\ SAre and A end

large-arc-flag=0
sweep-flag=1

large-arc-flag=0
sweep-flag=0

Arc start

Qrc o

large-arc-flag=1
sweap-flag=0

View this example as SV G (SV G-enabled browsers only)

Refer to Elliptical arc implementation notes for detailed implementation notes for the path data elliptical arc commands.

large-a ﬁ:-ﬂag= 1
sweap-flag=1

file:///D|/Public/CR-SVG-20000802/images/paths/arcs01.svg
file:///D|/Public/CR-SVG-20000802/images/paths/arcs02.svg

8.3.9 The grammar for path data

The following notation is used in the Backus-Naur Form (BNF) description of the grammar for path data:
o *:0o0rmore
« +:1o0rmore
e 2200r1
« (): grouping
« | separates alternatives
« double quotes surround literals

Thefollowing is the BNF for SVG paths.
svg- pat h:
wsp* subpat hs? wsp*

subpat hs:
subpat h
| subpath wsp* subpaths

subpat h:
novet o wsp* subpat h-el enrent s?

subpat h-el ement s:
subpat h- el enent
| subpath-el ement wsp* subpat h-el ements

subpat h- el enment :

cl osepath
lineto
hori zontal -lineto
vertical-lineto
curveto

quadrati c- bezier-curveto
snmoot h- quadr at i c- bezi er-curveto

I

|

|

|

| snoot h-curveto
I

| ot h-

| elliptical-arc

("M | "nm') wsp* noveto-argunent-sequence

novet o- ar gunent - sequence:
coordi nate-pair
| coordinate-pair comma-wsp? |ineto-argunent-sequence

cl osepat h:
("z' | "z")
l'i neto:
("L" | "I") wsp* lineto-argunent-sequence

|'i net o- ar gunent - sequence:
coordi nate-pair
| coordinate-pair comma-wsp? |ineto-argunment-sequence

hori zontal -1i neto:

("H | "h") wsp* horizontal-1ineto-argunent-sequence
hori zontal -1 i net o-argunent - sequence:

coordi nate

| coordinate comm-wsp? horizontal -1ineto-argunment-sequence
vertical -lineto:

("V'] "v") wsp* vertical-lineto-argunent-sequence
vertical -1ineto-argunent - sequence:

coordi nate

| coordinate comm-wsp? vertical -1ineto-argunent-sequence
curveto:

("C"] "c") wsp* curveto-argunent-sequence

curvet o- ar gument - sequence
curvet o- ar gunment
| curveto-argument conma-wsp? curveto-ar gument - sequence

curvet o- ar gunent :
coordi nat e-pair comma-wsp? coordi nate-pair coma-wsp? coordi nate-pair

snoot h- cur vet o:
("S"] "s") wsp* snooth-curveto-argunent - sequence

snmoot h- cur vet o- ar gurment - sequence
smoot h- cur vet o- ar gument
| smoot h-curvet o-argunment conma-wsp? snmoot h- cur vet o- ar gument - sequence

snoot h- cur vet o- ar gurent :
coordi nat e- pair comma-wsp? coordi nate-pair

quadr ati c- bezi er - curvet o:
("Q | "q") wsp* quadratic-bezier-curveto-argunent-sequence

quadr at i c- bezi er - cur vet o- ar gunent - sequence
quadr ati c- bezi er - curvet o- ar gunent
| quadratic-bezier-curveto-argunent conma-wsp?
quadr ati c- bezi er-curvet o- ar gunment - sequence

quadr ati c- bezi er - curvet o- ar gunent :
coordi nat e-pair coma-wsp? coordi nate-pair

snoot h- quadr ati c- bezi er-curvet o:
("7 | "t") wsp* snpoth-quadratic-bezier-curveto-argunment - sequence

snoot h- quadr ati c- bezi er - curvet o- ar gunent - sequence
coordi nate-pair
| coordinate-pair comma-wsp? snoot h- quadrati c- bezi er-curveto-argunent - sequence

elliptical-arc
("A" | "a") wsp* elliptical-arc-argunent-sequence

el l'i ptical -arc-argunent - sequence
el liptical -arc-argunent
| elliptical-arc-argunent comma-wsp? el liptical-arc-argunent-sequence

el l'i ptical -arc-argunent:
nonnegati ve- nunber conmma-wsp? nonnegati ve- nunber comma-wsp?
nunber coma-wsp flag comma-wsp flag comra-wsp coordi nate-pair

coordi nate-pair:
coordi nate comua-wsp? coordi nate

coordi nate
nunber

nonnegat i ve- nunber:
i nt eger - const ant
| floating-point-constant

nunber :
sign? integer-constant
| sign? floating-point-constant

flag:
NIRRT

conme- wWsp:
(wsp+ comm? wsp*) | (comma wsp*)

conmma:

i nt eger - const ant :
di git-sequence

fl oati ng- poi nt-constant:
fractional -constant exponent?

| digit-sequence exponent

fractional - constant:
di gi t-sequence? ".
| digit-sequence "."

di gi t-sequence

exponent :
("e" | "E'") sign? digit-sequence

si gn:
n +Il I ll_ll

di gi t - sequence:
digit
| digit digit-sequence

digit:
“o" | "a" | "2" | "3" | "4" | "5" | "6" | "7 | "8 | "9"

wsp:
(#x20 | #x9 | #xD | #xA)

The processing of the BNF must consume as much of a given BNF production as possible, stopping at the point when a character is encountered which no
longer satisfies the production. Thus, in the string "M 100-200", the first coordinate for the "moveto" consumes the characters 100" and stops upon
encountering the minus sign because the minus sign cannot follow a digit in the production of a"coordinate". The result is that the first coordinate will be
"100" and the second coordinate will be "-200".

Similarly, for the string "M 0.6.5", the first coordinate of the "moveto" consumes the characters "0.6" and stops upon encountering the second decimal point

because the production of a"coordinate" only allows one decimal point. The result is that the first coordinate will be "0.6" and the second coordinate will be
"5

8.4 Distance along a path

Various operations, including text on a path and motion animation and various stroke operations, require that the user agent compute the distance along the
geometry of a graphics element, such asa'path'.

Exact mathematics exist for computing distance along a path, but the formulas are highly complex and require substantial computation. It is recommended
that authoring products and user agents employ a gorithms that produce as precise results as possible; however, to accommodate implementation differences
and to help distance cal culations produce results that approximate author intent, the pathL ength attribute can be used to provide the author's computation of

thetotal length of the path so that the user agent can scal e distance-along-a-path computations by theratio of pathLength to the user agent's own computed
value for total path length.

A "moveto" operation within a'path' element is defined to have zero length. Only the various "lineto", "curveto" and "arcto" commands contribute to path
length calculations.

8.5 DOM interfaces

The following interfaces are defined below: SV GPathSeq, SV GPathSegClosePath, SV GPathSegM ovetoAbs, SV GPathSegM ovetoRel

SV GPathSegLinetoAbs, SV GPathSegL inetoRel, SV GPathSegCurvetoCubicAbs, SV GPathSegCurvetoCubicRel, SV GPathSegCurvetoQuadrati cAbs,
SV GPathSegCurvetoQuadraticRel, SV GPathSegArcAbs, SV GPathSegArcRel, SV GPathSegL inetoHorizonta Abs, SV GPathSegL inetoHorizontal Rel,
SV GPathSegLinetoVertical Abs, SV GPathSegLinetoV erticalRel, SV GPathSegCurvetoCubicSmoothAbs, SV GPathSegCurvetoCubicSmoothRel,

SV GPathSegCurvetoQuadraticSmoothAbs, SV GPathSegCurvetoQuadraticSmoothRel, SV GAnimatedPathData, SV GPathElement.

Interface SVGPathSeg

The SV GPathSeg interface is a base interface that corresponds to a single command within a path data specification.
IDL Definition

interface SVGPat hSeg {

/1 Path Segrment Types

const unsi gned short PATHSEG UNKNOAN
const unsigned short PATHSEG CLOSEPATH
const unsigned short PATHSEG MOVETO ABS
const unsigned short PATHSEG MOVETO REL
const unsigned short PATHSEG LI NETO ABS
const unsigned short PATHSEG LI NETO REL

TR TENTRRTRR TN
aR®NRO

const

const

const

unsi gned short PATHSEG CURVETO CUBI C_ABS

const unsi gned short PATHSEG CURVETO CUBI C_REL

const unsi gned short PATHSEG CURVETO QUADRATI C_ABS

const unsi gned short PATHSEG CURVETO QUADRATI C_REL

const unsi gned short PATHSEG ARC ABS

unsi gned short PATHSEG ARC REL

const unsi gned short PATHSEG LI NETO HORI ZONTAL_ABS

const unsi gned short PATHSEG LI NETO HORI ZONTAL_REL

const unsigned short PATHSEG LI NETO VERTI CAL_ABS

unsi gned short PATHSEG LI NETO VERTI CAL_REL

const unsigned short PATHSEG CURVETO CUBI C_SMOOTH_ABS
const unsigned short PATHSEG CURVETO CUBI C_SMOOTH REL
const unsigned short PATHSEG CURVETO QUADRATI C_SMOOTH_ABS
const unsigned short PATHSEG CURVETO QUADRATI C_SMOOTH REL

L 1 1 A | A VO
[EnY
w

readonly attribute unsigned short pathSegType;

readonly attribute DOMString

b

Definition group Path Segment Types
Defined constants

Attributes

PATHSEG_UNKNOWN

PATHSEG_CLOSEPATH
PATHSEG_MOVETO_ABS
PATHSEG_MOVETO_REL
PATHSEG_LINETO_ABS
PATHSEG_LINETO_REL
PATHSEG_CURVETO_CUBIC_ABS
PATHSEG_CURVETO_CUBIC_REL
PATHSEG_CURVETO_QUADRATIC_ABS
PATHSEG_CURVETO_QUADRATIC_REL
PATHSEG_ARC_ABS
PATHSEG_ARC_REL
PATHSEG_LINETO_HORIZONTAL_ABS
PATHSEG_LINETO_HORIZONTAL_REL
PATHSEG_LINETO_VERTICAL_ABS
PATHSEG_LINETO_VERTICAL_REL

PATHSEG_CURVETO_CUBIC_SMOOTH_ABS
PATHSEG_CURVETO_CUBIC_SMOOTH_REL

pat hSegTypeAsLetter;

The unit type is not one of predefined types. It isinvalid to attempt to define a
new value of thistype or to attempt to switch an existing value to this type.

Corresponds to a "closepath" (z) path data command.

Corresponds to an "absolute moveto" (M) path data command.

Corresponds to a "relative moveto" (m) path data command.

Corresponds to an "absolute lineto" (L) path data command.

Correspondsto a"relative lineto" (1) path data command.

Corresponds to an "absolute cubic Bézier curveto" (C) path data command.
Corresponds to a "relative cubic Bézier curveto" (c) path data command.
Corresponds to an "absolute quadratic Bézier curveto” (Q) path data command.
Corresponds to a "relative quadratic Bézier curveto" (q) path data command.
Corresponds to an "absolute arcto” (A) path data command.

Correspondsto a"relative arcto” (a) path data command.

Corresponds to an "absolute horizontal lineto" (H) path data command.
Corresponds to a "relative horizontal lineto" (h) path data command.
Corresponds to an "absolute vertical lineto" (V) path data command.
Correspondsto a"relative vertical lineto" (v) path data command.
Corresponds to an "absolute smooth cubic curveto" (S) path data command.
Corresponds to a "relative smooth cubic curveto” (s) path data command.

PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS Corresponds to an "absolute smooth quadratic curveto” (T) path data command.
PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL Correspondsto a"relative smooth quadratic curveto” (t) path data command.

readonly unsigned short pathSegType
The type of the path segment as specified by one of the constants specified above.
readonly DOM String pathSegTypeAsL etter
The type of the path segment, specified by the corresponding one character command name.

Interface SVGPathSegClosePath

The SV GPathSegClosePeath interface corresponds to a " closepath” (z) path data command.

IDL Definition

i nterface SVGPat hSegC osePath :

Interface SVGPathSegMovetoAbs

SVGPat hSeg {};

The SV GPathSegM ovetoAbs interface corresponds to an "absolute moveto" (M) path data command.

IDL Definition

i nterface SVGPat hSeghWbvet oAbs : SVGPat hSeg {
attribute float X;
/1 raises DOVException on setting
attribute fl oat y;
/1 raises DOVException on setting

b

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.

Interface SVGPathSegMovetoRel

The SV GPathSegM ovetoRel interface corresponds to an "relative moveto” (m) path data command.
IDL Definition

i nterface SVGPat hSeghWbvet oRel : SVGPat hSeg {
attribute float X;
/1 rai ses DOVException on setting

attribute float y;
/1 rai ses DOVException on setting

b

Attributes
float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

float y
Therelative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegLinetoAbs

The SV GPathSegL inetoAbs interface corresponds to an "absolute lineto" (L) path data command.
IDL Definition

i nterface SVGPat hSegLi net oAbs : SVGPat hSeg {
attribute fl oat X;
/1 rai ses DOVException on setting

attribute fl oat y;
/1 rai ses DOVException on setting

b

Attributes
float x
The absolute X coordinate for the end point of this path segment.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegLinetoRel

The SV GPathSegLinetoRel interface corresponds to an "relative lineto” (1) path data command.
IDL Definition

i nterface SVGPat hSegLi netoRel : SVGPat hSeg {
attribute float X;
/1 raises DOVException on setting
attribute fl oat y;
/1 raises DOVException on setting

b

Attributes
float x
Therelative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.
float y
Therelative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.

Interface SVGPathSegCurvetoCubicAbs

The SV GPathSegCurvetoCubicAbs interface corresponds to an "absol ute cubic Bézier curveto" (C) path data command.
IDL Definition

i nterface SVGPat hSegCurvet oCubi cAbs : SVGPat hSeg {

attribute float X;

/1 raises DOVException on setting
attribute fl oat y;

/1 rai ses DOVException on setting
attribute fl oat x1;

/1 rai ses DOVException on setting
attribute fl oat y1;

/1 rai ses DOVException on setting
attribute fl oat X2;

/1 rai ses DOVException on setting
attribute fl oat y2;

/] raises DOVException on setting

b

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
floaty
The absolute Y coordinate for the end point of this path segment.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float x1
The absolute X coordinate for the first control point.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y1
The absolute Y coordinate for the first control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float x2
The absolute X coordinate for the second control point.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y2
The absolute Y coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegCurvetoCubicRel

The SV GPathSegCurvetoCubicRel interface corresponds to a "relative cubic Bézier curveto" (c) path data command.
IDL Definition

i nterface SVGPat hSegCurvet oCubi cRel : SVGPat hSeg {

attribute float X;

/] raises DOVException on setting
attribute float y;

/'l raises DOVException on setting
attribute float x1;

/'l raises DOVException on setting
attribute float y1;

/1 raises DOVException on setting
attribute float X2;

/1 raises DOVException on setting
attribute fl oat y2;

/1 raises DOVException on setting

b
Attributes
float x
Therelative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.
float y
Therelative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.
float x1
Therelative X coordinate for the first control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.
float y1

Therelative Y coordinate for thefirst control point.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float x2
The relative X coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y2
Therelative Y coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegCurvetoQuadraticAbs

The SV GPathSegCurvetoQuadraticAbs interface corresponds to an "absolute quadratic Bézier curveto” (Q) path data command.
IDL Definition

i nterface SVGPat hSegCurvet oQuadrati cAbs : SVGPat hSeg {

attribute float X;

/1 rai ses DOVException on setting
attribute fl oat y;

/1 rai ses DOVException on setting
attribute float x1;

/1 raises DOVException on setting
attribute float y1;

/1 rai ses DOVException on setting

H
Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float x1
The absolute X coordinate for the control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y1

The absolute Y coordinate for the control point.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegCurvetoQuadraticRel
The SV GPathSegCurvetoQuadraticRel interface corresponds to a "relative quadratic Bézier curveto" (q) path data command.
IDL Definition

i nterface SVGPat hSegCurvet oQuadrati cRel : SVGPat hSeg {
attribute fl oat X;
/1 rai ses DOVException on setting
attribute float y;

/1 rai ses DOVException on setting
attribute float x1;

/1 raises DOVException on setting
attribute float y1;

/1 rai ses DOVException on setting

b
Attributes
float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.
float y
Therelative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float x1
The relative X coordinate for the control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y1

Therelative Y coordinate for the control point.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegArcAbs

The SV GPathSegArcAbs interface corresponds to an "absolute arcto” (A) path data command.
IDL Definition

i nterface SVGPat hSegArcAbs : SVGPat hSeg {

attribute fl oat X;

/1 rai ses DOVException on setting
attribute fl oat y;

/1 rai ses DOVException on setting
attribute fl oat ri;

/'l raises DOVException on setting
attribute float r2;

/'l raises DOVException on setting
attribute float angl e;

/] raises DOVException on setting
attribute bool ean | argeArcFl ag;

/] raises DOVException on setting
attribute bool ean sweepFl ag;

/1 raises DOVException on setting

b

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float r1

The x-axisradius for the ellipse (i.e., rl).
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.
float r2
They-axisradiusfor the ellipse (i.e., r2).
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float angle
The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
boolean largeArcFlag
The value of the large-arc-flag parameter.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
boolean sweepFlag
The value of the sweep-flag parameter.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegArcRel

The SVGPathSegArcRel interface corresponds to a "relative arcto" (a) path data command.

IDL Definition

interface SVGPat hSegArcRel : SVGPat hSeg {

attribute fl oat X;

/] raises DOVException on setting
attribute float y;

/] raises DOVException on setting
attribute float ri;

/] raises DOVException on setting
attribute float r2;

/] raises DOVException on setting
attribute fl oat angl e;

/1 raises DOVException on setting
attribute bool ean | argeArcFl ag;

/1 raises DOVException on setting
attribute bool ean sweepFl ag;

/1 raises DOVException on setting

b

Attributes

float x
Therelative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y
Therelative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float rl
The x-axisradiusfor the ellipse (i.e., rl).
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

float r2
They-axisradius for the ellipse (i.e, r2).
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float angle
The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
boolean largeArcFag
The value of the large-arc-flag parameter.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
boolean sweepFlag
The value of the sweep-flag parameter.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegLinetoHorizontalAbs

The SV GPathSegL inetoHorizontal Abs interface corresponds to an "absolute horizontal lineto" (H) path data command.
IDL Definition

i nterface SVGPat hSegLi net oHori zont al Abs : SVGPat hSeg {
attribute float X;
/1 raises DOVException on setting

b

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegLinetoHorizontalRel

The SV GPathSegL inetoHorizontal Rel interface corresponds to a 'relative horizontal lineto" (h) path data command.
IDL Definition

interface SVGPat hSegLi net oHori zontal Rel : SVGPat hSeg {
attribute float X;
/1 raises DOVException on setting

b

Attributes
float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.

Interface SVGPathSegLinetoVerticalAbs

The SV GPathSegLinetoV ertical Abs interface corresponds to an "absolute vertical lineto" (V) path data command.
IDL Definition

i nterface SVGPat hSegLi net oVertical Abs : SVGPat hSeg {
attribute fl oat y;
/1 rai ses DOVException on setting
H

Attributes
floaty
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegLinetoVerticalRel

The SVGPathSegLinetoVerticalRel interface corresponds to a"relative vertical lineto" (v) path data command.
IDL Definition

i nterface SVGPat hSegLi netoVertical Rel : SVGPat hSeg {
attribute float y;
/] raises DOVException on setting
b

Attributes
floaty
Therelative Y coordinate for the end point of this path segment.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegCurvetoCubicSmoothAbs

The SV GPathSegCurvetoCubicSmoothAbs interface corresponds to an "absolute smooth cubic curveto” (S) path data command.
IDL Definition

i nterface SVGPat hSegCurvet oCubi cSnoot hAbs : SVGPat hSeg {
attribute float X;
/] raises DOVException on setting
attribute float y;
/] raises DOVException on setting
attribute float X2;
/1 raises DOVException on setting
attribute float y2;
/1 raises DOVException on setting
b

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
floaty
The absolute Y coordinate for the end point of this path segment.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float x2
The absolute X coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y2
The absolute Y coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegCurvetoCubicSmoothRel
The SV GPathSegCurvetoCubicSmoothRel interface corresponds to a "relative smooth cubic curveto” (s) path data command.

IDL Definition

i nterface SVGPat hSegCurvet oCubi cSnoot hRel : SVGPat hSeg {
attribute float X;
/1 rai ses DOVException on setting
attribute fl oat y;
/1 rai ses DOVException on setting
attribute float X2;
/1 raises DOVException on setting
attribute float y2;
/1 rai ses DOVException on setting

H
Attributes
float x
Therelative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y
Therelative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float x2
Therelative X coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y2

Therelative Y coordinate for the second control point.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGPathSegCurvetoQuadraticSmoothAbs
The SV GPathSegCurvetoQuadraticSmoothAbs interface corresponds to an "absolute smooth quadratic curveto” (T) path data command.
IDL Definition

i nterface SVGPat hSegCurvet oQuadrati cSnpot hAbs : SVGPat hSeg {
attribute fl oat X;
/1 rai ses DOVException on setting
attribute float y;

/1 rai ses DOVException on setting
b

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.

float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis readonly.

Interface SVGPathSegCurvetoQuadraticSmoothRel

The SV GPathSegCurvetoQuadraticSmoothRel interface corresponds to a "relative smooth quadratic curveto” (t) path data command.
IDL Definition

i nterface SVGPat hSegCurvet oQuadrati cSnoot hRel : SVGPat hSeg {
attribute float X;
/1 rai ses DOVException on setting
attribute float y;
/1 rai ses DOVException on setting

b

Attributes
float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
float y
Therelative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGAnimatedPathData

The SVGAnimatedPathData interface supports elements which have a'd' attribute which holds SV G path data, and supports the ability to animate that
attribute.

The SVGAnimatedPathData interface provides two lists to access and modify the base (i.e., static) contents of the d attribute:
« DOM attribute pathSegL ist provides access to the static/base contents of the d attribute in a form which matches one-for-one with SVG's syntax.

« DOM attribute normalizedPathSegL ist provides normalized access to the static/base contents of the d attribute where all path data commands are
expressed in terms of the following subset of SV GPathSeg types: SVG_PATHSEG_MOVETO_ABS (M), SVG_PATHSEG_LINETO_ABS(L),
SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and SVG_PATHSEG_CLOSEPATH (2).

and two lists to access the current animated values of the d attribute:
« DOM attribute animatedPathSegL ist provides access to the current animated contents of the d attribute in aform which matches one-for-one with
SVG's syntax.
« DOM attribute animatedNormalizedPathSegL ist provides normalized access to the current animated contents of the d attribute where al path data

commands are expressed in terms of the following subset of SV GPathSeg types: SVG_PATHSEG_MOVETO_ABS (M),
SVG_PATHSEG_LINETO_ABS (L), SYG_PATHSEG_CURVETO_CUBIC_ABS(C) and SVG_PATHSEG_CLOSEPATH (2).

Each of the two lists are always kept synchronized. Modifications to one list will immediately cause the corresponding list to be modified. Modifications to
normalizedPathSegList might cause entriesin pathSegList to be broken into a set of normalized path segments.

Additionally, the 'd' attribute on the 'path’ element accessed viathe XML DOM (e.g., using the getAttribute() method call) will reflect any changes made to
pathSegL ist or normalizedPathSegL ist.

IDL Definition

i nterface SVGAni mat edPat hDat a {

readonly attribute SVA.i st pat hSegli st ;

readonly attribute SVGA.i st nor mal i zedPat hSeglLi st ;
readonly attribute SVA.i st ani mat edPat hSegLi st ;

readonly attribute SVA.i st ani mat edNor nal i zedPat hSeglLi st ;

b

Attributes

readonly SVGList pathSegList

Provides access to the base (i.e., static) contents of the d attribute in a form which matches one-for-one with SVG's syntax. Thus, if thed
attribute has an "absolute moveto (M)" and an "absolute arcto (A)" command, then pathSegList will have two entries: a
SVG_PATHSEG_MOVETO _ABSandaSVG_PATHSEG ARC_ABS.

The various methods from SVGList, which are defined to accept parameters and return values of type Object, must receive parameters of type
SV GPathSeg and return values of type SV GPathSeg.

readonly SV GList normalizedPathSegList

Provides access to the base (i.e., static) contents of the d attribute in aform where all path data commands are expressed in terms of the
following subset of SVGPathSeg types: SVG_PATHSEG_MOVETO_ABS (M), SYG_PATHSEG_LINETO_ABS (L),

SVG_PATHSEG _CURVETO CUBIC_ABS(C) and SVG_PATHSEG CLOSEPATH (z). Thus, if the d attribute has an "absolute moveto
(M)" and an "absolute arcto (A)" command, then pathSegL ist will have one SVG_PATHSEG MOVETO_ABS entry followed by a series of
SVG_PATHSEG_ARC_ABS entries which approximate the arc. This alternate representation is available to provide a simpler interface to
developers who would benefit from a more limited set of commands.

The various methods from SV GList, which are defined to accept parameters and return values of type Object, must receive parameters of type
SV GPathSeg and return values of type SV GPathSeg, and the only valid SV GPathSeg types are SV G_PATHSEG_MOVETO_ABS (M),
SVG_PATHSEG_LINETO_ABS(L), SVG_PATHSEG_CURVETO_CUBIC _ABS(C) and SVG_PATHSEG_CLOSEPATH (2).

readonly SV GList animatedPathSegL ist

Provides access to the current animated contents of the d attribute in a form which matches one-for-one with SVG's syntax. If the given
attribute or property is being animated, contains the current animated value of the attribute or property. If the given attribute or property is not
currently being animated, contains the same value as 'pathSegList'.

The various methods from SV GList, which are defined to accept parameters and return values of type Object, must receive parameters of type
SV GPathSeg and return values of type SV GPathSeg.

readonly SV GList animatedNormalizedPathSegList

Provides access to the current animated contents of the d attribute in aform where all path data commands are expressed in terms of the
following subset of SVGPathSeg types: SVG_PATHSEG_MOVETO_ABS (M), SYG_PATHSEG_LINETO_ABS (L),
SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and SVG_PATHSEG_CLOSEPATH (2). If the given attribute or property is being
animated, contains the current animated value of the attribute or property. If the given attribute or property is not currently being animated,
contains the same value as 'normalizedPathSegL.ist'.

The various methods from SV GList, which are defined to accept parameters and return values of type Object, must receive parameters of type
SV GPathSeg and return values of type SV GPathSeg.

Interface SVGPathElement

The SV GPathElement interface corresponds to the 'path’ element.

IDL Definition

i nterface SVGPat hEl enent

SVGEl enent

SVGTest s,

SVGLangSpace,

SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,

SVGTr ansf or mabl e,

event s: : Event Tar get,

SVGAni mat edPat hDat a {

readonly attribute SVGAni mat edNunber pathLengt h;

fl oat get Total Length ();

SVGPoi nt get PointAtLength (in float distance);
unsi gned | ong get Pat hSegAt Length (in float distance);
SVGPat hSegCl osePat h cr eat eSVGPat hSegC osePath ();

SVGPat hSeghMovet 0Abs creat eSVGPat hSeghvbvetoAbs (in float x, in float y);
SVGPat hSegMovet oRel creat eSVGPat hSegvbvetoRel (in float x, in float y);
SVGPat hSegLi net oAbs creat eSVGPat hSegLinetoAbs (in float x, in float y);
SVGPat hSegLi net oRel creat eSVGPat hSegLinetoRel (in float x, in float y);
SVGPat hSegCur vet oCubi cAbs creat eSVGPat hSegCur vet oCubi cAbs (in float x, in float y, in float

x1, in float yl1, in float x2, in float y2);

SVGPat hSegCur vet oCubi cRel cr eat eSVGPat hSegCurvet oCubicRel (in float x, in float y, in float
x1l, in float y1, in float x2, in float y2);

SVGPat hSegCur vet oQuadr at i cAbs cr eat eSVGPat hSegCur vet oQuadrati cAbs (in float x, in float y, in
float x1, in float yl1);

SVGPat hSegCur vet oQuadr at i cRel creat eSVGPat hSegCurvet oQuadraticRel (in float x, in float y, in
float x1, in float yl1);

SVGPat hSegAr cAbs creat eSVGPat hSegArcAbs (in float x, in float y, in float r1, in float r2, in
float angle, in boolean |argeArcFlag, in bool ean sweepFlag);

SVGPat hSegAr cRel creat eSVGPat hSegArcRel (in float x, in float y, in float r1, in float r2, in
float angle, in boolean |argeArcFlag, in bool ean sweepFlag);

SVGPat hSegLi net oHor i zont al Abs cr eat eSVGPat hSegLi net oHori zontal Abs (in float x);

SVGPat hSegLi net oHor i zont al Rel creat eSVGPat hSeglLi net oHori zontal Rel (in float x)
SVGPat hSegLi net oVerti cal Abs creat eSVGPat hSegLi netoVertical Abs (in float y);
SVGPat hSegLi net oVerti cal Rel creat eSVGPat hSegLi netoVerticalRel (in float y);

SVGPat hSegCur vet oCubi cSrmoot hAbs cr eat eSVGPat hSegCur vet oCubi cSnoot hAbs (in float x, in float vy,
in float x2, in float y2);

SVGPat hSegCur vet oCubi cSnmoot hRel cr eat eSVGPat hSegCur vet oCubi cSnoothRel (in float x, in float vy,
in float x2, in float y2);

SVGPat hSegCur vet oQuadr at i cSnoot hAbs cr eat eSVGPat hSegCur vet oQuadr ati cSmoot hAbs (in float x, in
float y);

SVGPat hSegCur vet oQuadr at i cSnoot hRel cr eat eSVGPat hSegCur vet oQuadr ati cSmoothRel (in float x, in
float y);

Attributes
readonly SV GAnimatedNumber pathLength
Corresponds to attribute pathL ength on the given 'path’ element.
M ethods
getTotalLength

Returns the user agent's computed value for the total length of the path using the user agent's distance-along-a-path algorithm, as adistancein
the current user coordinate system.

No Parameters
Return value
float The total length of the path.
No Exceptions
getPointAtLength
Returns the (x,y) coordinate in user space whichisdi st ance units along the path, utilizing the user agent's distance-along-a-path algorithm.
Parameters
in float distance The distance along the path, relative to the start of the path, as a distance in the current user coordinate system.
Return value
SVGPoint The returned point in user space.
No Exceptions
getPathSegAtLength
Returns the index into pathSegList which isdi st ance units along the path, utilizing the user agent's distance-along-a-path agorithm.
Parameters
in float distance The distance along the path, relative to the start of the path, as adistance in the current user coordinate system.
Return value
unsigned long The index of the path segment, where the first path segment is number 0.
No Exceptions
createSV GPathSegClosePath
Returns a stand-alone, parentless SV GPathSegClosePath object.
No Parameters

Return value
SV GPathSegClosePath A stand-alone, parentless SV GPathSegClosePath object.
No Exceptions
createSV GPathSegM ovetoAbs
Returns a stand-alone, parentless SV GPathSegM ovetoA bs object.
Parameters
infloat x The absolute X coordinate for the end point of this path segment.
infloaty The absoluteY coordinate for the end point of this path segment.
Return value
SV GPathSegMovetoAbs A stand-alone, parentless SV GPathSegM ovetoAbs object.
No Exceptions
createSV GPathSegM ovetoRel
Returns a stand-alone, parentless SV GPathSegM ovetoRel object.
Parameters
infloat x Therelative X coordinate for the end point of this path segment.
infloaty TherelativeY coordinate for the end point of this path segment.
Return value
SVGPathSegMovetoRel A stand-alone, parentless SV GPathSegMovetoRel object.
No Exceptions
createSV GPathSegL inetoAbs
Returns a stand-alone, parentless SV GPathSegL inetoAbs object.
Parameters

infloat x The absolute X coordinate for the end point of this path segment.
infloaty Theabsolute Y coordinate for the end point of this path segment.

Return value
SVGPathSegLinetoAbs A stand-alone, parentless SV GPathSegL inetoAbs object.
No Exceptions
createSV GPathSegL inetoRel
Returns a stand-alone, parentless SV GPathSegL inetoRel object.
Parameters

infloat x Therelative X coordinate for the end point of this path segment.
infloaty TherelativeY coordinate for the end point of this path segment.
Return value
SV GPathSegLinetoRel A stand-alone, parentless SV GPathSegLinetoRel object.
No Exceptions
createSV GPathSegCurvetoCubicAbs
Returns a stand-alone, parentless SV GPathSegCurvetoCubicAbs object.
Parameters
infloat x The absolute X coordinate for the end point of this path segment.
infloaty TheabsoluteY coordinate for the end point of this path segment.
infloat x1 The absolute X coordinate for the first control point.
infloat yl Theabsolute Y coordinate for the first control point.

infloat X2 The absolute X coordinate for the second control point.
infloat y2 The absolute Y coordinate for the second control point.

Return value
SV GPathSegCurvetoCubicAbs A stand-alone, parentless SV GPathSegCurvetoCubicAbs object.
No Exceptions
createSV GPathSegCurvetoCubicRel
Returns a stand-alone, parentless SV GPathSegCurvetoCubicRel object.
Parameters

infloat x Therelative X coordinate for the end point of this path segment.
infloaty TherelativeY coordinate for the end point of this path segment.
infloat x1 Therelative X coordinate for the first control point.

infloat yl TherelativeY coordinate for the first control point.
infloat x2 Therelative X coordinate for the second control point.
infloat y2 TherelativeY coordinate for the second control point.

Return value
SV GPathSegCurvetoCubicRel A stand-alone, parentless SV GPathSegCurvetoCubicRel object.
No Exceptions
createSV GPathSegCurvetoQuadraticAbs
Returns a stand-alone, parentless SV GPathSegCurvetoQuadraticAbs object.
Parameters
infloat x Theabsolute X coordinate for the end point of this path segment.
infloaty The absoluteY coordinate for the end point of this path segment.

infloat x1 The absolute X coordinate for the control point.
infloat yl TheabsoluteY coordinate for the control point.

Return value
SV GPathSegCurvetoQuadraticAbs A stand-alone, parentless SV GPathSegCurvetoQuadrati cAbs object.
No Exceptions
createSV GPathSegCurvetoQuadraticRel
Returns a stand-alone, parentless SV GPathSegCurvetoQuadraticRel object.
Parameters

infloat x Therelative X coordinate for the end point of this path segment.
infloaty TherelativeY coordinate for the end point of this path segment.
infloat x1 Therelative X coordinate for the control point.
infloat yl Therelative Y coordinate for the control point.

Return value
SV GPathSegCurvetoQuadraticRel A stand-alone, parentless SV GPathSegCurvetoQuadraticRel object.
No Exceptions
createSV GPathSegArcAbs
Returns a stand-alone, parentless SV GPathSegArcAbs object.
Parameters
in float x The absolute X coordinate for the end point of this path segment.
infloaty The absolute Y coordinate for the end point of this path segment.
infloat r1 The x-axis radius for the ellipse (i.e., rl).
infloat r2 They-axisradius for the ellipse (i.e., r2).
in float angle The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.

in boolean largeArcFlag The value for the large-arc-flag parameter.
in boolean sweepFlag ~ The value for the sweep-flag parameter.

Return value
SVGPathSegArcAbs A stand-alone, parentless SV GPathSegArcAbs object.

No Exceptions

createSV GPathSegArcRel

Returns a stand-alone, parentless SV GPathSegArcRel object.

Parameters
in float x The relative X coordinate for the end point of this path segment.
infloaty Therelative Y coordinate for the end point of this path segment.
infloat r1 The x-axisradius for the ellipse (i.e., r1).
infloat r2 They-axis radius for the ellipse (i.e., r2).
in float angle The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.

in boolean largeArcFlag The value for the large-arc-flag parameter.
in boolean sweepFlag ~ The value for the sweep-flag parameter.

Return value
SVGPathSegArcRel A stand-alone, parentless SV GPathSegArcRel object.
No Exceptions
createSV GPathSegL inetoHorizontal Abs
Returns a stand-alone, parentless SV GPathSegL inetoHorizontal Abs object.

Parameters
infloat x The absolute X coordinate for the end point of this path segment.
Return value
SV GPathSegLinetoHorizontal Abs A stand-alone, parentless SV GPathSegLinetoHorizontal Abs object.
No Exceptions
createSV GPathSegL inetoHorizontal Rel
Returns a stand-alone, parentless SV GPathSegLinetoHorizontal Rel object.
Parameters
infloat x Therelative X coordinate for the end point of this path segment.
Return value
SV GPathSegLinetoHorizontalRel A stand-alone, parentless SV GPathSegLinetoHorizontal Rel object.
No Exceptions
createSV GPathSegL inetoVertical Abs
Returns a stand-alone, parentless SV GPathSegL inetoV ertical Abs object.
Parameters
infloaty The absolute Y coordinate for the end point of this path segment.
Return value
SV GPathSegLinetoVertica Abs A stand-alone, parentless SV GPathSegL inetoV ertical Abs object.
No Exceptions
createSV GPathSegL inetoVerticalRel
Returns a stand-alone, parentless SV GPathSegLinetoV erticalRel object.
Parameters
infloaty TherelativeY coordinate for the end point of this path segment.
Return value
SVGPathSegLinetoVerticadRel A stand-alone, parentless SV GPathSegLinetoVerticalRel object.
No Exceptions
createSV GPathSegCurvetoCubicSmoothAbs
Returns a stand-alone, parentless SV GPathSegCurvetoCubicSmoothAbs object.
Parameters

infloat x Theabsolute X coordinate for the end point of this path segment.
infloaty The absoluteY coordinate for the end point of this path segment.
infloat x2 The absolute X coordinate for the second control point.
infloat y2 Theabsolute Y coordinate for the second control point.

Return value
SV GPathSegCurvetoCubicSmoothAbs A stand-alone, parentless SV GPathSegCurvetoCubicSmoothAbs object.
No Exceptions
createSV GPathSegCurvetoCubicSmoothRel
Returns a stand-alone, parentless SV GPathSegCurvetoCubicSmoothRel object.
Parameters

infloat x Therelative X coordinate for the end point of this path segment.
infloaty TherelativeY coordinate for the end point of this path segment.
infloat x2 Therelative X coordinate for the second control point.
infloat y2 Therelative Y coordinate for the second control point.

Return value
SV GPathSegCurvetoCubicSmoothRel A stand-alone, parentless SV GPathSegCurvetoCubicSmoothRel object.
No Exceptions
createSV GPathSegCurvetoQuadraticSmoothAbs
Returns a stand-alone, parentless SV GPathSegCurvetoQuadraticSmoothAbs object.
Parameters

infloat x The absolute X coordinate for the end point of this path segment.
infloaty Theabsolute Y coordinate for the end point of this path segment.

Return value

SV GPathSegCurvetoQuadraticSmoothAbs A stand-alone, parentless SV GPathSegCurvetoQuadraticSmoothAbs object.

No Exceptions

createSV GPathSegCurvetoQuadraticSmoothRel
Returns a stand-alone, parentless SV GPathSegCurvetoQuadraticSmoothRel object.
Parameters

infloat x Therelative X coordinate for the end point of this path segment.
infloaty TherelativeY coordinate for the end point of this path segment.

Return value
SV GPathSegCurvetoQuadraticSmoothRel A stand-alone, parentless SV GPathSegCurvetoQuadraticSmoothRel object.
No Exceptions

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

9 Basic Shapes

Contents

« 9.1 Introduction
o 9.2 The'rect' element

e« 9.3 The'circle’ element
e 9.4 The'dlipse element
« 9.5The'line' element

o 9.6 The'polyline' element

« 9.7 The'polygon' element

« 9.8 The grammar for points specifications in 'polyline’ and 'polygon' elements
« 9.9 DOM interfaces

9.1 Introduction

SV G contains the following set of basic shape elements:
« rectangles (rectangle, including optional rounded corners)

e Circles

Mathematically, these shape elements are equivalent to a 'path’' element that would construct the same shape. The basic shapes may be stroked,
filled and used as clip paths. All of the properties available for 'path’ elements also apply to the basic shapes.

9.2 The 'rect' element

The 'rect’ element defines a rectangle which is axis-aligned with the current user coordinate system. Rounded rectangles can be achieved by
setting appropriate values for attributesrx and ry.

<IENTITY %rectExt "" >
<! ELEMENT rect (%lescTitl eMetadata;, (animate| set|ani mat eMti on| ani mat eCol or | ani mat eTr ansf orm
%geExt; % ect Ext;)*) >

<! ATTLI ST rect
Yt dAttrs;
% estAttrs;
% angSpaceAttrs;
ext ernal Resour cesRequi red %Bool ean; #| MPLI ED
class % assLi st; #l MPLI ED
style %6tyl eSheet; #l MPLI ED
%Pr esent ati onAttributes-Fill Stroke;
%Pr esent ati onAttri but es- Gaphics;

file:///D|/Public/CR-SVG-20000802/indexlist.html

transform %ransfornlist; # MPLIED
%gr aphi csEl enent Event s;

X Y Coor di nate; #l MPLI ED

y %Coor di nat e; #l MPLI ED
width %.ength; #REQUI RED
hei ght %.ength; #REQUI RED
rx %.ength; #l MPLI ED

ry %.ength; # MPLIED >

Attribute definitions:
X = "<coordinate>"

The x-axis coordinate of the side of the rectangle which has the smaller x-axis coordinate value in the current user coordinate system.
If the attribute is not specified, the effect is asif avalue of "0" were specified.
Animatable: yes.

y = "<coordinate>"

The y-axis coordinate of the side of the rectangle which has the smaller y-axis coordinate value in the current user coordinate system.
If the attribute is not specified, the effect isasif avalue of "0" were specified.

Animatable: yes.
width = "<length>"
The width of the rectangle.
A negative valueis an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.
height = "<length>"
The height of the rectangle.
A negative valueis an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.
rx = "<length>"

For rounded rectangles, the x-axis radius of the ellipse used to round off the corners of the rectangle.
A negative value is an error (see Error processin

See the notes below about what happens if the attribute is not specified.

Animatable: yes.

ry ="<length>"
For rounded rectangles, the y-axis radius of the ellipse used to round off the corners of the rectangle.
A negative value is an error (see Error processing).
See the notes bel ow about what happensiif the attribute is not specified.
Animatable: yes.
Attributes defined elsewhere:

Y%ostdAttrs;, YolangSpaceAttrs;, class, transform, %graphi csElementEvents;, YotestAttrs;, external ResourcesRequired, style,
%PresentationAttributes-Fill Stroke;, %Presentati onAttributes-Graphics;.

If aproperly specified value is provided for rx but not for ry, then the user agent processes the 'rect' element with the effective value for ry as
equal to rx. If aproperly specified valueis provided for ry but not for rx, then the user agent processes the 'rect' element with the effective value
for rx asequal tory. If neither rx nor ry has a properly specified value, then the user agent processes the 'rect' element asif no rounding had
been specified, resulting in square corners. If rx is greater than half of the width of the rectangle, then the user agent processes the 'rect’ element
with the effective value for rx as half of the width of the rectangle. If ry is greater than half of the height of the rectangle, then the user agent
processes the 'rect’ element with the effective value for ry as half of the height of the rectangle.

Mathematically, a 'rect' element can be mapped to an equivaent 'path’ element as follows: (Note: all coordinate and length values are first
converted into user space coordinates according to Processing rules when using absolute unit identifiers and percentages.)

« perform an absolute moveto operation to location (x+rx,y), where x is the value of the 'rect’ element's x attribute converted to user space,
rx isthe effective value of the rx attribute converted to user space and y is the value of they attribute converted to user space

« perform an absolute horizontal lineto operation to location (x+width-rx,y), where width is the 'rect’ element's width attribute converted to
user space

« perform an absolute elliptical arc operation to coordinate (x+width,y+ry), where the effective values for the rx and ry attributes on the
‘rect’ element converted to user space are used as the rx and ry attributes on the elliptical arc command, respectively, the x-axis-rotation

is set to zero, the large-arc-flag is set to zero, and the sweep-flag is set to one

« perform aabsolute vertical lineto to location (x+width,y+height-ry), where height is the 'rect’ element's height attribute converted to user
space
« perform an absolute elliptical arc operation to coordinate (x+width-rx,y+height)

« perform an absolute horizontal lineto to location (x+rx,y+ height)
« perform an absolute elliptical arc operation to coordinate (x,y+height-ry)

« perform an absolute absolute vertical lineto to location (x,y+ry)
« perform an absolute elliptical arc operation to coordinate (X+rx,y)

Example rect01 below expresses al valuesin physica units (centimeters, in this case). The 'rect’ element isfilled with yellow and stroked with
navy.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000802/ / EN'

"http://ww. w3. org/ TR 2000/ CR- SVG- 20000802/ DTD/ svg- 20000802. dt d" >
<svg widt h="12cn hei ght="4cni'>

<desc>Exanpl e rect01 - rectangl e expressed in physical units</desc>

<rect x="4cm' y="l1lcm' wi dt h="4cnl hei ght="2cnft
style="fill:yellow stroke:navy; stroke-width:0.1lcni />
</ svg>

Example rect01
View this example as SVG (SV G-enabled browsers only)

Example rect02 below specifies the coordinates of the two rounded rectangles in the user coordinate system established by the viewBox
attribute on the 'svg' element and the transform attribute on the 'g' element. The rx specifies how to round the corners of the rectangles. Note that
since no value has been specified for the ry attribute, it will be assigned the same value as the rx attribute.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="12cn hei ght="4cn vi ewBox="0 0 1200 400">
<desc>Exanpl e rect 02 - rounded rectangl es expressed in user coordi nates</desc>

<rect x="1" y="1" width="1198" hei ght="398"
style="fill:none; stroke:blue"/>

<rect x="100" y="100" wi dth="400" hei ght="200" rx="50"
style="fill:green;" />

<g transform="transl ate(700 210) rotate(-30)">
<rect x="0" y="0" wi dth="400" height="200" rx="50"
style="fill:none; stroke:purple; stroke-w dth:30" />
</ g>
</svg>

file:///D|/Public/CR-SVG-20000802/images/shapes/rect01.svg

Example rect02
View this example as SVG (SV G-enabled browsers only)

9.3 The 'circle' element

The 'circle’ element defines a circle based on a center point and aradius.

<IENTITY %circleExt "" >
<IELEMENT circle (%lescTitl eMetadata;, (ani nat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
%geExt; %ircleExt;)*) >
<I ATTLI ST circle
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class %0 assList; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%Pr esent ati onAttributes-Fill Stroke;
%Pr esent ati onAttri but es- Graphics;
transform %ransfornlist; # MPLIED
%gr aphi csEl enent Event s;
cx %Coordi nate; #l MPLI ED
cy % Coordi nate; #l MPLI ED

r %.ength; #REQUI RED >

Attribute definitions:
cx = "<coordinate>"

The x-axis coordinate of the center of the circle.
If the attribute is not specified, the effect is asif avalue of "0" were specified.
Animatable: yes.

¢y = "<coordinate>"

The y-axis coordinate of the center of the circle.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

r = "<length>"

The radius of thecircle.
A negative valueis an error (see Error processing). A value of zero disables rendering of the element.

Animatable: yes.

Attributes defined el sewhere:

Y%ostdArttrs;, YolangSpaceAttrs;, class, transform, %graphi csElementEvents;, YotestAttrs;, external ResourcesRequired, style,
%Presentati onAttributes-Fill Stroke;, %Presentati onAttributes-Graphics;.

Example circle01 below expresses all valuesin physical units (centimeters, in this case). The 'circle’ element is filled with red and stroked with

file:///D|/Public/CR-SVG-20000802/images/shapes/rect02.svg

blue.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="12cni hei ght ="4cni >

<desc>Exanple circle0l - circle expressed in physical units</desc>

<circle cx="6cn' cy="2cn' r="1cni
style="fill:red; stroke:blue; stroke-w dth:0.1cnt />
</ svg>

Example circle01

View this example as SV G (SV G-enabled browsers only)

9.4 The 'ellipse’ element

The'elipse’ element defines an ellipse which is axis-aligned with the current user coordinate system based on a center point and two radii.

<IENTITY %ellipseExt "" >
< ELEMENT el lipse (%lescTitleMetadata;, (animate| set| ani mat eMbti on| ani nat eCol or | ani mat eTr ansf orm
%geExt; %l | i pseExt;)*) >
<! ATTLI ST el lipse
Y%t dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%Presentati onAttributes-Fill Stroke;
%°r esent ati onAttri but es- G aphi cs;
transform %ransforniist; # MPLI ED
%gr aphi csEl enent Event s;
% Coor di nat e; #l MPLI ED
%Coor di nat e; #l MPLI ED
rx %.ength; #REQU RED

ry %.ength; #REQU RED >

o 0
X<

Attribute definitions:
cx = "<coordinate>"

The x-axis coordinate of the center of the ellipse.
If the attribute is not specified, the effect is asif avalue of "0" were specified.
Animatable: yes.

¢y = "<coordinate>"

The y-axis coordinate of the center of the ellipse.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

rx = "<length>"

file:///D|/Public/CR-SVG-20000802/images/shapes/circle01.svg

The x-axis radius of the ellipse.
A negative valueis an error (see Error processing). A value of zero disables rendering of the element.

Animatable: yes.

ry = "<length>"

The y-axis radius of the ellipse.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.

Animatable: yes.

Attributes defined el sewhere:

Y%ostdAttrs;, YolangSpaceAttrs;, class, transform, %graphi csElementEvents;, YotestAttrs;, external ResourcesRequired, style,
%Presentati onAttributes-Fill Stroke;, %Presentati onAttributes-Graphics;.

Example ellipse01 below specifies the coordinates of the two ellipses in the user coordinate system established by the viewBox attribute on the
'svg' element and the transform attribute on the 'g' and 'ellipse’ elements. Both ellipses use the default values of zero for the cx and cy attributes
(the center of the ellipse). The second ellipseis rotated.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg wi dt h="12cni hei ght="4cni vi ewBox="0 0 1200 400" >
<desc>Exanpl e el lipse0l - ellipses expressed in user coordi nates</desc>

<g transfornm="transl ate(300 200)">
<ellipse rx="250" ry="100"
style="fill:red" />
</ g>

<ellipse transforn="transl ate(900 200) rotate(-30)"
rx="250" ry="100"
style="fill:none; stroke:blue; stroke-w dth: 20" />

</ svg>

Example ellipse01
View this example as SV G (SV G-enabled browsers only)

9.5 The 'line' element

The'line' element defines aline segment that starts at one point and ends at another.

file:///D|/Public/CR-SVG-20000802/images/shapes/ellipse01.svg

<IENTITY % lineExt "" >
<l ELEMENT line (%lescTitl eMetadata;, (ani nate| set | ani mat eMoti on| ani mat eCol or | ani mat eTr ansf orm

%geExt; % ineExt;)*) >

<I ATTLI ST line
Yst dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assList; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%Pr esent ati onAttributes-Fill Stroke;
%Pr esent ati onAttri but es- Graphics;
%r esent ati onAttri but es- Markers;
transform %ransfornlist; # MPLIED
%gr aphi csEl enent Event s;
x1 %Coor di nat e; #| MPLI ED
y1l % Coordi nate; #l MPLI ED
X2 %Coor di nat e; #| MPLI ED
y2 % Coordi nate; #l MPLI ED >

Attribute definitions:
x1 = "<coordinate>"

The x-axis coordinate of the start of the line.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

y1 = "<coordinate>"

The y-axis coordinate of the start of the line.
If the attribute is not specified, the effect is asif avalue of "0" were specified.
Animatable: yes.

X2 ="<coordinate>"

The x-axis coordinate of the end of the line.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

y2 = "<coordinate>"

The y-axis coordinate of the end of the line.
If the attribute is not specified, the effect is asif avalue of "0" were specified.
Animatable: yes.

Attributes defined elsewhere:

%stdAttrs;, %langSpaceAttrs;, class, transform, %graphicsElementEvents;, %testAttrs;, external ResourcesRequired, style,
%Presentati onAttributes-Fill Stroke;, %Presentati onAttributes-Graphics;.

Mathematically, a'line' element can be mapped to an equivalent 'path’ element as follows: (Note: all coordinate and length values are first
converted into user space coordinates according to Processing rules when using absolute unit identifiers and percentages.)

« perform an absolute moveto operation to absolute location (x1,y1), where x1 and y1 are the values of the 'line’ element'sx1 and y1
attributes converted to user space, respectively

« perform an absolute lineto operation to absolute location (x2,y2), where x2 and y2 are the values of the 'line’ element's x2 and y2
attributes converted to user space, respectively

Example line01 below specifies the coordinates of the five linesin the user coordinate system established by the viewBox attribute on the 'svg'
element. The lines have different thicknesses.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="12cnm'" hei ght ="4cn" vi enBox="0 0 1200 400">

<desc>Exanpl e lineOl - lines expressed in user coordinates</desc>

<g style="fill:none; stroke:green">
<line x1="100" y1="300" x2="300" y2="100"
styl e="stroke-wi dth:5" />
<line x1="300" y1="300" x2="500" y2="100"
styl e="stroke-w dt h: 10" />
<line x1="500" y1="300" x2="700" y2="100"
styl e="stroke-w dt h: 15" />
<line x1="700" y1="300" x2="900" y2="100"
styl e="stroke-w dth: 20" />
<line x1="900" y1="300" x2="1100" y2="100"
styl e="stroke-w dt h: 25" />
</ g>
</ svg>

S

Example line01

View this example as SV G (SV G-enabled browsers only)

9.6 The 'polyline' element

The 'polyline’ element defines a set of connected straight line segments. Typically, 'polyline’ elements define open shapes.

<IENTITY % pol yl i neExt "" >
<! ELEMENT polyline (%lescTitleMetadata;, (ani mate| set| ani mat eMbti on| ani mat eCol or | ani mat eTr ansf orm
%geExt ; %pol yl i neExt;)*) >
<! ATTLI ST polyline
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%Pr esent ati onAttributes-Fill Stroke;
%Pr esent ati onAttri but es- Graphics;
%°r esent ati onAttri but es- Markers;
transform %ransfornilist; # MPLIED
%gr aphi csEl enent Event s;
poi nts %oi nts; #REQU RED >

Attribute definitions:
points = "<list-of-points>"

The points that make up the polyline. All coordinate values are in the user coordinate system.
Animatable: yes.

Attributes defined el sewhere:

%stdAttrs;, %langSpaceAttrs;, class, transform, %graphicsElementEvents;, YtestAttrs;, external ResourcesRequired, style,
%Presentati onAttributes-Fill Stroke;, %Presentati onAttributes-Graphics;.

If an odd number of coordinates is provided, then the element isin error, with the same user agent behavior as occurs with an incorrectly
specified 'path’ element.

file:///D|/Public/CR-SVG-20000802/images/shapes/line01.svg

Mathematically, a'polyline' element can be mapped to an equivalent 'path’ element as follows: (Note: all coordinate and length values are first
converted into user space coordinates according to Processing rules when using absolute unit identifiers and percentages.)

« perform an absolute moveto operation to the first coordinate pair in the list of points
« for each subsequent coordinate pair, perform an absolute lineto operation to that coordinate pair.

Example polyline01 below specifies a polyline in the user coordinate system established by the viewBox attribute on the 'svg’ element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww.w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="12cnm' hei ght ="4cn!" vi enBox="0 0 1200 400">

<desc>Exanpl e polylineOl - increasingly |arger bars</desc>

<rect x="1" y="1" w dth="1198" hei ght="398"
style="fill:none; stroke:blue"/>

<polyline style="fill:none; stroke:blue; stroke-w dth:10"

poi nt s="50, 375
150, 375 150, 325 250, 325 250, 375
350, 375 350, 250 450, 250 450, 375
550, 375 550, 175 650, 175 650, 375
750, 375 750, 100 850, 100 850, 375
950, 375 950, 25 1050, 25 1050, 375
1150, 375" />
</ svg>

Example polyline01
View this example as SVG (SVG-enabled browsers only)

9.7 The 'polygon' element

The 'polygon’ element defines a closed shape consisting of a set of connected straight line segments.

<IENTITY % pol ygonExt "" >
<! ELEMENT pol ygon (%lescTitleMetadata;, (ani nate| set| ani mat eMbti on| ani nat eCol or | ani mat eTr ansf orm
%geExt ; %ol ygonExt;)*) >
<! ATTLI ST pol ygon
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class % assLi st; #l MPLI ED
style %6tyl eSheet; #l MPLI ED
%°r esentati onAttributes-Fill Stroke;
%Pr esent ati onAttri but es- Gaphics;
%Pr esent ati onAttri but es- Markers;
transform %ransfornlist; # MPLIED
%r aphi csEl enent Event s;

file:///D|/Public/CR-SVG-20000802/images/shapes/polyline01.svg

poi nts %Poi nts; #REQU RED >

Attribute definitions:
points = "<list-of-points>"

The points that make up the polygon. All coordinate values are in the user coordinate system.
Animatable: yes.

Attributes defined el sewhere:

Y%stdAttrs;, YolangSpaceAttrs;, class, transform, %graphicsElementEvents;, %otestAttrs;, external ResourcesRequired, style,
%Presentati onAttributes-Fill Stroke;, %Presentati onAttributes-Graphics;.

If an odd number of coordinates is provided, then the element isin error, with the same user agent behavior as occurs with an incorrectly
specified 'path’ element.

Mathematically, a'polygon’ element can be mapped to an equivalent 'path’ element as follows: (Note: all coordinate and length values are first
converted into user space coordinates according to Processing rules when using absolute unit identifiers and percentages.)

« perform an absolute moveto operation to the first coordinate pair in the list of points
« for each subsequent coordinate pair, perform an absolute lineto operation to that coordinate pair
« perform aclosepath command

Example polygon01 below specifies two polygons (a star and a hexagon) in the user coordinate system established by the viewBox attribute on
the 'svg' element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="12cn hei ght="4cn vi ewBox="0 0 1200 400">

<desc>Exanpl e pol ygon0l - star and hexagon</desc>

<pol ygon style="fill:red; stroke:blue; stroke-w dth: 10"
poi nt s="350, 75 379, 161 469, 161 397, 215
423,301 350,250 277,301 303, 215
231,161 321, 161" />
<pol ygon style="fill:lime; stroke:blue; stroke-w dth: 10"
poi nt s="850, 75 958, 137.5 958, 262.5
850, 325 742,262.6 742,137.5" />
</ svg>

Example polygon01

View this example as SV G (SV G-enabled browsers only)

9.8 The grammar for points specifications in 'polyline' and '‘polygon’ elements

The following is the Backus-Naur Form (BNF) for points specifications in ‘polyline' and 'polygon’ elements. The following notation is used:
e *:0o0rmore
« +:1o0r more
« 200r1

(): grouping

o |: separates alternatives

file:///D|/Public/CR-SVG-20000802/images/shapes/polygon01.svg

« double quotes surround literals

I'ist-of-points:
wsp* coordi nat e-pai rs? wsp*

coordi nate-pairs:
coordi nate-pair
| coordi nate-pair coma-wsp coordi nate-pairs

coordi nat e-pair:
coordi nate comma-wsp coordi nate

coor di nat e:
nunber

number :
sign? integer-constant
| sign? floating-point-constant

comra- wsp:
(wsp+ comma? wsp*) | (comma wsp*)

conma:

i nt eger-const ant:
di gi t - sequence

fl oati ng- poi nt-constant:
fractional -constant exponent?
| digit-sequence exponent

fractional -constant:
di git-sequence? ".
| digit-sequence "."

di gi t - sequence
exponent :

("e" | "E") sign? digit-sequence
si gn:

n +ll | " - "
di gi t - sequence:

digit

| digit digit-sequence
digit:

"o* | "1 | "2 | "3" | "4" | "5" | "6" | "7" | "8 | "9"
wsp:
(#x20 | #x9 | #xD | #xA)+

9.9 DOM interfaces

The following interfaces are defined below: SV GRectElement, SV GCircleElement, SV GEllipseElement, SV GLineElement,
SV GAnimatedPoints, SV GPolylineElement, SV GPolygonElement.

Interface SVGRectElement

The SV GRectElement interface corresponds to the 'rect’ element.
IDL Definition

i nterface SVGRect El enent :
SVCGEl enent ,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events: : Event Target ({

readonly attribute SVGAni mat edLength x;
readonly attribute SVGAni mat edLength vy;
readonly attribute SVGAni nat edLength wi dth;
readonly attribute SVGAni mat edLengt h hei ght;
readonly attribute SVGAni mat edLength rx;
readonly attribute SVGAni mat edLength ry;

}s

Attributes

readonly SV GAnimatedL ength x

Corresponds to attribute x on the given 'rect' element.
readonly SV GAnimatedLength y

Corresponds to attribute y on the given 'rect' element.
readonly SV GAnimatedL ength width

Corresponds to attribute width on the given 'rect’ element.
readonly SV GAnimatedL ength height

Corresponds to attribute height on the given 'rect' element.
readonly SV GAnimatedL ength rx

Corresponds to attribute rx on the given 'rect' element.
readonly SV GAnimatedL ength ry

Corresponds to attribute ry on the given 'rect’ element.

Interface SVGCircleElement

The SV GCircleElement interface corresponds to the 'rect’ el ement.
IDL Definition

i nterface SVGC rcl eEl enent
SVCGEl enent ,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events: : Event Target {

readonly attribute SVGAni mat edLengt h cx;

readonly attribute SVGAni mat edLength cy;

readonly attribute SVGAni matedLength r;
b

Attributes

readonly SV GAnimatedL ength cx

Corresponds to attribute cx on the given 'circle’ element.
readonly SV GAnimatedL ength cy

Corresponds to attribute cy on the given 'circle’ element.
readonly SV GAnimatedLength r

Corresponds to attribute r on the given ‘circle’ element.

Interface SVGEllipseElement

The SV GEllipseElement interface corresponds to the 'ellipse’ element.
IDL Definition

i nterface SVGEl | i pseEl enent
SVGEl enent
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or nmabl e,
events: : Event Target {

readonly attribute SVGAni mat edLengt h cx;
readonly attribute SVGAni mat edLength cy;
readonly attribute SVGAni nat edLength rx;
readonly attribute SVGAni nat edLength ry;

b

Attributes

readonly SV GAnimatedL ength cx

Corresponds to attribute cx on the given 'ellipse’ el ement.
readonly SV GAnimatedL ength cy

Corresponds to attribute cy on the given 'ellipse’ element.
readonly SV GAnimatedLength rx

Corresponds to attribute rx on the given 'ellipse’ element.
readonly SV GAnimatedL ength ry

Corresponds to attribute ry on the given 'ellipse’ element.

Interface SVGLineElement

The SV GLineElement interface corresponds to the 'line' element.
IDL Definition

i nterface SVGA.i neEl enent :
SVGEl enent
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events: : Event Target {

readonly attribute SVGAni mat edLength x1;
readonly attribute SVGAni mat edLength y1;
readonly attribute SVGAni nat edLength x2;

readonly attribute SVGAni mat edLength y2;
s

Attributes

readonly SV GAnimatedL ength x1

Corresponds to attribute x1 on the given 'line' element.
readonly SV GAnimatedLength y1

Corresponds to attribute y1 on the given 'line' element.
readonly SV GAnimatedL ength x2

Corresponds to attribute x2 on the given 'line' element.
readonly SVGAnimatedLength y2

Corresponds to attribute y2 on the given 'line’ element.

Interface SVGAnimatedPoints

The SV GAnimatedPoints interface supports elements which have a 'points' attribute which holds alist of coordinate values and which support
the ability to animate that attribute.

Additionally, the 'points’ attribute on the original element accessed viathe XML DOM (e.g., using the getAttribute() method call) will reflect
any changes made to points.

IDL Definition

i nterface SVGAni mat edPoi nts {

readonly attribute SVG.i st poi nt s;
readonly attribute SVG.i st ani mat edPoi nt s;

b

Attributes
readonly SVGList points

Provides access to the base (i.e., static) contents of the points attribute.

The various methods from SV GList, which are defined to accept parameters and return values of type Object, must receive
parameters of type SV GPoint and return values of type SV GPoint.

readonly SV GList animatedPoints

Provides access to the current animated contents of the points attribute. |f the given attribute or property is being animated,
contains the current animated value of the attribute or property. If the given attribute or property is not currently being animated,
contains the same value as 'points.

The various methods from SV GList, which are defined to accept parameters and return values of type Object, must receive
parameters of type SV GPoint and return values of type SV GPoint.

Interface SVGPolylineElement

The SV GPolylineElement interface corresponds to the 'polyline' element.
IDL Definition

i nterface SVGPol yl i neEl enent
SVCGEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,

event s: : Event Tar get,
SVGAni mat edPoi nts {};

Interface SVGPolygonElement

The SV GPolygonElement interface corresponds to the 'polygon’ element.
IDL Definition

i nterface SVGPol ygonEl enent
SVCGEl enent ,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events: : Event Tar get,
SVGAni mat edPoi nts {};

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

10 Text

Contents

« 10.1 Introduction

« 10.2 Characters and their corresponding glyphs
« 10.3 Fonts, font tables and baselines

o 10.4 The 'text' element

« 10.5 The 'tspan' element

« 10.6 The 'tref' element

« 10.7 The 'dlyphRun' element

« 10.8 Text layout
o 10.8.1 Text layout introduction

o 10.8.2 Setting the inline progression direction

o 10.8.3 Glyph orientation within atext run
o 10.8.4 Relationship with bidirectionality
« 10.9 Alignment properties

o 10.9.1 Text alignment properties

o 10.9.2 Baseline alignment properties

« 10.10 Font selection properties

« 10.11 Spacing properties

« 10.12 Text decoration

« 10.13 Text on apath
o 10.13.1 Introduction to text on a path
o 10.13.2 The 'textPath’ element
o 10.13.3 Text on a path layout rules

« 10.14 Alternate glyphs

« 10.15 White space handling

« 10.16 Text selection

« 10.17 DOM interfaces

10.1 Introduction

Text that isto be rendered as part of an SV G document fragment is specified using the 'text' element. The characters to be drawn are
expressed as XML character data [XML 10] inside the 'text' element.

SVG's 'text’ elements are rendered like other graphics el ements. Thus, coordinate system transformations, painting, clipping and masking
features apply to 'text' elementsin the same way as they apply to shapes such as paths and rectangles.

Each 'text' element causes a single string of text to be rendered. SV G performs no automatic line breaking or word wrapping. To achieve the

file:///D|/Public/CR-SVG-20000802/indexlist.html

effect of multiple lines of text, use one of the following methods:
« Theauthor or authoring package pre-computes the line breaks and uses multiple 'text' elements (one for each line of text).
« Theauthor or authoring package needs pre-computes the line breaks and uses a single 'text’ element with one or more 'tspan' child

elements with appropriate values for attributes x, y, dx and dy to set new start positions for those characters which start new lines.
(This approach allows user text selection across multiple lines of text -- see Text selection and clipboard operations.)

« Expressthe text to be rendered in another XML namespace such as XHTML [XHTML] embedded inline within a 'foreignObject’
element. (Note: the exact semantics of this approach are not completely defined at thistime.)

The text strings within 'text' elements can be rendered in a straight line or rendered along the outline of a'path’ element. SV G supports the
following international text processing features for both straight line text and text on a path:

« horizontal and vertical orientation of text
« left-to-right or bidirectional text (i.e., languages which intermix right-to-left and | eft-to-right text, such as Arabic and Hebrew)
« when SVG fonts are used, automatic selection of the correct glyph corresponding to the current form for Arabic and Han text

(The layout rules for straight line text are described in Text layout. The layout rules for text on a path are described in Text on a path layout
rules.)

Because SV G text is packaged as XML character data[XML10]:
« Textdatain SVG content is readily accessible to the visually impaired (see Accessibility Support)

« In many viewing scenarios, the user will be able to search for and select text strings and copy selected text strings to the system
clipboard (see Text selection)

« XML-compatible Web search engines will find text stringsin SVG content with no additional effort over what they need to do to find
text strings in other XML documents

Multi-language SV G content is possible by substituting different text strings based on the user's preferred language.

For accessibility reasons, it is recommended that text which isincluded in a document have appropriate semantic markup to indicate its
function. See SV G accessihility guidelines for more information.

10.2 Characters and their corresponding glyphs

In XML [XML1Q], textual content is defined in terms of a sequence of XML characters, where each character is defined by a particular
Unicode code point [UNICODE]. Fonts, on the other hand, consists of a collection of glyphs and other associated information, such as font
tables. A glyph is apresentable form of one or more characters (or a part of a character in some cases). Each glyph consists of some sort of
identifier (in some cases a string, in other cases a number) along with drawing instructions for rendering that particular glyph.

In many cases, there is a one-to-one mapping of Unicode characters (i.e., Unicode code points) to glyphsin afont. For example, itis
common for afont designed for Latin languages (where the term Latin is used for European languages such as English with alphabets similar
to and/or derivative to the Latin language) to contain a single glyph for each of the standard ASCII characters (i.e., A-to-Z, a-to-z, 0-to-9,

plus the various punctuation characters found in ASCII). Thus, in most situations, the string "XML", which consists of three Unicode
characters, would be rendered by the three glyphs corresponding to " X", "M" and "L", respectively.

In various other cases, however, there is not a strict one-to-one mapping of Unicode characters to glyphs. Some of the circumstances when
the mapping is not one-to-one:

« Ligatures - For best looking typesetting, it is often desirable that particular sequences of characters are rendered as asingle glyph. An
exampleisthe word "office". Many fontswill define an "ffi" ligature. When the word "office" is rendered, sometimes the user agent
will render the glyph for the "ffi" ligature instead of rendering distinct glyphs (i.e., "f", "f" and "i") for each of the three characters.
Thus, for ligatures, multiple Unicode characters map to asingle glyph. (Note that for proper rendering of some languages, ligatures
arerequired for certain character combinations.)

« Composite characters - In various situations, commonly used adornments such as diacritical marks will be stored oncein afont asa
particular glyph and then composed with one or more other glyphs to result in the desired character. For example, it is possible that a
font engine might render the é character by first rendering the glyph for e and then rendering the glyph for ~ (the accent mark) such
that the accent mark will appear over the e. In this situation, a single Unicode character maps to multiple glyphs.

« Glyph substitution - Some typography systems examine the nature of the textual content and utilize different glyphsin different
circumstances. For example, in Arabic, the same Unicode character might render as any of four different glyphs, depending on such
factors as whether the character appears at the start, the end or the middle of a sequence of cursively joined characters. Different
glyphs might be used for punctuation character depending on inline progression direction (e.g., horizontal vs. vertical). In these
situations, a single Unicode character might map to one of severa alternative glyphs.

« Insome languages, particular sequences of characters will be converted into multiple glyphs such that parts of a particular character
arein one glyph and the remainder of that character is in another glyph.

« Alternative glyph specification - SV G contains afacility for the author to explicitly specify that a particular sequence of Unicode
charactersisto be rendered using a particular glyph. (See Alternate glyphs.) When this facility is used, multiple Unicode characters

map to asingle glyph.

In many situations, the algorithms for mapping from characters to glyphs are system-dependent, resulting in the possibility that the rendering
of text might be (usually slightly) different when viewed in different user environments. If the author of SV G content requires precise

selection of fonts and glyphs, then the recommendation is that the necessary fonts (potentially subsetted to include only the glyphs needed for
the given document) be available either as SV G fonts embedded within the SV G content or as Web fonts posted at the same Web location as

the SV G content.
Throughout this chapter, the term character shall be equivalent to the definition of a character in XML [XML 10].

10.3 Fonts, font tables and baselines

A font consists of a collection of glyphs together with the information (the font tables) necessary to use those glyphs to present characters on
some medium. The combination of the collection of glyphs and the font tables is called the font data. The font tables include the information
necessary to map characters to glyphs, to determine the size of glyph areas and to position the glyph area. Each font table consists of one or
more font characteristics, such as the font-weight and font-style.

The geometric font characteristics are expressed in a coordinate system based on the EM box. (The EM is arelative measure of the height of
the glyphsin the font; see CSS2 em square.) The box 1 EM high and 1 EM wide is called the design space. This space is given a geometric
coordinates by sub-dividing the EM into a number of units-per-em.

Note: Units-per-em isafont characteristic. A typical value for units-per-EM is 1000 or 2048.

The coordinate space of the EM box is called the design space coordinate system. For scalable fonts, the curves and lines that are used to
draw a glyph are represented using this coordinate system.

Note: Most often, the (0,0) point in this coordinate system is positioned on the left edge of the EM box, but not at the bottom left corner. The
Y coordinate of the bottom of aroman capital letter isusually zero. And the descenders on lower case roman letters have negative coordinate
values.

SV G assumes that the font tables will provide at |east three font characteristics: an ascent, a descent and a set of basdline-tables. The ascent is
the distance to the top of the EM box from the (0,0) point of the font; the descent is the distance to the bottom of the EM box from the (0.0)
point of the font. The baseline-table is explained below.

Note: Within an OpenType font, for horizontal writing-modes, the ascent and descent are given by the sTypoAscender and sTypoAscender
entriesin the OS/2 table. For vertical writing-modes, the descent (the distance, in this case from the (0,0) point to the left edge of the glyph)
is normally zero because the (0,0) point is on the left edge. The ascent for vertical writing-modesis either 1 em or is specified by the

| deographic top baseline value in the OpenType Base table for vertical writing-modes.

In horizontal writing-modes, the glyphs of a given script are positioned so that a particular point on each glyph, the alignment-point, is
aligned with the alignment-points of the other glyphsin that script. The glyphs of different scripts, for example, western, northern indic and
far-eastern scripts, are typically aligned at different points on the glyph. For example, western glyphs are aligned on the bottoms of the
capital letters, northern indic glyphs are aligned at the top of a horizonta stroke near the top of the glyphs and far-eastern glyphs are aligned
either at the bottom or center of the glyph. Within a script and within aline of text having a single font-size, the sequence of alignment-points
defines, in theinline- progression-direction, a geometric line called a baseline. Western and most other alphabetic and syllabic glyphs are
aligned to an "aphabetic" baseline, the northern indic glyphs are aligned to a"hanging" baseline and the far-eastern glyphs are aligned to an
"ideographic" baseline.

A basedline-table specifies the position of one or more baselines in the design space coordinate system. The function of the baseline tableisto
facilitate the alignment of different scripts with respect to each other when they are mixed on the same text line. Because the desired relative
alignments may depend on which script is dominant in aline (or block), there may be a different baseline table for each script. In addition,
different alignment positions are needed for horizontal and vertical writing modes. Therefore, the font may have a set of baseline tables:
typically, one or more for horizontal writing-modes and zero or more for vertical writing-modes.

Note: Some fonts may not have values for the baseline tables. Heuristics are suggested for approximating the baseline tables when a given
font does not supply baseline tables.

SV G further assumes that for each glyph in the font data for afont, there is are two width values, two alignment-baselines and two
alignment-points, one each for horizontal writing-modes and the other for vertical writing-modes. (Even though it is specified as awidth, for
vertical writing-modes the width is used in the vertical direction.) The script to which a glyph belongs determines an alignment-baseline to
which the glyphisto be aligned. The inline-progression-direction position of the alignment-point is on the start-edge of the glyph.

http://www.w3.org/TR/REC-CSS2/fonts.html#emsq
http://www.w3.org/TR/REC-CSS2/fonts.html#unitsperem

Properties related to baselines are described below under Baseline alignment properties.

In addition to the font characteristics required above, afont may also supply substitution and positioning tables that can be used by a
formatter to re-order, combine and position a sequence of glyphs to make one or more composite glyphs. The combination may be as simple
asaligature, or as complex as an indic syllable which combines, usually with some re-ordering, multiple consonants and vowel glyphs.

10.4 The 'text' element

The 'text' element defines a graphics element consisting of text. The XML [XML10] character data within the 'text' element, along with
relevant attributes and properties and character-to-glyph mapping tables within the font itself, define the glyphs to be rendered. (See
Characters and their corresponding glyphs.) The attributes and properties on the 'text' element indicate such things as the writing direction,
font specification and painting attributes which describe how exactly to render the characters. Subsegquent sections of this chapter describe
the relevant text-specific attributes and properties, particular text layout and bidirectionality.

Since 'text' elements are rendered using the same rendering methods as other graphics elements, all of the same coordinate system
transformations, painting, clipping and masking features that apply to shapes such as paths and rectangles also apply to 'text’ elements.

Itispossible to apply agradient, pattern, clipping path, mask or filter to text. When one of these facilitiesis applied to text and keyword
objectBoundingBox is used (see Object bounding box units) to specify a graphical effect relative to the "object bounding box", then the
object bounding box units are computed relative to the entire 'text' element in all cases, even when different effects are applied to different
'tspan’ elements within the same 'text' element.

The 'text' element rendersits first glyph (after bidirectionality reordering) at theinitial current text position, which is established by the x and
y attributes on the 'text' element (with possible adjustments due to the value of the 'text-anchor’ property, the presence of a 'textPath’ element
containing the first character, and/or an x, y, dx or dy attributes on a'tspan’, 'tref’ or 'glyphRun’ element which contains the first character).

After the glyph(s) corresponding to the given character is(are) rendered, the current text position is updated for the next character. In the
simplest case, the new current text position is the previous current text position plus the glyphs' advance value (horizontal or vertical). See
text layout for a description of glyph placement and glyph advance.

<IENTITY %textExt "" >
<! ELEMENT text (#PCDATA| desc|title| netadata)|

t span|tref|textPath|altdyph|alanimte|set|
ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
%geExt; % ext Ext;)* >

<I ATTLI ST text
st dAt trs;
YiestAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class % asslList; #l MPLI ED
style %styl eSheet; #I MPLIED
%°r esent ati onAttributes-Fill Stroke;
%°r esent ati onAttri but es- Font Sel ecti on;
%Pr esent ati onAttri but es- G aphi cs;
%Pr esent ati onAttri but es- Text Cont ent El enent s;
9%Pr esent ati onAttri but es- Text El enent s;
transform %ransfornlist; #l MPLI ED
%gr aphi csEl enent Event s;
X %Coordi nate; #| MPLI ED
y % Coordi nate; #l MPLIED
textLength %.ength; # MPLIED
| engt hAdj ust ('spaci ng| spaci ngAndG@ yphs) #l MPLI ED >

Attribute definitions:
X = "<coordinate>"

The x-axis coordinate for the initial current text position for the text to be drawn. If the value is expressed as a simple <number>

without a unit identifier (e.g., 48), then the value represents a coordinate in the current user coordinate system.
If one of the unit identifiersis provided (e.g., 12pt or 10%), then the value represents a distance in viewport units relative to the origin

of the user coordinate system. (See Processing rules when using absolute unit identifiers and percentages.)

If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

y = "<coordinate>"

The corresponding y-axis coordinate for the initial current text position.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

textLength = "<length>"

The author's computation of the total sum of al of the advance values that correspond to character data within this element, including
the advance value on the glyph (horizontal or vertical), the effect of properties 'letter-spacing' and 'word-spacing' and adjustments due
to attributes dx and dy on 'tspan’ elements. This value is used to calibrate the user agent's own cal culations with that of the author. The
user agent will scale all advance values by the ratio of textLength to the user agent's own computed value for the sum of the advance
values.

A negative value is an error (see Error processing).

If the attribute is not specified, the effect is asif the author's computation exactly matched the value cal culated by the user agent; thus,
no advance adjustments are made.

Animatable: yes.

lengthAdjust = "spacing|spacingAndGlyphs"
Indicates the type of adjustments which the user agent shall make to make the rendered length of the text match the value specified on
the textL ength attribute.
spacing indicates that only the advance values are adjusted. The glyphs themselves are not stretched or compressed.
spacingAndGlyphs indicates that the advance values are adjusted and the glyphs themselves stretched or compressed in one axis (i.e.,
adirection parallel to the inline progression direction).
If the attribute is not specified, the effect is as a value of spacing were specified.
Animatable: yes.

Attributes defined €l sewhere:

YostdAttrs;, %olangSpaceAttrs;, class, transform, %graphicsElementEvents;, %otestAttrs;, external ResourcesRequired, style,
9%Presentati onAttributes-Fill Stroke;, YoPresentati onAttributes-FontSel ection;, %Presentati onAttributes-Graphics;,
9%Presentati onAttributes-TextContentElements;, %PresentationAttributes-TextElements;.

Example text01 below expresses all valuesin physical units such as centimeters and points. The 'text' element contains the text string "Hello,
out there" which will be rendered onto the canvas using the Verdana font family with font size of 12 points with the glyphs filled with the
color blue.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="10cn hei ght="3cni' >

<desc>Exanpl e text01 - 'Hello, out there' in blue</desc>
<text x="2.5cn' y="1.5cn!
style="font-famly: Verdana; font-size:16pt; fill:blue">
Hell o, out there
</text>

</ svg>

Hello, out there

Example textO1

View this example as SV G (SV G-enabled browsers only)

Example text02 below expresses the x and y attributes and the 'font-size' property in the user coordinate system set up by the viewBox
attribute on the 'svg' element. The 'text' element contains the text string "Text in user space.”

file:///D|/Public/CR-SVG-20000802/images/text/text01.svg

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="10cm' hei ght ="3cnm' vi ewBox="0 0 1000 300" >

<desc>Exanpl e text02 - Text in user space</desc>

<text x="250" y="150"
style="font-famly:Verdana; font-size:42.333; fill:blue">
Text in user space
</text>
</ svg>

Text in user space

Example text02

View this example as SV G (SV G-enabled browsers only)

10.5 The 'tspan' element

Within a'text’ element, text and font properties and the current text position can be adjusted with absolute or relative coordinate values by
including a 'tspan’ element.

<IENTITY % tspanExt "" >
<! ELEMENT tspan (#PCDATA| desc|title|netadata|tspan|tref|altd yph|alaninate|set|ani mateCol or
% spankxt;)* >
<! ATTLI ST tspan
%t dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class % asslList; #l MPLI ED
style %otyl eSheet; #l MPLI ED
%°r esent ati onAttributes-Fill Stroke;
%°r esent ati onAttri but es- Font Sel ecti on;
%Pr esent ati onAttri but es- G aphi cs;
o%Pr esent ati onAttri but es- Text Cont ent El enent s;
%gr aphi csEl enent Event s;
X 9% Coor di nat es; #l MPLI ED
y % Coor di nates; #l MPLI ED
dx %.engt hs; #l MPLI ED
dy %.engths; #l MPLI ED
rot at e CDATA #l MPLI ED
textlLength %.ength; #l MPLIED
| engt hAdj ust (spaci ng| spaci ngAndd yphs) #I MPLI ED >

Attribute definitions:
X = "<coordinate>+"

If asingle <coordinate> is provided, this value represents the new absolute X coordinate for the current text position for rendering the
glyphs corresponding to the first character within the 'tspan’ element. If acomma- or space-separated list of <n> <coordinate>sis
provided, then the values represent new absolute X coordinates for the current text position for rendering the glyphs corresponding to
the first <n> characters within the ‘tspan’ element. If more <coordinate>s are provided than characters, then the extra <coordinate>s
will have no effect on glyph positioning. If more characters exist than <coordinate>s, then the starting X coordinate for rendering the

file:///D|/Public/CR-SVG-20000802/images/text/text02.svg

glyphs corresponding to each extra character isthe X coordinate of the resulting current text position from the most recently rendered
glyph for this 'text' element.

unit identifiers, such ascm, pt or %, can be provided for any <coordinate>. If a <coordinate> is provided without a unit identifier
(e.g., 48), then the value represents a coordinate in the current user coordinate system. If aunit identifier is provided (e.g., 12pt or
10%), then the val ue represents a distance in viewport units relative to the origin of the user coordinate system. (Processing rules
when using absolute unit identifiers and percentages.)

If the attribute is not specified, the effect is asif the attribute were set to the X coordinate of the current text position.

Animatable: yes.

y = "<coordinate>+"

The corresponding list of absolute Y coordinates for the glyphs corresponding to the characters within the 'tspan’ element.
If the attribute is not specified, the effect is asiif the attribute were set to the Y coordinate of the current text position.
Animatable: yes.

dx = "<length>+"

If asingle <length> is provided, this value represents the new relative X coordinate for the current text position for rendering the
glyphs corresponding to the first character within the ‘tspan’ element. Thus, the current text position is shifted along the x-axis of the
current user coordinate system by <length>. If acomma- or space-separated list of <n> <length>sis provided, then the values
represent new relative X coordinates for the current text position for rendering the glyphs corresponding to the first <n> characters
within the 'tspan’ element. Thus, before the glyphs are rendered corresponding to each character, the current text position resulting
from drawing the glyphs for the previous character (or, for the glyphs corresponding to the first character in a'text' element, the initial
current text position) is shifted along the X axis of the current user coordinate system by <length>. If more <length>s are provided
than characters, then any extra <length>s will have no effect on glyph positioning. If more characters exist than <length>s, then the
starting X coordinate for rendering the glyphs corresponding to each extra character isthe X coordinate of the resulting current text
position from the most recently rendered glyph for this 'text’ element.

unit identifiers, such as cm, pt or %, can be provided for any <length>. If a <length> is provided without a unit identifier (e.g., 48),
then the value represents a length along the x-axis in the current user coordinate system. If one of the unit identifiersis provided (e.g.,
12pt or 10%), then the value represents a distance in the viewport coordinate system. (Processing rules when using absolute unit
identifiers and percentages.)

If the attribute is not specified, the effect isasif avalue of "0" were specified.

Animatable: yes.

dy = "<length>+"

The corresponding list of relative Y coordinates for the characters within the ‘tspan’ element.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

rotate = "auto | <number>+"

A value of auto causes al characters to be oriented as specified by other text attributes without any supplemental rotation.

If asingle <number> is provided, then this value represents a supplemental rotation about the current text position that will be applied
to al of the glyphs corresponding to each character within the 'tspan’ element.

If acomma- or space-separated list of <number>sis provided, then the first <number> represents the supplemental rotation for the
glyphs corresponding to the first character, the second <number> represents the supplemental rotation for the glyphs that correspond
to the second character, and so on. If more <number>s are provided than there are characters, then the extra <number>swill be
ignored. If more characters are provided than <number>s, then the glyphs corresponding to the extra characters will be rotated by the
last <number> in the list.

This supplemental rotation has no impact on the rules by which current text position is modified as glyphs get rendered and is

supplemental to any rotation due to 'glyph-orientation-horizontal' or 'glyph-orientation-vertical'.

If the attribute is not specified, the effect isasif avalue of "auto" were specified.
Animatable: yes (non-additive, 'set' and ‘animate’ elements only).

textLength = "<length>"

The author's computation of the total sum of all of the advance values that correspond to character data within this el ement, including
the advance value on the glyph (horizontal or vertical), the effect of properties 'letter-spacing' and 'word-spacing' and adjustments due
to attributes dx and dy on this 'tspan’ element or any descendants. This valueis used to calibrate the user agent's own calculations with
that of the author. The user agent will scale al advance values by the ratio of textLength to the user agent's own computed value for
the sum of the advance vaues. If attribute length is specified on a given element and also specified on an ancestor, the adjustments on
all character data within this element are controlled by the value of textLength on this element exclusively, with the possible
side-effect that the adjustment ratio for the contents of this element might be different than the adjustment ratio used for other content
that shares the same ancestor. The user agent must assume that the total advance values for the other content within that ancestor is
the difference between the advance value on that ancestor and the advance value for this element.

A negative value is an error (see Error processing).

If the attribute is not specified anywhere within a'text' element, the effect is asif the author's computation exactly matched the value

calculated by the user agent; thus, no advance adjustments are made.
Animatable: yes.

Attributes defined el sewhere:

YostdArttrs;, YolangSpaceAttrs;, class, %graphicsElementEvents;, YotestAttrs;, external ResourcesRequired, style,
9%Presentati onAttributes-Fill Stroke;, YoPresentati onAttributes-FontSel ection;, %PresentationAttributes-Graphics;,
%PresentationAttributes-TextContentElements;, lengthAdjust.

Thex, y, dx, dy and rotate on the 'tspan’ element are useful in high-end typography scenarios where individual glyphs require exact
placement. These attributes are useful for minor positioning adjustments between characters or for major positioning adjustments, such as
moving the current text position to a new location to achieve the visual effect of a new line of text. Multi-line 'text' elements are possible by

defining different 'tspan’ elements for each line of text, with attributes x, y, dx and/or dy defining the position of each ‘tspan’. (An advantage
of such an approach isthat users will be able to perform multi-line text selection.)

In situations where micro-level positioning adjustment are necessary for advanced typographic control, the SV G content designer needs to
ensure that the necessary font will be available for all viewers of the document (e.g., package up the necessary font datain the form of an
SVG font or an alternative Web font format which is stored at the same Web site as the SV G content) and that the viewing software will
process the font in the expected way (the capabilities, characteristics and font layout mechanisms vary greatly from system to system). If the
SV G content contains X, y, dx or dy attribute values which are meant to correspond to a particular font processed by a particular set of

viewing software and either of these requirementsis not met, then the text might display with poor quality.

The following additional rules apply to attributes x, y, dx, dy and rotate when they contain alist of numbers:

« Whenasingle XML character mapsto asingle glyph - In this case, thei-th value for the x, y, dx, dy and rotate attributesis applied to
the glyph that corresponds to the i-th character.

« Whenasingle XML character maps to multiple glyphs (e.g., when an accent glyph is placed on top of abase glyph) - In this case, the
i-th value for the x, y, dx and dy values are applied (i.e., the current text position is adjusted) before rendering the first glyph. The
rotation transformation corresponding to the i-th rotate value is applied to the glyphs and to the inter-glyph advance values
corresponding to this character on agroup basis (i.e., the rotation value creates a temporary new rotated coordinate system, and the
glyphs corresponding to the character are rendered into this rotated coordinate system).

« When multiple XML characters map to asingle glyph (e.g., when aligature is used) - Suppose that the i-th and (i+1)-th XML
characters map to asingle glyph. In this case, the i-th value for the x, y, dx, dy and rotate attributes al apply when rendering the
glyph. The (i+1)-th values, however, for x, y and rotate are ignored (exception: the final rotate value in the list would still apply to
subsequent characters), whereas the dx and dy are applied to the subsequent XML character (i.e., the (i+2)-th character), if one exists,
by translating the current text position by the given amounts before rendering the first glyph associated with that character.

« When there is a many-to-many mapping of charactersto glyphs (e.g., when three characters map to two glyphs, such as when the first
glyph expresses the first character and half of the second character, and the second glyph expresses the other half of the second

character plus the third character) - Suppose that the i-th, (i+1)-th and (i+2)-th XML characters map to two glyphs. In this case, the
i-th value for the x, y, dx and dy values are applied (i.e., the current text position is adjusted) before rendering the first glyph. The

rotation transformation corresponding to the i-th rotate value is applied to both the two glyphs and the glyph advance values for the

first glyph on agroup basis (i.e., the rotation value creates a temporary new rotated coordinate system, and the two glyphs are
rendered into the temporary rotated coordinate system). The (i+1)-th and (i+2)-th values, however, for the X, y and rotate attributes

are not applied (exception: the final rotate value in the list would still apply to subsequent characters), whereas the (i+1)-th and
(i+2)-th values for the dx and dy attributes are applied to the subsequent XML character (i.e., the (i+3)-th character), if one exists, by
translating the current text position by the given amounts before rendering the first glyph associated with that character.

« Relationship to bidirectionality - As described below in the discussion on bidirectionality, text islaid out in a two-step process, where

any bidirectional text isfirst re-ordered into aleft-to-right string, and then text layout occurs with the re-ordered text string. Whenever
the character data within a'tspan’ element is re-ordered, the corresponding elements within the x, y, dx, dy and rotate are also

re-ordered to maintain the correspondence. For example, suppose that you have the following ‘tspan’ element:

<tspan dx="11 12 13 14 15 0 21 22 23 0 31 32 33 34 35 36">Latin and Hebr ew</ span>

and that the word "Hebrew" will be drawn right-to-left. First, the character data and the corresponding valuesin the dx list will be
reordered, such that the text string will be "Latin and werbeH" and the list of values for the dx attribute will be*11 121314 15021
22 23 036 35 34 33 32 31". After thisre-ordering, the glyphs corresponding to the characters will be positioned using standard
left-to-right layout rules.

« Nested 'tspan’ elements - The x, y, dx, dy and rotate attributes on a given ‘tspan’ element apply only to the character datathat is
directly within that ‘tspan’ element and do not apply to the character data within child (i.e., nested) 'tspan’ elements. If the nested
'tspan’ elements require positioning adjustments or rotation values, the nested 'tspan’ elements need to specify X, y, dx, dy and rotate
values for their own character data.

The following examples show basic use of the ‘tspan’ element.

Example tspan01 uses a'tspan’ element to indicate that the word "not" is to use abold font and have red fill.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="10cnm' hei ght="3cni'>
<desc>Exanpl e tspan0l - using tspan to change visual attributes</desc>

<g style="font-famly:Verdana; font-size:12pt">

<text x="2cm' y="1.5cnm' style="fill:blue">
You are
<tspan style="font-weight:bold; fill:red">not</tspan>
a banana.
</ text>
</ g>
</ svg>

You are not 2 banana.

Example tspan01

View this example as SV G (SV G-enabled browsers only)

Example tspan02 uses the dx and dy attributes on the 'tspan’ element to adjust the current text position horizontally and vertically for
particular text strings within a 'text' element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="10cn' hei ght="3cni' >
<desc>Exanpl e tspan02 - using tspan's dx and dy attributes
for increnental positioning adjustnents</desc>

<g style="font-famly:Verdana; font-size:12pt">

<text x="2cnm' y="1.5cnm style="fill:blue">
But you
<tspan dx="2enf dy="-.5cnf style="font-weight:bold; fill:red">
are
</t span>
<tspan dy="1cnt>
a peach!
</t span>
</ text>
</ g>
</svg>
are
But yvou
a pzach!
Example tspan02

View this example as SV G (SV G-enabled browsers only)

Example tspan03 uses the x and y attributes on the 'tspan’ element to establish a new absolute current text position for each glyph to be

file:///D|/Public/CR-SVG-20000802/images/text/tspan01.svg
file:///D|/Public/CR-SVG-20000802/images/text/tspan02.svg

rendered. The example shows two lines of text within asingle 'text' element. Because both lines of text are within the same 'text' element, the
user will be able to select through both lines of text and copy the text to the system clipboard in user agents that support text selection and
clipboard operations,

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLI C "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="10cnm' hei ght="3cni' >
<desc>Exanpl e tspan03 - using tspan's x and y attributes
for nmultiline text and precise glyph positioning</desc>

<g style="font-famly:Verdana; font-size:12pt">
<text style="fill:rgb(255, 164,0)">
<tspan x="3.0cm 3.5cm 4.0cm 4.5cm 5.0cm 5.5cm 6. 0cm 6. 5cm' y="1cm' >
Cute and
</t span>
<tspan x="3.75cm 4. 25cm 4. 75cm 5. 25cm 5. 75cnt y="2cni >
fuzzy
</tspan>
</ text>
</ g>
</ svg>

Example tspan03

View this example as SV G (SV G-enabled browsers only)

10.6 The 'tref' element

The textual content for a'text’ can be either character data directly embedded within the 'text' element or the character data content of a
referenced element, where the referencing is specified with a'tref' element.

<IENTITY %trefExt "" >
<l ELEMENT tref (desc|title|netadatal ani nate|set|ani mateCol or

%refExt;)* >

<I ATTLI ST tref
Y%st dAttrs;
%l i nkRef Attrs;
xlink:href %Rl ; #REQUI RED
YiestAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class % asslList; #l MPLIED
style %Gtyl eSheet; #l MPLI ED
%°r esent ati onAttributes-Fill Stroke;
%Pr esent ati onAttri but es- Font Sel ecti on;
%Pr esent ati onAttri but es- G aphi cs;
%Pr esent ati onAttri but es- Text Cont ent El enent s;
%r aphi csEl enment Event s;
X 9% Coor di nat es; #l MPLI ED
y %Coordi nates; #l MPLI ED
dx 9%.engths; #l MPLI ED

file:///D|/Public/CR-SVG-20000802/images/text/tspan03.svg

dy %.engths; #l MPLI ED

rotate CDATA #l MPLI ED

textLength %.ength; #l MPLI ED

| engt hAdj ust (spaci ng| spaci ngAndG yphs) #l MPLI ED >

Attribute definitions:
xlink:href ="<uri>"

A URI reference to an element/fragment within an SVG document fragment whose character data content shall be used as character
datafor this 'tref' element.

Animatable: yes.
Attributes defined elsewhere:
Y%stdAttrs;, %langSpaceAttrs;, class, %graphicsElementEvents;, Y%testAttrs;, externalResourcesRequired, X, y, dx, dy, rotate,
textLength, %xlinkRefAttrs;, style, %oPresentationAttributes-Fill Stroke;, %0Presentati onAttributes-FontSel ection;,
9% Presentati onAttributes-Graphics;, %Presentati onAttributes-TextContentElements;, lengthAdjust.

All character data within the referenced element, including character data enclosed within additional markup, will be rendered.

Thex, y, dx, dy and rotate attributes have the same meanings as for the 'tspan’ element. The attributes are applied asiif the 'tref' element was

replaced by a'tspan’ with the referenced character data (stripped of all supplemental markup) embedded within the hypothetical ‘tspan’
element.

Example tref01 shows how to use character data from a different element as the character data for a given 'tspan’ element. The first 'text'
element (with id="ReferencedText") will not draw becauseit is part of a'defs element. The second 'text' element draws the string "Inline
character data’. The third 'text' element draws the string " Reference character data" because it includes a 'tref' element which is areference to
element "ReferencedText", and that element's character datais"Referenced character data".

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="10cnm" hei ght ="3cni' >
<def s>
<text id="ReferencedText">
Ref erenced character data

</ text>

</ def s>

<desc>Exanpl e trefOl - inline vs reference text content</desc>

<text x="1lcm' y="1cni' style="font-size:12pt; fill:blue">
Inline character data

</text>

<text x="1lcnmt y="2cnml style="font-size:12pt; fill:red">
<tref xlink:href="#ReferencedText"/>

</text>

</ svg>

Inline character data

Referenced character data

Example trefO1

View this example as SV G (SV G-enabled browsers only)

file:///D|/Public/CR-SVG-20000802/images/text/tref01.svg

10.7 The 'glyphRun' element

The 'glyphRun’ element provides away for presenting text as a sequence of particular glyphs from a particular font, which can be used by
authoring tools to guarantee correct glyph selection and ordering for the text strings in languages with complex Unicode-to-glyph mapping
rules. With 'glyphRun’, the glyphs are rendered in exactly the order which has been specified by attribute glyphOrder.

The contents of a'glyphRun' element are a sequence of 'altGlyph' child elements. The Unicode character data contents of the 'altGlyph'
represent the text data in selection and searching order, and the referenced 'altGlyphDef' elements indicate the specific font and glyph
combinations to use for rendering that character data. The glyphOrder attribute allows the glyphs to be rendered in a different order.

Properties 'direction’ and 'unicode-bidi' are ignored during processing of a'glyphRun’ element. No character re-ordering (see Relationship
with bidirectionality) occurs for the content of a'glyphRun' element.

<IENTITY % gl yphRunExt "" >
<! ELEMENT gl yphRun (#PCDATA| desc|title|netadatalaltd yph|alani mate| set| ani mat eCol or
%l yphRunExt;)* >
<! ATTLI ST gl yphRun
st dAt trs;
YiestAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class % asslList; #l MPLIED
style %styl eSheet; #I MPLIED
%°r esent ati onAttributes-Fill Stroke;
%°r esent ati onAttri but es- Font Sel ecti on;
%Pr esent ati onAttri but es- G aphi cs;
%Pr esent at i onAttri but es- Text Cont ent El enent s;
%gr aphi csEl ement Event s;
X % Coor di nat es; #l MPLI ED
y %Coordi nates; #l MPLIED
dx %.engths; #l MPLI ED
dy %.engt hs; #l MPLI ED
rot at e CDATA #l| MPLI ED
gl yphOrder CDATA #l MPLI ED
textlLength %.ength; #l MPLIED
| engt hAdj ust (spaci ng| spaci ngAndd yphs) #I MPLI ED >

Attribute definitions:
X = "<coordinate>+"

If asingle <coordinate> is provided, this value represents the new absolute X coordinate for the current text position for the first
'altGlyph' (according to the rendering order specified by attribute glyphOrder) within the 'glyphRun’ element. If a comma- or
space-separated list of <n> <coordinate>sis provided, then the values represent new absolute X coordinates for the current text
position for the first <n> first ‘altGlyph' within the 'glyphRun’ element. If more <coordinate>s are provided than 'atGlyph' elements,
then the extra <coordinate>s will have no effect on glyph positioning. If more 'altGlyph' elements exist than <coordinate>s, then the
starting X coordinate of each extra'atGlyph' is positioned at the X coordinate of the resulting current text position from rendering the
previous character within the 'text' element.

unit identifiers, such ascm, pt or %, can be provided for any <coordinate>. If a<coordinate> is provided without a unit identifier
(e.g., 48), then the value represents a coordinate in the current user coordinate system. If aunit identifier is provided (e.g., 12pt or
10%), then the val ue represents a distance in viewport units relative to the origin of the user coordinate system. (Processing rules
when using absolute unit identifiers and percentages.)

If the attribute is not specified, the effect isasiif the attribute were set to the X coordinate of the current text position.

Animatable: yes.

y = "<coordinate>+"

The corresponding list of absolute Y coordinates for the 'altGlyph' elements within the ‘glyphRun’ element.

If the attribute is not specified, the effect is asiif the attribute were set to the Y coordinate of the current text position.
Animatable: yes.

dx = "<length>+"

If asingle <length> is provided, this value represents the new relative X coordinate for the current text position for the first 'altGlyph'
(according to the rendering order specified by attribute glyphOrder) within the 'glyphRun’ element. Thus, the current text position is

shifted along the x-axis of the current user coordinate system by <length>. If acomma- or space-separated list of <n> <length>sis
provided, then the values represent new relative X coordinates for the current text position for the first <n> 'altGlyph' elements within

the 'glyphRun’ element. Thus, before each 'altGlyph' is rendered, the current text position resulting from drawing the previous
‘altGlyph' (or, for the first glyph rendered in a'text' element, the initial current text position) is shifted along the X axis of the current
user coordinate system by <length>. If more <length>s are provided than 'altGlyph' elements, then any extra <length>s will have no
effect on glyph positioning. If more 'altGlyph' elements exist than <length>s, then the starting X coordinate of each extra character is
positioned at the X coordinate of the resulting current text position from rendering the previous 'altGlyph' within the 'text' element.
unit identifiers, such ascm, pt or %, can be provided for any <length>. If a<length> is provided without a unit identifier (e.g., 48),
then the value represents a length along the x-axis in the current user coordinate system. If one of the unit identifiersis provided (e.g.,
12pt or 10%), then the value represents a distance in the viewport coordinate system. (Processing rules when using absolute unit
identifiers and percentages.)

If the attribute is not specified, the effect isasif avalue of "0" were specified.

Animatable: yes.

dy = "<length>+"

The corresponding list of relative Y coordinates for the 'atGlyph' sub-elements within the 'glyphRun’ el ement.

If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

rotate = "auto | <number>+"

A value of auto causes all glyphsto be oriented as specified by other text attributes without any supplemental rotation.

If asingle <number> is provided, then this value represents a supplemental rotation about the current text position that will be applied
to each 'altGlyph' sub-element rendered within the 'glyphRun’ element.

If acomma- or space-separated list of <number>sis provided, then the first <number> represents the supplemental rotation of the
first 'atGlyph' sub-element, the second <number> represents the supplemental rotation of the second 'altGlyph' sub-element, and so
on. If more <number>s are provided than there are 'altGlyph' sub-elements, then the extra <number>s will be ignored. If more
‘atGlyph' sub-elements are provided than <number>s, then the extra'atGlyph' sub-element will be rotated by the last <number> in
the list.

This supplemental rotation has no impact on the rules by which current text position is modified as glyphs get rendered.

If the attribute is not specified, the effect isasif avalue of "auto" were specified.
Animatable: yes (non-additive, 'set' and ‘animate’ elements only).

glyphOrder = "<integer>+"

A list of indices which specifies the order in which the 'altGlyph' elements should be rendered. The first 'atGlyph' element is
numbered 1.

Thelist of <integer>s must contain one value for each positive integer from 1 to <n>, where <n> isthe number of indicesin the list.
(For example, itisillegal to say glyphOrder="1 3 4" because the number "2" ismissing.) Failure to meet this constraint makes the
document in error.

If more <integer>s are provided than 'atGlyph' elements, then the extra <integer>s which do not have corresponding 'atGlyph'
elements will be skipped.

If more 'atGlyph' elements exist than <integer>s, then any extra 'atGlyph' elements will be rendered in order after al of the
'atGlyph' elements which have corresponding <integer>s.

If the attribute is not specified, the effect isasiif the attribute contained alist of <integer>s"12 3..." increasing by 1 up to the number
of 'atGlyph' sub-elementsin the 'glyphRun’ element.

Animatable: yes.

textLength = "<length>"

The author's computation of the total sum of all of the advance values that correspond to character data within this el ement, including
the advance value on the glyph (horizontal or vertical), the effect of properties 'letter-spacing' and 'word-spacing' and adjustments due
to attributes dx and dy on this 'glyphRun’ element or any descendants. This value is used to calibrate the user agent's own calculations
with that of the author. The user agent will scale all advance values by the ratio of textLength to the user agent's own computed value
for the sum of the advance values. If attribute length is specified on a given element and al so specified on an ancestor, the
adjustments on all character data within this element are controlled by the value of textL ength on this element exclusively, with the
possible side-effect that the adjustment ratio for the contents of this element might be different than the adjustment ratio used for
other content that shares the same ancestor. The user agent must assume that the total advance values for the other content within that
ancestor is the difference between the advance value on that ancestor and the advance value for this element.

A negative value is an error (see Error processing).

If the attribute is not specified anywhere within a'text' element, the effect is asif the author's computation exactly matched the value
calculated by the user agent; thus, no advance adjustments are made.

Animatable: yes.
Attributes defined €l sewhere:

YstdAttrs;, YolangSpaceAttrs;, class, %graphicsElementEvents;, YotestAttrs;, external ResourcesRequired, style,
%Presentati onAttributes-Fill Stroke;, Y0Presentati onAttributes-FontSel ection;, %PresentationAttributes-Graphics;,
%PresentationAttributes- TextContentElements;, lengthAdjust.

To illustrate with an example:

<al t d yphDef id="dyphl">....</altd yphDef>
<al t d yphDef id="d yph2">....</altd yphDef >
<text>
<gl yphRun x="20 30" y="10 10" gl yphlndices="2 1">
<altd yph xlink:href="d yphl">A</altd yph>
<altd yph xlink:href="d yph2">b</altd yph>
</ gl yphRun>
</text>

The result will be that Glyph2 will be rendered at (20,10), and then Glyphl1 will be rendered at (30,10).
All white space within a'glyphRun'’ that is not part of an 'altGlyph' will be ignored.

The value of ‘writing-mode' determines whether glyph advance is |eft-to-right, right-to-left or top-to-bottom.
For text selection, when you copy selection to the clipboard, you get the Unicode code points specified inside of the 'altGlyph' elements.

If any of the 'altGlyph' elements has no character data content within it, then it is assumed to correspond to the previous sibling ‘altGlyph'

which has character data content (i.e., multiple glyphs for a single character). (In this case, it is recommended that user agents do not allow
text selection operations to select between glyphs that map to the same character data content.) If there is no previous sibling with character
data content, then that 'altGlyph' has no corresponding character data content.

10.8 Text layout

10.8.1 Text layout introduction

This section describes the text layout features supported by SV G, which includes support for various international writing directions, such as
left-to-right (e.g., Latin scripts) and bidirectional (e.g., Hebrew or Arabic) and vertical (e.g., Asian scripts). The descriptionsin this section
assume straight line text (i.e., text that is either strictly horizontal or vertical with respect to the current user coordinate system). Subsequent
sections describe the supplemental layout rules for text on a path.

SV G does not provide for automatic line breaks or word wrapping, which makes internationalized text layout for SVG relatively simpler than
it isfor languages which support formatting of multi-line text blocks.

For each 'text' element, the SV G user agent determines the current reference orientation. For standard horizontal or vertical text (i.e., no

text-on-a-path), the reference orientation is the vector pointing towards negative infinity in Y within the current user coordinate system.
(Note: intheinitial coordinate system, the reference orientation is up.) For text on a path, the reference orientation is reset with each

character.

Based on the reference orientation and the value for property 'writing-mode', the SV G user agent determines the current inline progression
direction. For left-to-right text, the inline progression direction points 90 degrees clockwise from the reference orientation vector. For
right-to-left text, the inline progression points 90 degrees counter-clockwise from the reference orientation vector. For top-to-bottom text, the
inline progression direction points 180 degrees from the reference orientation vector.

The shift direction is the direction towards which the baseline table moves due to positive values for property 'baseline-shift'. The shift
direction is such that a positive value shifts the baseline table towards the topmost entry in the parent's baseline table.

In processing a given 'text' element, the SV G user agent keeps track of the current text position. The initial current text position is established
by the x and y attributes on the 'text' element.

The current text position is adjusted after each glyph to establish anew current text position at which the next glyph shall be rendered. The
adjustment to the current text position is based on the current inline progression direction, glyph-specific advance values corresponding to the
alyph orientation of the glyph just rendered, kerning tables in the font and the current values of various attributes and properties, such asthe
spacing properties and any X, v, dx and dy attributes on 'tspan’, 'tref' or 'glyphRun’ elements. If a glyph does not provide explicit advance

values corresponding to the current glyph orientation, then an appropriate approximation should be used. For vertical text, a suggested

approximation is the sum of the ascent and descent values for the glyph. Another suggested approximation for an advance value for both
horizontal and vertical text is the size of an em (see units-per-em).

For each glyph to be rendered, the SV G user agent determines an appropriate alignment-point on the glyph which will be placed exactly at
the current text position. The alignment-point is determined based on glyph cell metricsin the glyph itself, the current inline progression

direction and the glyph orientation relative to the inline progression direction. For most uses of Latin text (i.e., 'writing-mode:lr',
‘text-anchor:start', and 'alignment-baseline:baseline’) the alignment-point in the glyph will be the intersection of left edge of the glyph cell (or
some other glyph-specific x-axis coordinate indicating aleft-side origin point) with the Latin baseline of the glyph. For many cases with
top-to-bottom vertical text layout, the reference point will be either a glyph-specific origin point based on the set of vertical baselines for the
font or the intersection of the center of the glyph with its top line (see [CSS2] for a definition of top line). If a glyph does not provide explicit
origin points corresponding to the current glyph orientation, then an appropriate approximation should be used, such as the intersection of the
left edge of the glyph with the appropriate horizontal baseline for the glyph or intersection of the top edge of the glyph with the appropriate
vertical basdline. If baseline tables are not available, user agents should establish baseline tables that reflect common practice.

Adjustments to the current text position are either absol ute position adjustments or relative position adjustments. An absolute position
adjustment occursin the following circumstances:

« Atthestart of a'text' element
« At the start of each 'textPath' element
« For each character within a'tspan’, 'tref' and 'glyphRun’ element which has an x or y attribute value assigned to it explicitly

All other position adjustments to the current text position are relative position adjustments.

Each absolute position adjustment defines a new text chunk. Absolute position adjustments impact text layout in the following ways:
« Ligatures only occur when a set of characters which might map to aligature are al in the same text chunk.
« Each text chunk represents a separate block of text for alignment due to 'text-anchor’ property values.

« Reordering of characters due to bidirectionality only occurs within atext chunk. Reordering does not happen across text chunks.

10.8.2 Setting the inline progression direction

The 'writing-mode' property specifies whether the initial inline progression direction for a 'text' element shall be left-to-right, right-to-left, or
top-to-bottom. The ‘writing-mode' property applies only to 'text’ elements; the property isignored for 'tspan’, ‘tref’, 'glyphRun’ and ‘textPath’
sub-elements. (Note that the inline progression direction can change within a 'text' element due to the Unicode bidirectional algorithm and
properties 'direction’ and 'unicode-bidi'. For more on bidirectional text, see Relationship with bidirectionality.)

‘writing-mode'

Value: Ir-th | rl-tb | tb-rl | Ir | rl | tb | inherit
Initial: Ir-th
Appliesto: 'text' elements
Inherited: yes
Percentages: N/A
Media: visua
Animatable: no
Ir-tb | Ir

Setstheinitial inline progression direction to left-to-right, asis common in most L atin-based documents. For most characters, the
current text position is advanced from left to right after each glyph is rendered. (When the character data includes characters which
are subject to the Unicode bidirectional algorithm, the text advance rules are more complex. See Relationship with bidirectionality).

rl-th | rl
Setstheinitial inline progression direction to right-to-left, asis common in Arabic or Hebrew scripts. (See Relationship with
bidirectionality.)

th-rl | th

Setsthe initial inline progression direction to top-to-bottom, asis common in Asian scripts. Though hardly as frequent as horizontal,
this type of vertical layout also occursin Latin based documents, particularly in table column or row labels. In most cases, the vertical
baselines running through the middle of each glyph are aligned.

10.8.3 Glyph orientation within a text run

In some cases, it is required to alter the orientation of a sequence of characters relative to the inline progression direction. The requirement is
particularly applicable to vertical layouts of East Asian documents, where sometimes narrow-cell Latin text isto be displayed horizontally
and other times vertically.

Two properties control the glyph orientation relative to the reference orientation for each of the two possible inline progression directions.
‘glyph-orientation-vertical' controls glyph orientation when the inline progression direction is vertical. ‘glyph-orientation-horizontal' controls
glyph orientation when the inline progression direction is horizontal.

'glyph-orientation-vertical'

Value: <angle> | auto | inherit

Initial: auto

Appliesto: 'text', 'tspan’, 'tref', 'glyphRun', 'textPath' elements
Inherited: yes

Percentages. N/A

Media: visua

Animatable: no
<angle>

The value of the angle is an <integer> restricted to the range of -360 to +360 in 90-degree increments.

A value of O indicates that al glyphs are unrotated relative to the reference orientation, resulting in glyphs which are stacked
vertically on top of each other. A value of 90 indicates arotation of 90 degrees clockwise relative to the reference orientation.
Negative angle values are computed modulo 360; thus, avalue of -90 is equivalent to a value of 270.

auto

The glyph orientation relative to the inline progression direction is determined automatically based on the Unicode character number
of thefirst rendered glyph.

Full-width ideographic and full-width Latin glyphs (excluding ideographic punctuation) are oriented as if an <angle> of "0" had been
specified (i.e., glyphs are unrotated relative to the reference orientation, resulting in glyphs which are stacked vertically on top of each
other).

| deographic punctuation and other ideographic glyphs having alternate horizontal and vertical forms shall use the vertical form of the
glyph.

Text which is not full-width will be set asif an <angle> of "90" had been specified; thus, narrow-cell Latin text will be rotated 90
degree clockwise versus full-width ideographic and full-width Latin text.

Note that a value of auto will generally produce the expected results in common uses of mixing Japanese with European characters;
however, the exact algorithms are based on complex interactions between many factors, including font design, and thus different
algorithms might be employed in different processing environments. For precise control, specify explicit <angle> values.

Glyphs corresponding to Arabic or Hebrew characters that are not full-width have the same orientation as narrow-cell Latin.

The glyph orientation affects the amount that the current text position advances as each glyph is rendered. When the inline progression
direction is vertical and the ‘glyph-orientation-vertical' results in an orientation angle that is a multiple of 180 degrees, then the current text
position isincremented according to the vertical metrics of the glyph. Otherwise, if the 'glyph-orientation-vertical' resultsin an orientation
angle that is not a multiple of 180 degrees, then the current text position isincremented according to the horizontal metrics of the glyph.

Thetext layout diagrams in this section use the following symbols:

Fx

- wide-cell glyph (e.g. Han) which isthe n-th glyph in the text run

ha
:|- narrow-cell glyph (e.g. Latin) which isthe n-th glyph in the text run

The orientation which the above symbols assume in the diagrams corresponds to the orientation that the Unicode characters they represent
are intended to assume when rendered in the user agent. Spacing between the glyphsin the diagramsis usually symbolic, unless intentionally
changed to make a point.

The diagrams below illustrate different uses of 'glyph-orientation-vertical’. The diagram on the left shows the result of the mixing of
full-width ideographic glyphs with narrow-cell Latin glyphs when ‘glyph-orientation-vertica’ for the Latin charactersis either auto or 90. The
diagram on the right show the result of mixing full-width ideographic glyphs with narrow-cell Latin glyphs when Latin glyphs are specified
to have a'glyph-orientation-vertical' of 0.

s

Fr
—t

F1

-
-y

Frj
[

msSP 1 OO [E K

Ly
S|

Ly
ma]

\
/
|

Fa

M e — o oM

'glyph-orientation-horizontal'

Value: <angle> | inherit

Initial: 0

Appliesto: 'text', 'tspan’, 'tref', 'glyphRun', 'textPath' elements
Inherited: yes

Percentages. N/A

Media: visual

Animatable: no
<angle>

The value of the angle is an <integer> restricted to the range of -360 to +360 in 90-degree increments.

A value of O indicates that al glyphs are unrotated with respect to the reference orientation, resulting in glyphs which are positioned
side by side. A vaue of 90 indicates an orientation of 90 degrees clockwise from the reference orientation. Angle values are
computed modulo 360; thus, avaue of -90 is equivalent to avalue of 270.

The glyph orientation affects the amount that the current text position advances as each glyph is rendered. When the reference orientation
direction is horizontal and the 'glyph-orientation-horizontal' results in an orientation angle that is a multiple of 180 degrees, then the current
text position is incremented according to the horizontal metrics of the glyph. Otherwise, if the 'glyph-orientation-vertical' resultsin an
orientation angle that is not a multiple of 180 degrees, then the current text position isincremented according to the vertical metrics of the
glyph.

10.8.4 Relationship with bidirectionality

The characters in certain scripts are written from right to left. In some documents, in particular those written with the Arabic or Hebrew
script, and in some mixed-language contexts, text in asingle line may appear with mixed directionality. This phenomenon is called
bidirectionality, or "bidi" for short.

The Unicode standard ([JUNICODE], section 3.11) defines a complex algorithm for determining the proper directionality of text. The
algorithm consists of an implicit part based on character properties, as well as explicit controls for embeddings and overrides. The SVG user
agent applies this bidirectional agorithm when determining the layout of characters within a'text' element. The 'direction’ and 'unicode-bidi'
properties allow authors to override the inherent directionality of the content characters and thus explicitly control how the elements and

attributes of a document language map to this algorithm. These two properties are applicable to all characters who glyphs are perpendicular
to theinline progression direction.

In most cases, the bidirectional agorithm from [UNICODE] produces the desired result automatically, and overriding this a gorithm
propertly is usually quite complex. Therefore, in most cases, authors are discouraged from assigning val ues to these properties.

A more complete discussion of bidirectionality can be found in the "Cascading Style Sheets (CSS) level 2" specification [CSS2].

The processing model for bidirectional text is as follows. The user agent processes the characters which are provided in logical order (i.e., the
order the characters appear in the original document, either viadirect inclusion of viaindirect reference due a 'tref' element), and, for each

text chunk, re-orders the characters after processing the Unicode bidirectional agorithm and properties 'direction’ and 'unicode-bidi', resulting
in apotentially re-ordered list of characters which are now in left-to-right rendering order. Simultaneous with re-ordering of the characters,
the x, y, dx, dy and rotate attributes on the 'tspan’ and 'tref' elements are also re-ordered to maintain the original correspondence between

characters and attribute values. While kerning or ligature processing might be font-specific, the preferred moded is that kerning and ligature
processing occurs between combinations of characters or glyphs after the characters have been re-ordered.

"direction’
Value: Itr | rtl | inherit
Initial: Itr
Appliesto: 'text', 'tspan’, 'tref' and 'textPath’ elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: no

This property specifies the base writing direction of text and the direction of embeddings and overrides (see 'unicode=bidi") for the Unicode
bidirectiona algorithm. For the ‘direction’ property to have any effect, the 'unicode=bidi' property's value must be ‘embed' or ‘override'.

Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].
The 'direction’ property applies only to glyphs oriented perpendicular to the inline progression direction, which includes the usual case of

horizontally-oriented Latin or Arabic text and the case of narrow-cell Latin or Arabic characters rotated 90 degrees clockwise relative to a
top-to-bottom inline progression direction.

'unicode-bidi’
Value: normal | embed | bidi-override | inherit
Initial: normal

Appliesto: 'text', 'tspan’, 'tref' and 'textPath’ elements
Inherited: no

Percentages. N/A

Media: visual

Animatable: no

Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].

10.9 Alignment properties

10.9.1 Text alignment properties

The 'text-anchor' property is used to align (start-, middle- or end-alignment) a string of text relative to a given point.

The 'text-anchor' property is applied to each individual text chunk within a given 'text' element. Each text chunk has an initial current text
position, which represents the point in the user coordinate system resulting from (depending on context) application of the x and y attributes
on the 'text' element, any x or y attribute values on a 'tspan’, 'tref' or 'glyphRun' element assigned explicitly to the first rendered character in a
text chunk, or determination of theinitial current text position for a 'textPath' element.

'text-anchor’
Value: start | middle | end | inherit
Initial: start
Appliesto: 'text', 'tspan’, 'tref’, 'glyphRun', 'textPath' elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

Vaues have the following meanings.
Start
The rendered characters are aligned such that the start of the text string is at theinitial current text position. For Latin or Arabic,

which isusually rendered horizontally, thisis comparable to left alignment. For Asian text with avertical primary text direction, this
is comparable to top alignment.

middle

The rendered characters are aligned such that the middle of the text string is at the current text position. (For text on a path,

conceptually the text string isfirst laid out in a straight line. The midpoint between the start of the text string and the end of the text
string is determined. Then, the text string is mapped onto the path with this midpoint placed at the current text position.)

end

The rendered characters are aligned such that the end of the text string is at the initial current text position. For Latin text in its usual
orientation, thisis comparable to right alignment.

10.9.2 Baseline alignment properties

An overview of baseline alignment and baseline tables can be found above in Fonts, font tables and baselines.

One of the characteristics of international text isthat there are different baselines (different alignment points) for glyphsin different scripts.
For example, in horizontal writing, ideographic scripts, such as Han Ideographs, Katakana, Hiragana, and Hangul, alignment occurs with a
baseline near the bottoms of the glyphs; alphabetic based scripts, such as Latin, Cyrillic, Hebrew, Arabic, align a point that is the bottom of
most glyphs, but some glyphs descend below the baseline; and Indic based scripts are aligned at a point that is near the top of the glyphs.

When different scripts are mixed on aline of text, an adjustment must be made to ensure that the glyphsin the different scripts are aligned
correctly with one another. Open Type [OPENTY PE] fonts have a Baseline table (BASE) [OPENTY PE-BASETABLE] that specifiesthe

offsets of the alternative baselines from the current baseline.

SVG usesasimilar baseline table model that assumes one script (at one font-size) is the "dominant run” during processing of a 'text' element;
that is, al other baselines are defined in relation to this dominant run. The baseline of the script with the dominant run is called the dominant
baseline. So, for example, if the dominant baseline is the al phabetic baseline, there will be offsetsin the baseline table for the alternate
baselines, such as the ideographic baseline and the Indic baseline. There will also be an offset for the math baseline which is used for some
math fonts. Note that there are separate baseline tables for horizontal and vertical writing-modes. The offsets in these tables may be different
for horizontal and vertical writing.

The baseline table established at the start of processing of a'text' element is called the dominant baseline table.

Because the value of the 'font-family' property isalist of fonts, to insure a consistent choice of baseline table we define the nominal font in a
font list asthefirst font in the list for which aglyph is available. Thisisthe first font that could contain a glyph for each character
encountered. (For this definition, glyph data is assumed to be present if afont substitution is made or if the font is synthesized.) This
definition insures a content independent determination of the font and baseline table that is to be used.

The value of the 'font-size' property on the 'text’ element establishes the dominant baseline table font size.

The model assumes that each glyph has a'aignment-baseline' value which specifies the baseline with which the glyph isto be aligned. (The
‘alignment-baseline' is called the "Baseline Tag" in the OpenType baseline table description.) The initial value of the 'alignment-baseline

property uses the baseline identifier associated with the given glyph. Alternate values for 'alignment-baseline' can be useful for glyphs such
asa"*" which are ambiguous with respect to script membership.

The model assumes that the font from which the glyph is drawn also has a baseline table, the font baseline table. This baseline table has
offsets in units-per-em from the (0,0) point to each of the baselines the font knows about. In particular, it has the offset from the glyph's (0,0)
point to the baseline identified by the 'alignment-baseline'.

The offset values in the baseline table are in "design units" which means fractional units of the EM. CSS calls these "units-per-em"
[CSS2-UNITSPEREM]. Thus, the current 'font-size' is used to determine the actual offset from the dominant baseline to the aternate

baselines.

The glyph isaligned so that its baseline identified by its ‘alignment-baseline' is aligned with the baseline with the same name from the
dominant baseline table.

The offset from the dominant baseline of the parent to the baseline identified by the "alignment-baseline' is computed using the dominant
baseline table and dominant baseline table font size. The font baseline table and font size applicable to the glyph are used to compute the
offset from the identified baseline to the (0,0) point of the glyph. This second offset is subtracted from the first offset to get the position of
the (0,0) point in the shift direction. Both offsets are computed by multiplying the baseline value from the baseline table times the appropriate

font size value.

If the 'alignment-baseline' identifies the dominant baseline, then the first offset is zero and the glyph is aligned with the dominant baseline;
otherwise, the glyph is aligned with the chosen alternate baseline.

The baseline identifiers below are used in this specification. Some of these are determined by baseline-tables contained in the nominal font.
Others are computed from other font data as described below.

alphabetic

This identifies the baseline used by most al phabetic and syllabic scripts. These include, but are not limited to the western, southern
indic, southeast asian (non-ideographic) scripts.

ideographic
This identifies the baseline used by ideographic scripts. For historical reasons, this baselineis at the bottom of the ideographic EM

box and not in the center of the ideographic EM box. See the ‘central’ baseline. The ideographic scripts include Chinese, Japanese,
Korean and Vietnamese Chu Nom.

hanging

This identifies the baseline used by northern indic scripts. These scripts include Devanagari, Gurmurhki and Bengali.
mathematical

This identifies the baseline used by mathematical symbols.
central
Thisidentifies a computed baseline that is at the center of the EM box. This baseline lies halfway between the text-before-edge and

text-after-edge baselines. For ideographic fonts, this baseline is often used to align the glyphs; it is an alternative to the ideographic
baseline.

middle

Thisidentifies a computed baseline that is offset from the alphabetic baseline in the shift direction by 1/2 the value of the x-height
font characteristic.

text-before-edge
This identifies the before-edge of the EM box. The position of this baseline may be specified in the baseline-table or it may be
calculated. The position of this baseline is normally around or at the top of the ascenders, but it may not encompass all accents that
can appear above a glyph. For ideographic fonts, the position of this baselineis normally 1 EM in the shift direction from the
"ideographic" baseline. However, some ideographic fonts have a reduced width in the inline-progression-direction to allow tighter

setting. When such afont, designed only for vertical writing-modes, is used in a horizontal writing-mode, the text-before-edge”
baseline may me less than 1 EM from the text-after-edge.

text-after-edge
This identifies the after-edge of the EM box. The position of this baseline may be specified in the baseline-table or it may be

calculated. For fonts with descenders, thisis normally around or at the bottom of the descenders. For these fonts the value of the
"descent' font characteristic is used. For ideographic fonts, the position of this baseline is normally at the "ideographic" baseline.

There are, in addition, two computed baseline that are only defined for line areas. Since SV G does not support the notion of computations
based on line areas, the two computed baselines are mapped as follows:
before-edge
For SVG, thisis equivalent to text-before-edge.
after-edge
For SVG, thisis equivalent to text-after-edge.

There are also four baselines that are defined only for horizontal writing-modes.
top

This baseline is the same as the "before-edge” baseline in a horizontal writing-mode and is undefined in a vertical writing mode.
text-top

This baseline is the same as the "text-before-edge” baseline in a horizontal writing-mode and is undefined in a vertical writing mode.
bottom

This baseline is the same as the "after-edge” baseline in ahorizontal writing-mode and is undefined in a vertical writing mode.
text-bottom

This baseline is the same as the "text-after-edge" baseline in a horizontal writing-mode and is undefined in a vertical writing mode.

The baseline-alignment properties follow.

‘dominant-baseline
Value: auto | autosense-script | no-change | reset-size | ideographic | aphabetic | hanging | mathematical | inherit

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Initial: auto

Appliesto: al inline formatting objects
Inherited: no

Percentages: N/A

Media: visua

Animatable: yes

The "dominant-baseline” property is used to determine or re-determine a scaled-baseline-table. A scaled-baseline-table is a compound value
with three components: a dominant-baseline, a baseline-table and a baseline-table font-size. When the initial value, "auto", would give an
incorrect result, this property can be used to explicitly set the desire scaled-baseline-table.

Vauesfor the property have the following meaning:
auto

If this property occurs on a'text' element, then the computed val ue depends on the value of the 'writing-mode' property. If the
"writing-mode" is horizontal, then the value the dominant-baseline component is "a phabetic”, else if the "writing-mode" is vertical,
then the value the dominant-baseline component is "center". The baseline-table font-size component is set to the value of the
"font-size" property on the formatting object on which the "dominant-baseline" property occurs.

If this property occurs on a'tspan’, 'tref', 'glyphRun’ or 'textPath' element, then the dominant-baseline and the baseline-table
components remain the same as those of the parent formatting object. If the computed "baseline-shift" value actually shifts the
baseline, then the baseline-table font-size component is set to the value of the "font-size" property on the formatting object on which
the "dominant-baseline" property occurs, otherwise the baseline-table font-size remains the same as that of the parent formatting
object. If there is no parent formatting object, the scaled-baseline-table value is constructed as above for 'text’ elements.

use-script

The dominant-baseline and the baseline-table components are set by determining the predominant script of the character data content.
The "writing-mode", whether horizontal or vertical, is used to select the appropriate set of baseline-tables and the dominant baseline
is used to select the baseline-table that corresponds to that baseline. The baseline-table font-size component is set to the value of the
"font-size" property on the formatting object on which the "dominant-baseline" property occurs.

no-change
The dominant-baseline, the baseline-table, and the baseline-table font-size remain the same as that of the parent formatting object.

reset-size
The dominant-baseline and the baseline-table remain the same, but the baseline-table font-size is changed to the value of the
"font-size" property on this formatting object. This re-scales the baseline-table for the current "font-size".

ideographic
The dominant-baselineis set to the "ideographic" baseline using the baseline-table and baseline-table font-size of the parent area, the
baseline-table is changed to correspond to the "ideographic” baseline, and the baseline-table font-size is changed to the value of the
"font-size" property on this formatting object.

alphabetic
The dominant-baselineis set to the "aphabetic" baseline using the baseline-table and baseline-table font-size of the parent area, the
baseline-table is changed to correspond to the "a phabetic" baseline, and the baseline-table font-size is changed to the value of the
"font-size" property on this formatting object.

hanging

The dominant-basglineis set to the "hanging" baseline using the baseline-table and baseline-table font-size of the parent area, the
baseline-table is changed to correspond to the "hanging" baseline, and the baseline-table font-size is changed to the value of the
"font-size" property on this formatting object.

mathematical

The dominant-basglineis set to the "mathematical” baseline using the baseline-table and baseline-table font-size of the parent area,
the baseline-table is changed to correspond to the "mathematical" baseline, and the baseline-table font-size is changed to the value of
the "font-size" property on this formatting object.

If there is no basaline table in the nominal font or if the baseline table lacks an entry for the desired baseline, then the User Agent may use
heuristics to determine the position of the desired baseline.

‘alignment-baseline

Value: auto | baseline | before-edge | text-before-edge | middle | after-edge | text-after-edge | ideographic | alphabetic | hanging |
mathematical | inherit
Initial: auto

Appliesto: 'text', 'tspan’, 'tref', 'glyphRun’, 'textPath' elements

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

This property specifies how an object is aligned with respect to its parent. That is, to which of the parent's baselines the alignment-point of
this object is aligned. The alignment-point defaults to the baseline with the same name asthe value. That is, for the position of "ideographic"
alignment-point is the position of the "ideographic" baseline in the object being aligned.
Vaues have the following meanings:
auto

For SV G, this value represents the dominant-baseline of the script to which the character belongs.
baseline

The alignment-point of the object being aligned is aligned with the dominant-baseline of the parent area.
before-edge

The alignment-point of the object being aligned is aligned with the "before-edge” baseline of the parent area.
text-before-edge

The alignment-point of the object being aligned is aligned with the "text-before-edge" baseline of the parent area.
central

The alignment-point of the object being aligned is aligned with the "central" baseline of the parent area.
middle

The alignment-point of the object being aligned is aligned with the "middle" baseline of the parent area.
after-edge

The alignment-point of the object being aligned is aligned with the "after-edge” baseline of the parent area.
text-after-edge

The alignment-point of the object being aligned is aigned with the "text-after-edge" baseline of the parent area.
ideographic

The alignment-point of the object being aligned is aligned with the "ideographic" baseline of the parent area.
alphabetic

The alignment-point of the object being aligned is aligned with the "a phabetic" baseline of the parent area.
hanging

The alignment-point of the object being aligned is aligned with the "hanging" baseline of the parent area.
mathematical

The alignment-point of the object being aligned is aligned with the "mathematical" baseline of the parent area.
top

The alignment-point of the object being aligned is aligned with the "top" baseline of the parent areaif the writing-mode is horizontal .
Otherwise, the dominant-baselineis used.

bottom

The alignment-point of the object being aligned is aligned with the "bottom™ baseline of the parent area if the writing-modeis
horizontal. Otherwise, the dominant-baseline is used.

text-top

The alignment-point of the object being aligned is aligned with the "text-top" baseline of the parent areaif the writing-mode is
horizontal. Otherwise, the dominant-baselineis used.

text-bottom

The alignment-point of the object being aligned is aligned with the "text-bottom™" baseline of the parent area if the writing-modeis
horizontal. Otherwise, the dominant-baselineis used.

'baseline-shift'
Value: baseline | sub | super | <percentage> | <length> | inherit
Initial: baseline

Appliesto: all inline formatting objects
Inherited: no
Percentages: refersto the "line-height” of the 'text' element, which in the case of SV G is defined to be equal to the 'font-size

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Media: visual
Animatable: yes

The "baseline-shift" property allows repositioning of the dominant-baseline relative to the dominant-baseline of the parent area. The shifted
object might be a sub- or superscript. Within the shifted object, the whole baseline-table is offset; not just a single baseline. The amount of
the shift is determined from information from the parent area, the sub- or superscript offset from the nominal font of the parent area, percent
of the "line-height" of the parent area or an absolute value.

Vaues for the property have the following meaning:
baseline

There is no baseline shift; the dominant-baseline remainsin its origina position.
sub

The dominant-baseline is shifted to the default position for subscripts. The offset to this position is determined by the font data for the
nominal font as adjusted by the dominant baseline-table font-size. If thereis no applicable font data the User Agent may use
heuristics to determine the offset.

super
The dominant-basgline is shifted to the default position for superscripts. The offset to this position is determined by the font data for
the nominal font as adjusted by the dominant baseline-table font-size. If there is no applicable font data the User Agent may use
heuristics to determine the offset.

<per centage>
The computed value of the property is this percentage multiplied by the computed "line-height” of the 'text' element. The
dominant-baseline is shifted in the shift direction (positive value) or opposite to the shift direction (negative value) of the parent area
by the computed value. A value of "0%" is equivaent to "baseline".

<length>
The dominant-baseline is shifted in the shift direction (positive value) or opposite to the shift direction (negative value) of the parent
area by the <length< value. A value of "Ocm" is equivalent to "baseline”.

10.10 Font selection properties

SV G uses the following font specification properties. Except for any additional information provided in this specification, the normative
definition of the property isin[CSS2]. Any SV G-specific notes about these properties are contained in the descriptions below.

'font-family'

Value: [[<family-name> |
<generic-family>1,]* [<family-name> |
<generic-family>] | inherit

Initial: depends on user agent

Appliesto: 'text', 'tspan’, 'tref’, 'glyphRun’, 'textPath' elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property indicates which font family is to be used to render the text, specified as a prioritized list of font family names and/or generic
family names. Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].

‘font-style
Value: normal | italic | oblique | inherit
Initial: normal
Appliesto: 'text', 'tspan’, 'tref', 'glyphRun', 'textPath' elements
Inherited: yes
Percentages: N/A
Media: visua

Animatable: yes

This property specifies whether the text isto be rendered using anormal, italic or oblique face. Except for any additional information
provided in this specification, the normative definition of the property isin [CSS2].

'font-variant'
Value: normal | small-caps | inherit
Initial: normal

Appliesto: 'text', 'tspan’, 'tref’, 'glyphRun’, 'textPath' elements

Inherited: yes
Percentages: N/A
Media: visua
Animatable: yes

This property indicates whether the text is to be rendered using the normal glyphs for lowercase characters or using small-caps glyphs for
lowercase characters. Except for any additional information provided in this specification, the normative definition of the property isin

[CSS2].

'font-weight'
Value: normal | bold | bolder | lighter | 100 | 200 | 300
| 400 | 500 | 600 | 700 | 800 | 900 | inherit
Initial: normal
Appliesto: 'text', 'tspan’, 'tref’, 'glyphRun’, 'textPath’ elements
Inherited: yes
Percentages. N/A
Media: visual

Animatable: yes

This property refers to the boldness or lightness of the glyphs used to render the text, relative to other fontsin the same font family. Except
for any additional information provided in this specification, the normative definition of the property isin [CSS2].

'font-stretch’

Value: normal | wider | narrower |
ultra-condensed | extra-condensed |
condensed | semi-condensed |
semi-expanded | expanded |
extra-expanded | ultra-expanded | inherit

Initial: normal

Appliesto: 'text', 'tspan’, 'tref', 'glyphRun', 'textPath' elements
Inherited: yes

Percentages: N/A

Media: visua

Animatable: yes

This property indicates the desired amount of condensing or expansion in the glyphs used to render the text. Except for any additional
information provided in this specification, the normative definition of the property isin [CSS2].

'font-size'
Value: <absolute-size> | <relative-size> |
<length> | <percentage> | inherit
Initial: medium

Appliesto: 'text', 'tspan’, 'tref', 'glyphRun', 'textPath' elements
Inherited: yes, the computed valueisinherited

Percentages: refer to parent element's font size

Media: visual

Animatable: yes

This property refers to the size of the font from baseline to baseline when multiple lines of text are set solid in amultiline layout
environment. For SVG, if a<length> is provided without a unit identifier (e.g., an unqualified number such as 128), the SV G user agent
processes the <length> as a height value in the current user coordinate system.

If a<length> is provided with one of the unit identifiers (e.g., 12pt or 10%), then the SV G user agent converts the <length> into a
corresponding value in the current user coordinate system by applying the Processing rules when using absolute unit identifiers and

percentages.

Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].
‘font-size-adjust’

Value: <number> | none | inherit

Initial: none

Appliesto: 'text', 'tspan’, 'tref', 'glyphRun', 'textPath' elements
Inherited: yes

Percentages. N/A

Media: visua

Animatable: yes (non-additive, 'set’ and 'animate’ elements only)

This property allows authors to specify an aspect value for an element that will preserve the x-height of the first choice font in a substitute

font. Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].
'font'
Value: [[<'font-style™> || <'font-variant'> || <'font-weight'>]?
<'font-size’> [/ <'line-height'>]? <'font-family>] |
caption | icon | menu | message-box|
small-caption | status-bar | inherit

Initial: seeindividual properties

Appliesto: 'text', 'tspan’, 'tref', 'glyphRun’, 'textPath' elements

Inherited: yes

Percentages: allowed on 'font-size' and 'line-height’ (‘line-height’ same as 'font-size' in SVG)
Media: visua

Animatable: yes (non-additive, 'set’ and 'animate’ elements only)

Shorthand property for setting ‘font-styl€e', ‘font-variant', ‘font-weight', ‘font-size', 'line-height' and ‘font-family’. The 'line-height' property has
no visua effect in SVG. Conforming SV G Viewers are not required to support the various system font options (caption, icon, menu,
message-box, small-caption and status-bar) and can use a system font or one of the generic fonts instead.

Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].

10.11 Spacing properties

'letter-spacing'
Value: normal | <length> | inherit
Initial: normal
Appliesto: 'text', 'tspan’, 'tref’, 'glyphRun’, 'textPath' elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

This property specifies spacing behavior between text characters. For SVG, if a<length> is provided without a unit identifier (e.g., an
unqualified number such as 128), the SV G user agent processes the <length> as awidth value in the current user coordinate system.

If a<length> is provided with one of the unit identifiers (e.g., .25em or 1%), then the SV G user agent converts the <length> into a
corresponding value in the current user coordinate system by applying the Processing rules when using absolute unit identifiers and
percentages.

Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].
‘wor d-spacing'

Value: normal | <length> | inherit

Initial: normal

Appliesto: 'text', 'tspan’, 'tref', 'glyphRun’, 'textPath' elements
Inherited: yes

Percentages. N/A

Media; visual

Animatable: yes

This property specifies spacing behavior between words. For SVG, if a<length> is provided without a unit identifier (e.g., an unqualified
number such as 128), the SV G user agent processes the <length> as a width value in the current user coordinate system.

If a<length> is provided with one of the unit identifiers (e.g., .25em or 1%), then the SV G user agent converts the <length> into a
corresponding value in the current user coordinate system by applying the Processing rules when using absolute unit identifiers and
percentages.

Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].

10.12 Text decoration

'text-decor ation'

Value: none | [underline || overline || line-through || blink] | inherit
Initial: none

Appliesto: 'text', 'tspan’, 'tref', 'glyphRun’, 'textPath' elements
Inherited: no (see prose)

Percentages. N/A

Media; visual

Animatable: yes

This property describes decorations that are added to the text of an element. Conforming SV G Viewers are not required to support the blink
value.

Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].

The CSS2 specification [CSS2] defines the behavior of the 'text-decoration' property using the terminology "block-level elements' and
"inline elements". For the purposes of the 'text-decoration’ property and SV G, a'text' element represents a block-level element and any of the
potential children of a'text' element (e.g., a'tspan’) represent inline elements.

Also, the CSS2 definition of 'text-decoration' specifies that the "color of the decorations' remain the same on descendant elements. Since
SV G offers apainting model consisting of the ability to apply various types of paint (see Painting: Filling, Stroking and Marker Symbols) to
both the interior (i.e., the "fill") and the outline (i.e., the "stroke") of text, for SV G the 'text-decoration’ property is defined such that, for an
element which has a specified value for the 'text-decoration’ property, all decorations on its content and that of its descendants are rendered
using the samefill and stroke properties as are present on the given element. If the 'text-decoration’ property is specified on a descendant,
then that overrides the ancestor.

Example textdecoration01, which uses an internal CSS style sheet, provides examples for 'text-decoration’. The first line of text has no value
for 'text-decoration’, so the initial value of 'text-decoration:none' is used. The second line shows ‘text-decoration:line-through'. The third line
shows 'text-decoration:underline'. The fourth lineillustrates the rule whereby decorations are rendered using the same fill and stroke
properties as are present on the element for which the 'text-decoration' is specified. Since 'text-decoration' is specified on the 'text' element,
all text within the 'text’ element has its underline rendered with the same fill and stroke properties as exist on the 'text' element (i.e., bluefill,
red stroke), even though the various words have different fill and stroke property values. However, the word "different” explicitly specifiesa
value for 'text-decoration’; thus, its underline is rendered using the fill and stroke properties as the 'tspan’ element that surrounds the word
"different” (i.e., yellow fill, darkgreen stroke):

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="12cm' hei ght ="4cn' vi ewBox="0 0 1200 400">
<desc>Exanpl e textdecorati on01 - behavior of 'text-decoration' property</desc>
<def s>
<style type="text/css"><![CDATA
text { font-size:60; fill:blue; stroke:red; stroke-width: 1}
]11></styl e>
</ def s>
<rect x="1" y="1" wi dth="1198" hei ght="398" style="fill:none; stroke:blue"/>
<text x="100" y="75">Nornmal text</text>
<text x="100" y="165" style="text-decoration:line-through">Text with |ine-through</text>
<text x="100" y="255" style="text-decoration:underline">Underlined text</text>
<text x="100" y="345" style="text-decoration:underline">
<t span>One </t span>

<tspan style="fill:yellow stroke: purple">wrd </tspan>
<tspan style="fill:yellow stroke:black">has </tspan>
<tspan style="fill:yellow stroke:darkgreen; text-decoration:underline">different</tspan>
<tspan style="fill:yellow stroke:blue"> underlining</tspan>
</text>
</ svg>
Normal text
nderlin xt
One word has different underining

Example textdecoration01
View this example as SV G (SV G-enabled and CSS-enabled browsers only)

10.13 Text on a path

10.13.1 Introduction to text on a path

In addition to text drawn in a straight line, SV G also includes the ability to place text along the shape of a'path’ element. To specify that a
block of text isto be rendered along the shape of a 'path’, include the given text within a 'textPath' element which includes an xlink:href
attribute with a URI reference to a'path’ element.

10.13.2 The 'textPath' element

<IENTITY % textPat hExt "" >
<! ELEMENT textPath (#PCDATA| desc|title|netadataltspan|tref|altd yph|alaninmate|set|animateCol or

% ext Pat hExt;)* >
<I ATTLI ST textPath

Y%st dAttrs;

9%l i nkRef Attrs;

xlink: href %JRI; #REQUI RED

% angSpaceAttrs;

YiestAttrs;

ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class % asslList; #l MPLIED

style %5tyl eSheet; #Il MPLIED

o%Pr esent ati onAttributes-Fill Stroke;

9%Pr esent ati onAttri but es- Font Sel ecti on;

%Pr esent ati onAttri butes- G aphics;

%°r esent ati onAttri but es- Text Cont ent El enent s;
%gr aphi csEl enent Event s;

start O f set CDATA #| MPLI ED

textLength %.ength; # MPLIED

| engt hAdj ust ('spaci ng| spaci ngAndG@ yphs) #l MPLI ED
net hod (align|stretch) #l MPLIED

spaci ng (auto|exact) #l MPLI ED >

Attribute definitions:
startOffset = "<length> | <percentage>"

An offset from the start of the 'path’ for the initial current text position, calculated using the user agent's distance along the path
algorithm. If a <length> without a percentage is given, then the startOffset represents a distance along the path measured in the
current user coordinate system.

If a <percentage> is given, then the startOffset represents a percentage distance along the entire path. Thus, startOffset="0%"
indicates the start point of the 'path’ and startOffset="100%" indicates the end point of the 'path'.

A negative valueis an error (see Error processing).

If the attribute is not specified, the effect isasif avalue of "0" were specified.

Animatable: yes.

method = "align | stretch"

Indicates the method by which text should be rendered along the path.

A value of align indicates that the glyphs should be rendered using simple 2x3 transformations such that there is no
stretching/warping of the glyphs. Typically, supplemental rotation, scaling and trandlation transformations are done for each glyph to
be rendered. As aresult, with align, fonts where the glyphs are designed to be connected (e.g., cursive fonts), the connections may not
align properly when text is rendered along a path.

A value of stretch indicates that the glyph outlines will be converted into paths, and then all end points and control points will be
adjusted to be along the perpendicular vectors from the path, thereby stretching and possibly warping the glyphs. With this approach,
connected glyphs, such asin cursive scripts, will maintain their connections.

file:///D|/Public/CR-SVG-20000802/images/text/textdecoration01.svg

If the attribute is not specified, the effect isasif avalue of align were specified.
Animatable: yes.

spacing = "auto | exact”
Indicates how the user agent should determine the spacing between glyphs that are to be rendered along a path.
A value of exact indicates that the glyphs should be rendered exactly according to the spacing rules as specified in Text on a path

layout rules.

A value of auto indicates that the user agent should use text-on-a-path layout algorithms to adjust the spacing between glyphs in order
to achieve visually appealing results.

If the attribute is not specified, the effect isasif avalue of exact were specified.

Animatable: yes.

xlink:href = "<uri>"

A URI reference to the 'path’ element onto which the glyphs will be rendered. If <uri>isan invalid reference (e.g., no such element
exists, or the referenced element is not a 'path’), then the 'textPath' element isin error and its entire contents shall not be rendered by

the user agent.
Animatable: yes.

Attributes defined elsewhere:

%stdAttrs;, %langSpaceAttrs;, class, %graphicsElementEvents;, Y%otestAttrs;, external ResourcesRequired, textL ength,
%xlinkRefAttrs;, style, %PresentationAttributes-Fill Stroke;, %oPresentationAttributes-FontSelection;,
9%Presentati onAttributes-Graphics;, %Presentati onAttributes-TextContentElements;, |lengthAdjust.

Example toapO1 provides a simple example of text on a path:

<?xm version="1.0" standal one="no"?>
<I DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="10cnt hei ght="3cni' vi ewBox="0 0 1000 300" >

<def s>
<pat h id="MPat h"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap0l - sinple text on a path</desc>

<use xlink:href="#MWM/Path" style="fill:none; stroke:red" />
<text style="font-fam|ly:Verdana; font-size:42.3333; fill:blue">
<t ext Pat h xl i nk: href ="#MWPat h" >
W go up, then we go down, then up again
</ t ext Pat h>

</text>
</ svg>
‘.’,tl&.r\-
\}gﬁw\:‘?*) ‘;spf:ﬁgﬁln_
t b
o8
Example toap01

View this example as SVG (SV G-enabled browsers only)

Example toap02 shows how 'tspan’ elements can be included within ‘textPath' elements to adjust styling attributes and adjust the current text
position before rendering a particular glyph. The first occurrence of the word "up"” is filled with the color red. Attribute dy is used to lift the
word "up" from the baseline.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

file:///D|/Public/CR-SVG-20000802/images/text/toap01.svg

"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="10cn hei ght="3cnt vi ewBox="0 0 1000 300" >

<def s>
<pat h i d="MPat h"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap02 - tspan within textPath</desc>

<use xlink: href="#MPath" style="fill:none; stroke:red" />
<text style="font-famly:Verdana; font-size:42.3333; fill:blue">
<text Pat h xli nk: href ="#M/Pat h" >
W go
<tspan dy="-30" style="fill:red">
up
</t span>

<tspan dy="30">

</t span>
then we go down, then up again
</ t ext Pat h>
</text>
</ svg>

o9 thep

e , ; z:f-?»f‘m"
\t}ﬁ’y Qt%h’m, i >

Example toap02
View this example as SV G (SV G-enabled browsers only)

Example toap03 demonstrates the use of the startOffset attribute on the 'textPath’ element to specify the start position of thetext string as a
particular position along the path. Notice that glyphs that fall off the end of the path are not rendered (see text on a path layout rules).

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="10cnm' hei ght ="3cn' vi ewBox="0 0 1000 300">

<def s>
<pat h id="MPat h"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap03 - text on a path with startOfset attribute</desc>

<use xlink:href="#MWPath" style="fill:none; stroke:red" />
<text style="font-famly:Verdana; font-size:42.3333; fill:blue">
<t ext Pat h xlink: href="#M/Pat h" start O fset="80% >
W go up, then we go down, then up again
</ t ext Pat h>
</text>
</ svg>

file:///D|/Public/CR-SVG-20000802/images/text/toap02.svg

.___.-"'--.. ., ___'.;_'!,.L';:l
e .
/ >
\\.H

Example toap03

View this example as SV G (SV G-enabled browsers only)

10.13.3 Text on a path layout rules

Conceptually, for text on a path the target path is stretched out into either a horizontal or vertical straight line segment. For horizontal text
layout flows, the path is stretched out into a hypothetical horizontal line segment such that the start of the path is mapped to the | eft of the
line segment. For vertical text layout flows, the path is stretched out into a hypothetical vertical line segment such that the start of the path is
mapped to the top of the line segment. The standard text layout rules are applied to the hypothetical straight line segment and the result is

mapped back onto the target path. Vertical and bidirectional text layout rules also apply to text on a path.

The reference orientation is determined individually for each glyph that is rendered along the path. For horizontal text layout flows, the
reference orientation for a given glyph is the vector that starts at the intersection point on the path to which the glyph is attached and which
pointsin the direction 90 degrees counter-clockwise from the angle of the curve at the intersection point. For vertical text layout flows, the
reference orientation for a given glyph is the vector that starts at the intersection point on the path to which the glyph is attached and which
pointsin the direction 180 degrees from the angle of the curve at the intersection point.

Example toap04 will be used to illustrate the particular layout rules for text on a path that supplement the basic text layout rules for straight
line horizontal or vertical text.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

"http://ww. w3. org/ TR 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="10cn' hei ght ="3cni' vi ewBox="0 0 1000 300">

<def s>
<pat h id="MPat h"
d="M 100 100
C 150 100 250 200 300 200
C 350 200 450 100 500 100
C 550 100 650 200 700 200
C 750 200 850 100 900 100" />
</ def s>

<desc>Exanpl e toap04 = text on a path | ayout rul es</desc>

<use xlink:href="#MWPath" style="fill:none; stroke:red" />
<text style="font-famly:Verdana; font-size:63.5; fill:blue">
<t ext Pat h xl i nk: href ="#MWPat h" >
Choose shane or get war
</ t ext Pat h>

</text>
</ svg>
4 Q - {': i"'..
Example toap04

View this example as SV G (SV G-enabled browsers only)

The following picture does an initial zoom in on the first glyph in the 'text’ element.

file:///D|/Public/CR-SVG-20000802/images/text/toap03.svg
file:///D|/Public/CR-SVG-20000802/images/text/toap04.svg

Ch-

The small dot above shows the point at which the glyph is attached to the path. The box around the glyph shows the glyph is rotated such that
its horizontal axisis parallel to the tangent of the curve at the point at which the glyph is attached to the path. The box also shows the glyph's
charwidth (i.e., the amount which the current text position advances horizontally when the glyph is drawn using horizontal text layout).

The next picture zoomsin further to demonstrate the detailed layout rules.

o

For left-to-right horizontal text layout along a path (i.e., when the glyph orientation is perpendicular to the inline progression direction), the
layout rules are as follows:

Determine the startpoint-on-the-path for the first glyph using attribute startOffset and property 'text-anchor'. For 'text-anchor:start’,
startpoint-on-the-path is the point on the path which represents the point on the path which is startOffset distance aong the path from
the start of the path, calculated using the user agent's distance along the path a gorithm. For ‘text-anchor:middl€,
startpoint-on-the-path is the point on the path which represents the point on the path which is[startOffset minus half of the total

advance values for all of the glyphsin the 'textPath' element]. distance along the path from the start of the path, calculated using the
user agent's distance along the path algorithm. For 'text-anchor:end', startpoint-on-the-path is the point on the path which represents

the point on the path which is[startOffset minus the total advance valuesfor al of the glyphsin the 'textPath' element]. Before

rendering the first glyph, the horizontal component of the startpoint-on-the-path is adjusted to take into account various horizontal
alignment text properties and attributes, such as a dx attribute value on a'tspan’ element. (In the picture above, the

startpoint-on-the-path is the leftmost dot on the path.)

Determine the glyph's charwidth (i.e., the amount which the current text position advances horizontally when the glyph is drawn
using horizontal text layout). (In the picture above, the charwidth is the distance between the two dots at the side of the box.)
Determine the point on the curve which is charwidth distance along the path from the startpoint-on-the-path for this glyph, calculated
using the user agent's distance along the path algorithm. This point is the endpoint-on-the-path for the glyph. (In the picture above, the
endpoint-on-the-path for the glyph is the rightmost dot on the path.)

Determine the midpoint-on-the-path, which is the point on the path which is"halfway" (user agents can choose either a distance

calculation or a parametric calculation) between the startpoint-on-the-path and the endpoint-on-the-path. (In the picture above, the
midpoint-on-the-path is shown as a white dot.)

Determine the glyph-midline, which isthe vertical line in the glyph's coordinate system that goes through the glyph's x-axis midpoint.
(In the picture above, the glyph-midline is shown as a dashed line.)

Position the glyph such that the glyph-midline passes through the midpoint-on-the-path and is perpendicular to the line through the
startpoint-on-the-path and the endpoint-on-the-path.

Align the glyph vertically relative to the midpoint-on-the-path based on property 'alignment-baseline’ and any specified values for
attribute dy on a'tspan’ element. In the example above, the 'alignment-baseline’ property is unspecified, so the initial value of
‘alignment-baseline:baseline' will be used. There are no 'tspan’ elements; thus, the baseline of the glyph is aligned to the
midpoint-on-the-path.

For each subsequent glyph, set a new startpoint-on-the-path as the previous endpoint-on-the-path, but with appropriate adjustments
taking into account horizontal kerning tables in the font and current values of various attributes and properties, including spacing
properties and 'tspan’ elements with values provided for attributes dx and dy. All adjustments are calculated as distance adjustments
along the path, calculated using the user agent's distance along the path algorithm.

Glyphs whose midpoint-on-the-path are off either end of the path are not rendered.

« Continue rendering glyphs until there are no more glyphs.

Comparable rules are used for top-to-bottom vertical text layout along a path (i.e., when the glyph orientation is parallel with the inline
progression direction), the layout rules are as follows:

« Determine the startpoint-on-the-path using the same method as for horizontal text layout along a path, except that before rendering
the first glyph, the horizontal component of the startpoint-on-the-path is adjusted to take into account varoius vertical alignment text
properties and attributes, such as a dy attribute value on a'tspan’ element.

« Determine the glyph's charheight (i.e., the amount which the current text position advances vertically when the glyph is drawn using
vertical text layout).

« Determine the point on the curve which is charheight distance along the path from the startpoint-on-the-path for this glyph, calculated
using the user agent's distance along the path algorithm. This point is the endpoint-on-the-path for the glyph.

« Determine the midpoint-on-the-path, which is the point on the path which is "halfway" (user agents can choose either a distance
calculation or a parametric cal culation) between the startpoint-on-the-path and the endpoint-on-the-path.

« Determine the glyph-midline, which is the horizontal line in the glyph's coordinate system that goes through the glyph's y-axis
midpoint.

« Position the glyph such that the glyph-midline passes through the midpoint-on-the-path and is perpendicular to the line through the
startpoint-on-the-path and the endpoint-on-the-path.

« Aligntheglyph horizontally (where horizontal is relative to the glyph's coordinate system) relative to the midpoint-on-the-path based
on property ‘alignment-baseline' and any specified values for attribute dx on a'tspan’ element.

« For each subsequent glyph, set a new startpoint-on-the-path as the previous endpoint-on-the-path, but with appropriate adjustments
taking into account vertical kerning tablesin the font and current values of various attributes and properties, including spacing
properties and 'tspan’ elements with values provided for attributes dx and dy. All adjustments are calculated as distance adjustments
along the path, calculated using the user agent's distance along the path algorithm.

« Glyphs whose midpoint-on-the-path are off either end of the path are not rendered.
« Continue rendering glyphs until there are no more glyphs.

In the calculations above, if either the startpoint-on-the-path or the endpoint-on-the-path is off the end of the path, then extend the path
beyond its end points with astraight line that is parallel to the tangent at the path at its end point so that the midpoint-on-the-path can still be
calculated.

When the inline progression direction is horizontal, then any x attributes on ‘tspan’, 'tref' or 'glyphRun’ elements represent new absolute
offsets along the path, thus providing explicit new values for startpoint-on-the-path. Any y attributes on 'tspan’, 'tref’ or 'glyphRun’ el ements
areignored. When the inline progression direction is horizontal, then any y attributes on 'tspan’, 'tref' or 'glyphRun’ elements represent new
absolute offsets along the path, thus providing explicit new values for startpoint-on-the-path. Any x attributes on 'tspan’, 'tref' or 'glyphRun’
elements are ignored.

10.14 Alternate glyphs

There are situations such as ligatures, special-purpose fonts (e.g., afont for music symbols) or aternate glyphs for Asian text strings where it
isrequired that a different glyph is used than the glyph which normally corresponds to the given character data.

The 'dtGlyph' element provides control over the glyphs used to render particular character data.

<IENTITY % altd yphExt "" >
<! ELEMENT altd yph (#PCDATA %altd yphExt;)* >

<I ATTLI ST al td yph
st dAttrs;
%l i nkRef Attrs;
xlink: href %Rl ; #REQUI RED
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED >

Attribute definitions:
xlink:href ="<uri>"

A URI reference either to a'glyph’ element in an SV G document fragment or to a 'altGlyphDef' element. If the referenceisto a'glyph'’
element, then that glyph is rendered instead of the character(s) that are inside of the 'altGlyph' element. If the referenceisto a

‘altGlyphDef' element, then if an appropriate set alternate glyphs are located from processing the 'altGlyphDef' element, then those
alternate glyphs are rendered instead of the character(s) that are inside of the 'altGlyph' element. If the reference does not result in
successful identification of an alternate glyph to use, then the character(s) that are inside of the 'altGlyph' element are rendered.
Animatable: no.

Attributes defined €l sewhere:
YstdAttrs;, %oxlinkRefAttrs;, YotestAttrs;, Y%langSpaceAttrs;, external ResourcesRequired.

The 'dtGlyphDef' element defines alist of possible glyph substitutions which can be referenced from an 'atGlyph' element.

An 'altGlyphDef' can specify either a single glyph or a sequence of glyphs. When only asingle glyph is desired, then the 'altGlyphDef' has
one or more 'glyphRef' elements as its children. When a sequence of glyphsis desired, then the 'atGlyphDef' has one or more 'atGlyphltem'
elements as its children, where each 'atGlyphltem’ has 'glyphRef' elements as its children.

Each 'glyphRef' element represents a potentia glyph to use as an alternate glyph. The first 'glyphRef' element which results in a successful
identification of an actual glyph will be applied. If alist of 'dtGlyphltem' elementsif provided, then the first successful 'glyphRef* within
each 'altGlyphitem' will be applied. If any of the 'altGlyphltem’ elements does not successfully find one of its 'glyphRef' glyphs, then the
entire attempt to define an alternate glyph fails, and the user agent then renders the character data within the referencing ‘altGlyph' element.

<IENTITY % alt @ yphDef Ext "" >
<! ELEMENT altd yphDef ((altd yphltem+| gl yphRef+) %altd yphDef Ext;) >

<! ATTLI ST al t d yphDef
Y%st dAttrs; >
Attributes defined €l sewhere:
Y%stdAlttrs;.

‘altGlyphltem' elements are used when an 'altGlyphDef' element specifies that multiple glyphs should be used as the substitute glyphs.

<IENTITY %altd yphltenExt "" >
<! ELEMENT altd yphltem (glyphRef+ %l td yphltenExt;) >

<I ATTLI ST altd yphltem
Y%st dAttrs; >

Attributes defined €l sewhere:
Y%ostdAttrs;.

The 'glyphRef' element defines a possible glyph substitution, consisting of afont selectors, a glyph identifier and afont format.

<! ELEMENT gl yphRef EMPTY >
<! ATTLI ST gl yphRef
YstdAttrs;
%l inkRef Attrs;
xlink: href %JRI; #REQUI RED
class %l asslList; #l MPLI ED
style %5tyl eSheet; #| MPLIED
%Pr esent ati onAttri but es- Font Sel ecti on;
gl yphRef CDATA #REQUI RED
format CDATA #REQUI RED >

Attribute definitions:
xlink:href ="<uri>"

A URI reference to a'glyph’ element in an SV G document fragment. The referenced 'glyph'’ is rendered as an aternate glyph.
Animatable: no.

glyphRef = "<string>"

The glyph identifier, the format of which is dependent on the format of the given font.
Animatable: no.

format = "<string>"

The format of the given font. If the font isin one of the formats listed in the [CSS2] specification (e.g., TrueDoc™ Portable Font
Resource or Embedded OpenType), then the <string> must contain the corresponding font format string defined in the [CSS2]
specification (e.g., truedoc-pfr or embedded-opentype).
Animatable: no.

Attributes defined elsewhere:

%stdAttrs;, %oxlinkRefAttrs;, class, style, %oPresentati onAttributes-FontSel ection:;.

10.15 White space handling

SV G supports the standard XML attribute xml:space to specify the handling of white space characters within agiven 'text' element's
character data. The SV G user agent has special processing rules associated with this attribute as described below. These are behaviors that
occur subsequent to XML parsing [XML 10] and any construction of a Document Object Model [DOM2].

xml:space is an inheritabl e attribute which can have one of two values:

« default (theinitial/default value for xml:space) - When xml : space="def aul t ", the SV G user agent will do the following using
acopy of the original character data content. First, it will remove all newline characters. Then it will convert all tab charactersinto
space characters. Then, it will strip off all leading and trailing space characters. Then, all contiguous space characters will be
consolidated.

o preserve- Whenxm : space="preserve", the SVG user agent will do the following using a copy of the original character data
content. It will convert all newline and tab characters into space characters. Then, it will draw all space characters, including leading,

trailing and multiple contiguous space characters. Thus, when drawn with xm : space="preserve",thestring" a b" (three
spaces between "a" and "b") will produce alarger separation between "a" and "b" than" a b" (one space between "a" and "b").

The following examplesillustrate that line indentation can be important when using xm : space="def aul t " . The fragments below show
two pairs of equivalent 'text' elements. Each pair consists of two equivalent ‘text' elements, with the first ‘text' element using
xml:space="default’ and the second using xml:space="preserve'. For these examples, there is no extra white space at the end of any of the lines
(i.e., theline break occursimmediately after the last visible character).

[01] <text xnl:space='default'>

[02] W5 exanpl e

[03] i ndented |ines

[04] </text>

[05] <text xnl:space='preserve' >W5 exanpl e i ndented |ines</text>
[06]

[07] <text xnl:space='default'>

[08] W5 exanpl e

[09] non-indented |ines

[10] </text>

[11] <text xnl:space=' preserve' >W5 exanpl enon-i ndented |ines</text>

Thefirst pair of 'text' elements above show the effect of indented character data. The attribute xml:space="default’ in the first 'text' element
instructs the user agent to:
« convert all tabs (if any) to space characters,
« stripout al line breaks (i.e., strip out the line breaks at the end of lines[01], [02] and [03]),
« strip out al leading space characters (i.e., strip out space characters before "WS example' on line [02]),
« strip out all trailing space characters (i.e., strip out space characters before "</text>" on line [04]),
« consolidate all intermediate space characters (i.e., the space characters before "indented lines' on line [03]) into a single space
character.
The second pair of ‘text’ elements above show the effect of indented character data. The attribute xml:space="default’ in the third 'text'
element instructs the user agent to:
« convert all tabs (if any) to space characters,
« strip out al line breaks (i.e., strip out the line breaks at the end of lines[07], [08] and [09]),
« strip out al leading space characters (there are no leading space characters in this example),
« strip out al trailing space characters (i.e., strip out space characters before "</text>" on line [10]),
. cgnsol i dat;e all intermediate space characters into a single space character (in this example, there are no intermediate space
characters).

Note that XML parsers are required to convert the standard representations for a newline indicator (e.g., the literal two-character sequence

"#xD#xA" or the standalone literals #xD or #xA) into the single character #xA before passing character data to the application. Thus, each
newlinein SV G will be represented by the single character #xA, no matter what representation for newlines might have been used in the
original resource. (See XML end-of-line handling.)

Any featuresin the SVG language or the SVG DOM that are based on character position number, such asthe x, y, dx, dy and rotate attributes
on the 'tspan’, 'tref' 'glyphRun’ elements, are based on character position after applying the white space handling rules described here. In

particular, if xm : space="def aul t", itis often the case that white space characters are removed as part of processing. Character
position numbers index into the text string after the white space characters have been removed per the rulesin this section.

The xml:space attribute is:

Animatable: no.

10.16 Text selection and clipboard operations

Conforming SV G viewers on systems which have the capacity for text selection (e.g., systems which are equipped with a pointer device such
as amouse) and which have system clipboards for copy/paste operations are required to support:

« user selection of text stringsin SVG content
« the ability to copy selected text strings to the system clipboard

A text selection operation starts when all of the following occur:

« the user positions the pointing device over a glyph that has been rendered as part of a'text’ element, initiates a select operation (e.g.,
pressing the standard system mouse button for select operations) and then moves the pointing device while continuing the select
operation (e.g., continuing to press the standard system mouse button for select operations)

« ho other visible graphics element has been painted above the glyph at the point at which the pointing device was clicked

« ho links or events have been assigned to the 'text', 'tspan’ or 'textPath’ , element(s) (or their ancestors) associated with the given
glyph.

As the text selection operation proceeds (e.g., the user continues to press the given mouse button), all associated events with other graphics
elements areignored (i.e., the text selection operation is modal) and the SV G user agent shall dynamically indicate which characters are
selected by an appropriate highlighting technique, such as redrawing the selected glyphs with inverse colors. As the pointer is moved during
the text selection process, the end glyph for the text selection operation is the glyph within the same 'text’ element whose glyph cell is closest
to the pointer. All characters within the 'text’ element whose position within the 'text’ element is between the start of selection and end of

selection shall be highlighted, regardless of position on the canvas and regardless of any graphics elements that might be above the end of
selection point.

Once the text selection operation ends (e.g., the user releases the given mouse button), the selected text will stay highlighted until an event
occurs which cancels text selection, such as a pointer device activation event (e.g., pressing a mouse button).

Detailed rules for determining which characters to highlight during a text selection operation are provided in Text selection implementation
notes.

For systems which have system clipboards, the SV G user agent is required to provide a user interface for initiating a copy of the currently
selected text to the system clipboard. It is sufficient for the SV G user agent to post the selected text string in the system's appropriate
clipboard format for plain text, but it is preferable if the SV G user agent also posts arich text alternative which captures the various font
properties associated with the given text string.

For bidirectional text, the user agent must support text selection in logical order, which will result in discontinuous highlighting of glyphs
due to the bidirectional reordering of characters. User agents can provide an alternative ability to select bidirectional text in visual rendering
order (i.e., after bidirectional text layout algorithms have been applied), with the result that selected character data might be discontinous

logically. Inthis case, if the user requests that bidirectional text be copied to the clipboard, then the user agent is required to make
appropriate adjustments to copy only the visually selected characters to the clipboard.

When feasible, it is recommended that generators of SV G attempt to order their text strings to facilitate properly ordered text selection within
SV G viewing applications such as Web browsers.

10.17 DOM interfaces

The following interfaces are defined below: SV GTextContentElement, SV GTextElement, SV GTextRotate, SV GAnimatedTextRotate,
SV GTextPositioningElement, SV GT SpanElement, SV GTRefElement, SV GGlyphRunElement, SV GTextPathElement,
SV GAItGlyphElement, SV GAItGlyphDefElement, SV GAItGlyphltemElement, SV GGlyphRefElement.

http://www.w3.org/TR/REC-xml#sec-line-ends

Interface SVGTextContentElement

The SV GTextContentElement interface is inherited by various text-related interfaces, such as SV GTextElement, SV GT SpanElement,
SVGTRefElement, SV GGlyphRunElement and SV GTextPathElement.

IDL Definition

i nterface SVGText Cont ent El enent
SVGEl enent ,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
events:: Event Target {

/1 | engthAdj ust Types

const unsigned short LENGTHADJUST UNKNOMN = 0;

const unsi gned short LENGTHADJUST SPACI NG = 1,

const unsi gned short LENGTHADJUST_ SPACI NGANDGLYPHS = 2;

readonly attribute SVGAni mat edLengt h t ext Lengt h;

readonly attribute SVGAni mat edEnuner ati on | engt hAdj ust;

| ong get Nunmber Of Chars ();

fl oat get Comput edText Length ();

fl oat get SubStringLength (in unsigned |Iong charnum in unsigned |ong nchars)

rai ses(DOVException);

SVGPoi nt get StartPositionO Char (in unsigned | ong charnum)
rai ses(DOVException);

SVGPoi nt get EndPosi ti onCOf Char (in unsigned | ong charnum)
rai ses(DOVException);

SVGRect getExtentOfChar (in unsigned |ong charnum)
rai ses(DOVException);

fl oat get Rotati onOf Char (in unsigned | ong charnum)
rai ses(DOVException);
| ong get Char NumAt Position (in SVGPoint point);
voi d sel ect SubString (in unsigned |long charnum in unsigned |ong nchars)

rai ses(DOVException);
1

Definition group lengthAdjust Types
Defined constants

LENGTHADJUST_UNKNOWN The enumeration was set to avaue that is not one of predefined types. It is
invalid to attempt to define a new value of this type or to attempt to switch an
existing value to this type.

LENGTHADJUST_SPACING Corresponds to value spacing.
LENGTHADJUST_SPACINGANDGLYPHS Corresponds to value spacingAndGlyphs.

Attributes
readonly SV GAnimatedL ength textLength
Corresponds to attribute textL ength on the given element.
readonly SV GAnimatedEnumeration lengthAdjust

Corresponds to attribute lengthAdjust on the given element. The value must be one of the length adjust constants specified
above.

Methods
getNumberOfChars

Returns the total number of characters to be rendered within the current element. Includes characters which are included viaa
'tref' reference.

No Parameters
Return value

long Total number of characters.
No Exceptions
getComputedTextLength

Thetotal sum of al of the advance values from rendering all of the characters within this element, including the advance value
on the glyphs (horizontal or vertical), the effect of properties 'letter-spacing' and 'word-spacing' and adjustments due to
attributes dx and dy on 'tspan’ el ements. For non-rendering environments, the user agent shall make reasonable assumptions
about glyph metrics.

No Parameters

Return value

float The text advance distance.
No Exceptions
getSubStringL ength
Thetotal sum of al of the advance values from rendering the specified substring of the characters, including the advance
value on the glyphs (horizontal or vertical), the effect of properties 'letter-spacing' and 'word-spacing' and adjustments due to

attributes dx and dy on 'tspan’ elements. For non-rendering environments, the user agent shall make reasonable assumptions
about glyph metrics.

Parameters

in unsigned long charnum The index of the first character in the substring, where the first character has an index of 0.
inunsigned long nchars ~ The number of characters in the substring.

Return value
float The text advance distance.
Exceptions

DOMException INDEX_SIZE_ERR: Raised if the charnum is negative or if charnum+ncharsis greater than or equal
to the number of characters at this node.

getStartPositionOf Char

Returns the current text position before rendering the character in the user coordinate system for rendering the glyph(s) that
correspond to the specified character. The current text position has already taken into account the effects of any inter-character
adjustments due to properties ‘word-spacing' and 'letter-spacing, attributes 'x', 'y", 'dx" and 'dy’, and any adjustments due to
kerning. If multiple consecutive characters are rendered inseparably (e.g., as a single glyph or a sequence of glyphs), then each
of the inseparable characters will return the start position for the first glyph.

Parameters

in unsigned long charnum The index of the character, where the first character has an index of 0.
Return value

SVGPoint The character's start position.
Exceptions

DOMException INDEX_SIZE ERR: Raised if the charnum is negative or if charnum is greater than or equal to the
number of characters at this node.

getEndPositionOf Char

Returns the current text position after rendering the character in the user coordinate system for rendering the glyph(s) that
correspond to the specified character. This current text position does not take into account the effects of any inter-character
adjustments to prepare for the next character, such as properties 'word-spacing' and 'letter-spacing', attributes 'x', 'y', 'dx' and
'dy', and any adjustments due to kerning. If multiple consecutive characters are rendered inseparably (e.g., as asingle glyph or
a sequence of glyphs), then each of the inseparable characters will return the end position for the last glyph.

Parameters

in unsigned long charnum The index of the character, where the first character has an index of 0.
Return value

SVGPoaint The character's end position.
Exceptions

DOMException INDEX_SIZE ERR: Raised if the charnum is negative or if charnum is greater than or equal to the
number of characters at this node.
getExtentOf Char

Returns atightest rectangle which defines the minimum and maximum X and Y valuesin the user coordinate system for
rendering the glyph(s) that correspond to the specified character. The calculations assume that all glyphs occupy the full
standard glyph cell for the font. If multiple consecutive characters are rendered inseparably (e.g., asasingleglyph or a
sequence of glyphs), then each of the inseparable characters will return the same extent.

Parameters

in unsigned long charnum The index of the character, where the first character has an index of 0.
Return value

SVGRect The rectangle which encloses all of the rendered glyph(s).
Exceptions

DOMEXxception INDEX_SIZE ERR: Raised if the charnum is negative or if charnum is greater than or equal to the
number of characters at this node.

getRotationOf Char

Returns the rotation value relative to the current user coordinate system used to render the glyph(s) corresponding to the
specified character. If multiple glyph(s) are used to render the given character and the glyphs each have different rotations
(e.g., due to text-on-a-path), the user agent shall return an average value (e.g., the rotation angle at the midpoint along the path
for all glyphs used to render this character). The rotation value represents the rotation that is supplemental to any rotation due
to properties 'glyph-orientation-horizontal' and 'glyph-orientation-vertical'; thus, any glyph rotations due to these properties are
not included into the returned rotation value. If multiple consecutive characters are rendered inseparably (e.g., asasingle
glyph or a sequence of glyphs), then each of the inseparable characters will return the same rotation value.

Parameters

in unsigned long charnum The index of the character, where the first character has an index of 0.
Return value

float The rotation angle.
Exceptions

DOMException INDEX_SIZE ERR: Raised if the charnum is negative or if charnum is greater than or equal to the
number of characters at this node.

getCharNumAtPosition

Returns the index of the character whose corresponding glyph cell bounding box contains the specified point. The calculations
assume that all glyphs occupy the full standard glyph cell for the font. If no such character exists, avalue of -1 is returned. If
multiple such characters exist, the character within the element whose glyphs were rendered last (i.e., take into account any
reordering such as for bidirectional text) is used. If multiple consecutive characters are rendered inseparably (e.g., asasingle
glyph or a sequence of glyphs), then the user agent shall allocate an equal percentage of the text advance amount to each of
the contributing characters in determining which of the characters is chosen.

Parameters
in SVGPoint point A point in user space.
Return value
long Theindex of the character which is at the given point, where the first character has an index of 0.
No Exceptions
selectSubString
Causes the specified substring to be selected just asif the user selected the substring interactively.
Parameters

in unsigned long charnum The index of the start character which is at the given point, where the first character has an
index of 0.

inunsigned long nchars The number of characters in the substring. If nchars specifies more characters than are
available, then the substring will consist of all characters starting with charnum until the
end of thelist of characters.

No Return Vaue
Exceptions

DOMException INDEX_SIZE ERR: Raised if the charnum is negative or if charnum is greater than or equal to the
number of characters at this node.

Interface SVGTextElement

The SV GTextElement interface corresponds to the 'text' element.
IDL Definition

i nterface SVGIext El enent :
SVGText Cont ent El enent
SVGTIr ansf or mabl e {

readonly attribute SVGAni mat edLength x;
readonly attribute SVGAni mat edLength vy;

};

Attributes
readonly SV GAnimatedL ength x
Corresponds to attribute x on the given 'text' element.
readonly SV GAnimatedLengthy
Corresponds to attribute y on the given 'text' element.

Interface SVGTextRotate

This interface corresponds to the 'rotate' attribute that exists on interfaces SV GT SpanElement, SV GTRefElement, SV GGlyphRunElement
and SV GTextPathElement.

IDL Definition

i nterface SVGText Rotate {

/1 rotate types

const unsi gned short ROTATE_UNKNOWN = O;
const unsi gned short ROTATE_AUTO = 1;
const unsi gned short ROTATE_ANGLES = 2;

attribute unsigned short rotateVal ueType;
/1 rai ses DOVException on setting
readonly attribute SVA.i st angl es;

}s

Definition group rotate types
Defined constants

ROTATE_UNKNOWN Unknown value.
ROTATE_AUTO Corresponds to value auto.
ROTATE_ANGLES A list of angle values has been provided.

Attributes
unsigned short rotateVaueType
Corresponds to attribute rotate on the given element. The value must be one of the rotate type constants specified above.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

readonly SVGList angles

Corresponds to attribute rotate on the given element.
When rotateV alueType=ROTATE_ANGLES, the list of angles.

The various methods from SV GList, which are defined to accept parameters and return values of type Object, must receive
parameters of type SV GANgle and return values of type SVGAnNgle.

Interface SVGAnimatedTextRotate

Corresponds to all properties and attributes whose values are of type SV GTextRotate and which are animatable.
IDL Definition

i nterface SVGAni nat edText Rotate {

attribute SVGText Rot ate baseVal ;
/1 rai ses DOVException on setting
readonly attribute SVGText Rotate aninval;

};

Attributes
SV GTextRotate baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
readonly SV GTextRotate animVal

If the given attribute or property is being animated, contains the current animated value of the attribute or property. If the
given attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGTextPositioningElement

The SV GTextPositioningElement interface is inherited by text-related interfaces. SV GT SpanElement, SV GTRefElement,
SVGGlyphRunElement and SV GTextPathElement.

IDL Definition

i nterface SVGText Positioni ngEl ement : SVGIext Cont ent El enent {
readonly attribute SVGAni mat edLengt hLi st x;
readonly attribute SVGAni mat edLengt hLi st v;
readonly attribute SVGAni mat edLengt hLi st dx;
readonly attribute SVGAni mat edLengt hLi st dy;
readonly attribute SVGAni nat edText Rotate rotate;

}s

Attributes

readonly SV GAnimatedLengthList x

Corresponds to attribute x on the given element.
readonly SV GAnimatedLengthList y

Corresponds to attribute y on the given element.
readonly SV GAnimatedLengthList dx

Corresponds to attribute dx on the given element.
readonly SV GAnimatedLengthList dy

Corresponds to attribute dy on the given element.

readonly SV GAnimatedTextRotate rotate
Corresponds to attribute rotate on the given element.

Interface SVGTSpanElement

The SV GT SpanElement interface corresponds to the 'tspan’ element.
IDL Definition

i nterface SVGISpanEl ement : SVGText Positioni ngEl enent {};

Interface SVGTRefElement

The SVGTRefElement interface corresponds to the 'tref' element.
IDL Definition

interface SVGIRef El enent :
SVGText Posi ti oni ngEl enent,
SVGURI Ref erence {};

Interface SVGGlyphRunElement

The SV GGlyphRunElement interface corresponds to the 'glyphRun’ element.
IDL Definition

i nterface SVGd yphRunEl enent : SVGText Posi ti oni ngEl enent {
readonly attribute SVGAni mat edNunber Li st gl yphOrder;

};

Attributes
readonly SV GAnimatedNumberList glyphOrder
Corresponds to attribute glyphOrder on the given element.

Interface SVGTextPathElement

The SV GTextPathElement interface corresponds to the ‘textPath’ element.
IDL Definition

i nterface SVGText Pat hEl enent
SVGText Posi ti oni ngEl enent
SVGURI Ref erence {

/1 textPath Method Types

const unsi gned short TEXTPATH METHODTYPE_ UNKNOW
const unsigned short TEXTPATH METHODTYPE_ALI GN
const unsi gned short TEXTPATH METHODTYPE_ STRETCH
/1 textPath Spacing Types

const unsi gned short TEXTPATH_SPACI NGTYPE_UNKNOMWN = O;

const unsi gned short TEXTPATH_SPACI NGTYPE_AUTO = 1;
const unsi gned short TEXTPATH_SPACI NGTYPE_EXACT = 2;

readonly attribute SVGAni mat edLength start O f set;
readonly attribute SVGAni mat edEnumner ati on net hod;
readonly attribute SVGAni mat edEnuner ati on spaci ng;

}s

Definition group textPath Method Types
Defined constants

TEXTPATH_METHODTYPE_UNKNOWN The enumeration was set to avalue that is not one of predefined types. Itis
invalid to attempt to define a new value of this type or to attempt to switch an
existing value to this type.

TEXTPATH_METHODTYPE_ALIGN Corresponds to value align.
TEXTPATH_METHODTYPE_STRETCH Corresponds to value stretch.
Definition group textPath Spacing Types
Defined constants

TEXTPATH_SPACINGTYPE_UNKNOWN The enumeration was set to a value that is not one of predefined types. Itis
invalid to attempt to define anew value of this type or to attempt to switch an
existing value to this type.

TEXTPATH_SPACINGTYPE_AUTO Corresponds to value auto.
TEXTPATH_SPACINGTYPE_EXACT Corresponds to value exact.

Attributes
readonly SV GAnimatedL ength startOffset
Corresponds to attribute startOffset on the given ‘textPath' element.
readonly SV GAnimatedEnumeration method

Corresponds to attribute method on the given ‘textPath’ element. The value must be one of the method type constants specified
above.

readonly SV GAnimatedEnumeration spacing

Corresponds to attribute spacing on the given ‘textPath’ element. The value must be one of the spacing type constants specified
above.

Interface SVGAItGlyphElement

The SV GAItGlyphElement interface corresponds to the 'altGlyph' element.
IDL Definition

i nterface SVGAI t d yphE!l erent
SVGText Cont ent El enent ,
SVGURI Ref erence {};

Interface SVGAItGlyphDefElement

The SVGAItGlyphDefElement interface corresponds to the ‘altGlyphDef' element.
IDL Definition

interface SVGAl t d yphDef El ement : SVGEl enent {};

Interface SVGAItGlyphltemElement

The SVGAItGlyphltemElement interface corresponds to the 'altGlyphltem' element.
IDL Definition

interface SVGAI td yphltentl ement : SVCEl enent {};

Interface SVGGlyphRefElement

The SV GGlyphRefElement interface corresponds to the 'glyphSub' el ement.
IDL Definition

i nterface SVGA yphRef El errent
SVGE! erent
SVGURI Ref er ence,
SVGStyl abl e {

attribute DOVBtring gl yphRef;

/1 raises DOVException on setting
attribute DOVBtring fornmat;

/1 raises DOVException on setting

}s

Attributes
DOM String glyphRef
Corresponds to attribute glyphRef on the given 'glyphSub’ element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOM String format
Corresponds to attribute format on the given 'glyphSub' element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

11 Painting: Filling, Stroking and Marker Symbols

Contents

« 11.1 Introduction
o 11.2 Specifying paint
« 11.3Fill Properties
« 11.4 Stroke Properties
« 11.5 Controlling visibility
« 11.6 Markers
o 11.6.1 Introduction
o 11.6.2 The 'marker' element

o 11.6.3 Marker properties

o 11.6.4 Details on how markers are rendered

« 11.7 Rendering properties

« 11.8 Inheritance of painting properties
o« 11.9 DOM interfaces

11.1 Introduction

‘path’ elements, 'text' elements and basic shapes can befilled (which means painting the interior of the object) and stroked (which means painting
along the outline of the object). Filling and stroking both can be thought of in more general terms as painting operations.

Certain elements (i.e., 'path’, 'polylin€, 'polygon' and 'line' elements) can also have marker symbols drawn at their vertices.

With SVG, you can paint (i.e., fill or stroke) with:
« asinglecolor
« agradient (linear or radia)
« apattern (vector or image, possibly tiled)
« custom paints available via extensibility

SV G uses the general notion of a paint server. Paint servers are specified using a URI reference on a fill' or 'stroke’ property. Gradients and
patterns are just specific types of paint servers.

11.2 Specifying paint

Properties 'fill' and 'stroke' take on a value of type <paint>, which is specified as follows:

<paint>: none|
currentColor |
<color> [icc-color(<name>,<icccolorvalue>+)] |

<uri> [none | currentColor | <color> [icc-color(<name>,<icccolorvaue>+)]] |
inherit
none
Indicates that the object has no fill (i.e., theinterior is transparent).
currentColor

file:///D|/Public/CR-SVG-20000802/indexlist.html

Indicates that the object isfilled with the color specified by the 'color' property. This mechanism is provided to facilitate sharing of color
attributes between parent grammars such as other (non-SVG) XML. This mechanism allows you to define a style in your HTML which sets
the 'color' property and then pass that style to the SVG user agent so that your SV G text will draw in the same color.

<color>
[icc-color (<name>,<icccol or value>[,<icccolor value>]*)]

<uri>

<color> isthe explicit color (in the SRGB [SRGB] color space) to be used to fill the current object. SV G supports al of the syntax
alternatives for <color> defined in [CSS2]. If an optional 1CC color specification is provided, then the user agent searches the color profile
description database for an color profile description entry whose name descriptor matches <name> and uses the last matching entry that is
found. (If no match is found, then the ICC color specification isignored.) The commarseparated list (with optional white space) of
<icccolorvalue>'sis a set of ICC-profile-specific color values, expressed as <number>s. On platforms which support |CC-based color
management, the icc-color gets precedence over the <color> (which isin the SRGB color space). Note that color interpolation occursin an
RGB color space even if an |CC-based color specification is provided (see 'color-interpolation’). Percentages are not allowed on
<icccolorvalue>'s. For more on |CC-based colors, refer to Color profile descriptions.

[none|
currentColor |
<color > [icc-color (<name>,<icccolor value>[,<icccolor value>]*)]]

The <uri> is how you identify a paint server such as agradient, a pattern or a custom paint defined by an extension (see Extensibility). The
<uri> provides the ID of the paint server (e.g., agradient or a pattern) to be used to paint the current object. If the URI referenceis not valid
(e.g., it points to an object that doesn't exist or the object is not avalid paint server), then the paint method following the <uri> (i.e., none |
currentColor |

<color>

[icc-color (<name>,<icccol or value>[<icccolor value>]*)]|

inherit) isused if provided; otherwise, the document isin error (see Error processing).

11.3 Fill Properties

fill’

Value: <paint> (See Specifying paint)

Initial: black

Appliesto: all elements

Inherited: see | nheritance of Painting Properties below
Percentages: N/A

Media: visual

Animatable: yes

The'fill" property paints the interior of the given graphical element. The area to be painted consists of any areas inside the outline of the shape. To
determine the inside of the shape, al subpaths are considered, and the interior is determined according to the rules associated with the current value
of the 'fill-rule' property. The zero-width geometric outline of a shape isincluded in the area to be painted.

Thefill operation automatically closes al open subpaths by connecting the last point of the subpath with the first point of the subpath before
painting the fill. Thus, fill operations apply to both open subpaths within 'path’ elements (i.e., subpaths without a closepath command) and 'polyline

elements.
fill-rule
Value: evenodd | nonzero | inherit
Initial: evenodd
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visua

Animatable: yes

The 'fill-rule' property indicates the algorithm which is to be used to determine what parts of the canvas are included inside the shape. For asimple,
non-intersecting path, it isintuitively clear what region lies"inside"; however, for amore complex path, such as a path that intersectsitself or where
one subpath encloses another, the interpretation of "inside" is not so obvious.

The 'fill-rule' property provides two options for how the inside of a shape is determined:
evenodd

This rule determines the "insideness" of a point on the canvas by drawing aray from that point to infinity in any direction and counting the
number of path segments from the given shape that the ray crosses. If this number is odd, the point isinside; if even, the point is outside.
The following drawing illustrates the evenodd rule:

3w OO

View this example as SV G (SV G-enabled browsers only)

nonzero

This rule determines the "insideness" of a point on the canvas by drawing aray from that point to infinity in any direction and then
examining the places where a segment of the shape crosses the ray. Starting with a count of zero, add one each time a path segment crosses
the ray from left to right and subtract one each time a path segment crosses the ray from right to |eft. After counting the crossings, if the
result is zero then the point is outside the path. Otherwisg, it isinside. The following drawing illustrates the nonzer o rule:

* ®O0

View this example as SV G (SV G-enabled browsers only)

(Note: the above explanations do not specify what to do if a path segment coincides with or istangent to the ray. Since any ray will do, one may
simply choose a different array that does not have such problem intersections.)

Here are examples which illustrate the two rules:

fill-opacity’
Value: <opacity-vaue> | inherit
Initial: 1
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

fill-opacity' specifies the opacity of the painting operation used to paint the interior the current object. (See Painting shapes and text.)

<opacity-value>

The opacity of the painting operation used to fill the current object. Any values outside the range 0.0 (fully transparent) to 1.0 (fully opague)
will be clamped to this range. (See Clamping values which are restricted to a particular range.)

Related properties: 'stroke-opacity' and ‘opacity’.

11.4 Stroke Properties

The following are the properties which affect how an element is stroked.

In al cases, al stroking properties which are affected by directionality, such as those having to do with dash patterns, must be rendered such that
the stroke operation starts at the same point at which the graphics element starts. In particular, for ‘path’ elements, the start of the path isthe first
point of theinitial "moveto" command.

For stroking properties such as dash patterns whose computations are dependent on progress along the outline of the graphics element, distance
calculations are required to utilize the SV G user agent's standard Distance along a path algorithms.

file:///D|/Public/CR-SVG-20000802/images/painting/fillrule-evenodd.svg
file:///D|/Public/CR-SVG-20000802/images/painting/fillrule-nonzero.svg

When stroking is performed using a complex paint server, such as a gradient or a pattern, the stroke operation must be identical to the result that
would have occurred if the geometric shape defined by the geometry of the current graphics element and its associated stroking properties were
converted to an equivalent 'path’ element and then filled using the given paint server.

'stroke’
Value: <paint> (See Specifying paint)

Initial: none

Appliesto: all elements

Inherited: see |nheritance of Painting Properties below
Percentages: N/A

Media: visual

Animatable: yes

The 'stroke' property paints along the outline of the given graphical element.

A subpath (see Paths) consisting of a single moveto is not stroked. A subpath consisting of a moveto and lineto to the same exact location or a
subpath consisting of a moveto and a closepath will be stroked only if the 'stroke-linecap' property is set to "round”, producing a circle centered at
the given point.

‘stroke-width'
Value: <width> | inherit
Initial: 1
Appliesto: al elements
Inherited: yes
Percentages. Yes
Media: visual

Animatable: yes
<width>

The width of the stroke on the current object, expressed as a <length>. If a percentage is used, the <width> is expressed as a percentage of
the current viewport. (See Processing rules when using absolute unit identifiers and percentages.)
A zero value causes no stroke to be painted. A negative value is an error (see Error processing).

‘stroke-linecap'
Value: butt | round | square | inherit
Initial: butt
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visua

Animatable: yes

'stroke-linecap’ specifies the shape to be used at the end of open subpaths when they are stroked.
butt
See drawing below.
round
See drawing below.
sguare
See drawing below.

'stroke-lingjoin'

Value: miter | round | bevel | inherit
Initial: miter

Appliesto: all elements

Inherited: yes

Percentages: N/A

Media: visua

Animatable: yes
'stroke-lingjoin' specifies the shape to be used at the corners of paths (or other vector shapes) when they are stroked.
miter

See drawing below.

round

See drawing below.
bevel

See drawing below.

'stroke-miterlimit’

Value: <miterlimit> | inherit
Initial: 4

Appliesto: al elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes
When two line segments meet at a sharp angle and miter joins have been specified for 'stroke-lingjoin’, it is possible for the miter to extend far
beyond the thickness of the line stroking the path. The 'stroke-miterlimit' imposes alimit on the ratio of the miter length to the 'stroke-linewidth'.
<miterlimit>

The limit on the ratio of the miter length to the 'stroke-linewidth'. The value of <miterlimit> must be anumber greater than or equal to 1.
Any other value is an error (see Error processing).

'stroke-dasharray’
Value: none | <dasharray> | inherit
Initial: none
Appliesto: all elements
Inherited: yes
Percentages: yes (see below)
Media: visua

Animatable: yes (non-additive)

'stroke-dasharray' controls the pattern of dashes and gaps used to stroke paths. <dasharray> contains alist of comma-separated (with optional
white space) <number>s that specify the lengths of alternating dashes and gaps in user units. If an odd number of valuesis provided, then the list of

valuesis repeated to yield an even number of values. Thus, stroke-dasharray: 5 3 2 is equivalent to stroke-dasharray: 53253 2.
none

Indicates that no dashing is used. If stroked, thelineis drawn solid.
<dasharray>

A list of comma-separated <length>'s (with optional white space), each of which can have a unit identifier , including specification of a
percentage. A percentage represents a distance as a percentage of the current viewport. (See Processing rules when using absolute unit
identifiers and percentages.) A negative <length> value is an error (see Error processing). If the sum of the <length>'sis zero, then the
stroke isrendered asif a value of none were specified.

‘stroke-dashoffset’
Value: <dashoffset> | inherit
Initial: 0
Appliesto: all elements
Inherited: yes
Percentages: see prose
Media: visual

Animatable: yes

'stroke-dashoffset' specifies the distance into the dash pattern to start the dash.
<dashoffset>
A <length>. If apercentage is used, the <width> is expressed as a percentage of the current viewport

(See Processing rules when using absolute unit identifiers and percentages.)
Values can be negative.

'stroke-opacity’
Value: <opacity-value> | inherit
Initial: 1

Appliesto: al elements

Inherited: yes
Percentages: N/A
Media: visua
Animatable: yes

'stroke-opacity' specifies the opacity of the painting operation used to stroke the current object. (See Painting shapes and text.)

<opacity-value>

The opacity of the painting operation used to stroke the current object. Any values outside the range 0.0 (fully transparent) to 1.0 (fully
opaque) will be clamped to this range. (See Clamping values which are restricted to a particular range.)

Related properties: fill-opacity' and 'opacity'.

11.5 Controlling visibility

SV G uses two properties, 'display’ and 'visibility', to control the visibility of graphical content. Either property can make an element invisible.

The differences between the two properties are as follows:

» When applied to a container element, setting 'display’ to none causes the container and all of its children to beinvisible; thus, it acts on
groups of elements as a group. 'visibility', however, only appliesto individual graphics elements. Setting 'visibility' to hidden on a'g’ will
make its children invisible as long as the children do not specify their own 'visibility' properties as visible. Note that 'visibility' is not an
inheritable property.

« When the 'display’ property is set to none, then rendering occurs asif the given element and its children were not in the document. With
'visibility' set to hidden, however, processing occurs asif the element were still in the document and still taking up space, but just not
rendered onto the canvas. This distinction has implications for the 'tspan’, 'tref' and 'glyphRun’ elements and event processing. If 'display’ is
set to none on a'tspan’, 'tref' or 'glyphRun' element, then the text string isignored for the purposes of text layout; however, if 'visibility' is set
to hidden, the text string is used for text layout (i.e., it takes up space) even though it is not rendered on the canvas. Regarding events, if

'display’ is set to none, the element receives no events; however,if 'visibility' is set to hidden, the element might still receive events,
depending on the value of property 'pointer-events.

"display’
Value: inline | block | list-item |

run-in | compact | marker |

table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group | table-column |
table-cell | table-caption | none | inherit

Initial: inline
Appliesto: all elements
Inherited: no
Percentages: N/A

Media: al

Animatable: yes

A value of display: none indicates that the given element and its children shall not be rendered (i.e., document rendering occurs asif the given
element and its children were not part of the document). Any value other than none or inherit indicates that the given element shall be rendered by
the SV G user agent.

Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].

'visibility'
Value: visible | hidden | collapse | inherit
Initial: inherit
Appliesto: all elements
Inherited: no
Percentages: N/A
Media: visual

Animatable: yes
visible
The current graphics element isvisible.
hidden or collapse
The current graphics element isinvisible (i.e., nothing is painted on the canvas).

Note that if the 'visibility' property is set to hidden on a'tspan’, 'tref' or 'glyphRun’ element, then the text isinvisible but still takes up spacein
calculations of text layout.

Depending on the value of property 'pointer-events, graphics elements which have their 'visibility' property set to hidden still might receive events.

Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].

11.6 Markers

11.6.1 Introduction

To use amarker symbol for arrowheads or polymarkers, you need to define a'marker' element which defines the marker symbol and then refer to
that 'marker' element using the various marker properties (i.e., 'marker-start', 'marker-end', 'marker-mid' or ‘'marker’) on the given 'path’ element or
vector graphic shape.

Example Marker draws a triangular marker symbol as an arrowhead at the end of a path.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"
"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="4i n" hei ght="2i n"
vi ewBox="0 0 4000 2000" >
<def s>
<mar ker id="Triangle"
vi ewBox="0 0 10 10" refX="0" refY="5"
mar ker Uni t s=" st r okeW dt h"
mar ker W dt h="4" mar ker Hei ght =" 3"
orient="auto">
<path d="M 0 O L 105 L 0 10 z" />

</ mar ker >

</ def s>

<rect x="10" y="10" wi dth="3980" hei ght ="1980"
style="fill:none; stroke:blue; stroke-w dth:10"/>

<desc>Pl aci ng an arrowhead at the end of a path.

</ desc>

<path d="M 1000 750 L 2000 750 L 2500 1250"

style="fill:none; stroke:black; stroke-w dth:100;

mar ker-end: url (#Triangle)" />
</ svg>

Example Marker
View this example as SV G (SVG-enabled browsers only)

Markers can be animated. The animated effects will show on all current uses of the markers within the document.

11.6.2 The 'marker' element

The 'marker' element defines the graphics that is to be used for drawing arrowheads or polymarkers on a given 'path’ element or vector graphic
shape.

file:///D|/Public/CR-SVG-20000802/images/painting/marker.svg

<IENTITY % nmarker Ext "" >
<! ELEMENT narker (desc|title|netadataldefs]|

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| vi ew| swi tch| al al t d yphDef |
script|style|synbol | marker| cli pPat h| mask|

| i near Gradi ent | radi al G adi ent | pattern|filter|cursor]|font|
ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face

Y%ceExt ; %rar ker Ext;) * >

<! ATTLI ST marker
YstdAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi r ed %Bool ean; #| MPLI ED
class % assList; #l MPLIED
style %5tyl eSheet; #| MPLI ED
%°r esent ati onAttributes-All;
vi ewBox %/i ewBoxSpec; #l MPLI ED
preserveAspect Rati o %reserveAspect Rati oSpec; 'xM dYM d neet'
ref X % Coordi nate; #l MPLI ED
ref Y % Coordi nate; #l MPLI ED
markerUnits (strokeWdth | userSpaceOnUse | user Space) #| MPLI ED
mar ker Wdth %.engt h; #l MPLI ED
mar ker Hei ght %.engt h; #l MPLI ED
ori ent CDATA #l WPLI ED >

Attribute definitions:
markerUnits = "strokeWidth | userSpaceOnUse | userSpace"

mar ker Units indicates how to interpret the values of marker Width and markerHeight (described as follows).

If markerUnits=" strokeWidth" (the default), then marker Width and marker Height represent scale factors relative to the stroke width in
place for graphic object referencing the marker.

If markerUnits=" user SpaceOnUse" , then mar ker Width and mar ker Height represent values in the current user coordinate system for the
element referencing the 'marker’ (i.e., the user coordinate system for the element referencing the 'marker' element via the 'marker’,
'marker-start', 'marker-mid' or 'marker-end' property). If markerUnits=" user Space", then marker Width and mar ker Height represent
valuesin the user coordinate system in place at the time when the 'marker' element is defined.

If attribute markerUnits is not specified, then the effect isasif avalue of strokeWidth were specified.
Animatable: yes.

refX = "<coordinate>"

The x-axis coordinate of the reference point which isto be aligned exactly at the marker position. The coordinate is defined in the coordinate
system after application of the viewBox and preserveAspectRatio attributes.

If the attribute is not specified, the effect is asif avalue of "0" were specified.
Animatable: yes.

refY ="<coordinate>"

The y-axis coordinate of the reference point which isto be aligned exactly at the marker position. The coordinate is defined in the coordinate
system after application of the viewBox and preserveAspectRatio attributes.

If the attribute is not specified, the effect is asif avalue of "0" were specified.

Animatable: yes.

markerWidth = "<length>"
Represents the width of the region into which the marker isto be fitted when it is rendered.
A negative valueis an error (see Error processing). A value of zero disables rendering of the element.

If the attribute is not specified, the effect isasif avalue of "3" were specified.
Animatable: yes.

markerHeight = "<length>"

Represents the height of the region into which the marker is to be fitted when it is rendered.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.

If the attribute is not specified, the effect is asif avalue of "3" were specified.
Animatable: yes.

orient = "auto | <angle>"

Indicates how the marker isrotated. A value of auto indicates that the marker is oriented such that its positive x-axisis pointing in a
direction that is the average of the ending direction of path segment going into the vertex and the starting direction of the path segment
going out of the vertex. (Refer to 'path’ element implementation notes for a more thorough discussion of the directionality of path segments.)
A value of <angle> represents a particular orient in the user space of the graphic object referencing the marker. For example, if avalue of
"0" is given, then the marker will be drawn such that its x-axis will align with the x-axis of the user space of the graphic object referencing
the marker. If the attribute is not specified, the effect isas if avalue of "0" were specified.

Animatable: yes (non-additive, 'set' and ‘animate’ elements only).

Attributes defined elsewhere:
Y%stdAttrs;, %langSpaceAttrs;, class, external ResourcesRequired, viewBoX, preserveAspectRatio, style, YoPresentationAttributes-All;.

Markers are drawn such that their reference point (i.e., attributes refX and refY) is positioned at the given vertex.

11.6.3 Marker properties

'marker-start' defines the arrowhead or polymarker that shall be drawn at the first vertex of the given 'path' element or vector graphic shape.

‘marker-end' defines the arrowhead or polymarker that shall be drawn at the final vertex. 'marker-mid' defines the arrowhead or polymarker that
shall be drawn at every other vertex (i.e., every vertex except the first and last).

'marker-start', 'marker-end', marker-mid'

Value: none |
inherit |
<uri>

Initial: none

Appliesto: 'path’, 'lin€, 'polyline’ and 'polygon’ elements
Inherited: see Inheritance of Painting Properties below
Percentages: N/A

Media: visual

Animatable: yes

none
Indicates that no marker symbol shall be drawn at the given vertex (vertices).
<uri>
The <uri> isaURI reference to the 'marker' element which shall be used as the arrowhead symbol or polymarker at the given vertex or

vertices. If the URI referenceis not valid (e.g., it pointsto an object that is undefined or the object is not a'marker' element), then the
marker(s) shall not be drawn.

The'marker"' property specifies the marker symbol that shall be used for al points on the sets the value for al vertices on the given 'path’ element
or vector graphic shape. It is a short-hand for the three individual marker properties:

'marker’
Value: seeindividual properties
Initial: seeindividual properties
Appliesto: 'path’, 'lin€', 'polyline' and 'polygon’ elements
Inherited: see |nheritance of Painting Properties below
Percentages: N/A
Media: visual
Animatable: yes

11.6.4 Details on how markers are rendered

Markers are drawn after the given object isfilled and stroked.

For each marker that is drawn, atemporary new user coordinate system is established to that the marker will be positioned and sized correctly, as
follows:

« The axes of the temporary new user coordinate system are aligned according to the orient attribute on the 'marker' element and the slope of
the curve at the given vertex. (Note: if thereis adiscontinuity at a vertex, the slope is the average of the slopes of the two segments of the
curve that join at the given vertex. If a slope cannot be determined, the slope is assumed to be zero.)

o Thesizeof asingleunitin X and Y in the temporary new user coordinate system is determined by the value of attribute markerUnits.

If markerUnits equals strokeWidth, the temporary new user coordinate system is scaled by the current value of property 'stroke-width'.

If markerUnits equal s userSpaceOnUse, then no extra scale transformation is applied.

If markerUnits equal s userSpace, then a scale transformation is applied to map x-axis and y-axis length measurementsin the current user
coordinate system to the corresponding x-axis and y-axis length measurements in the user coordinate system of the 'marker’ element.

« Theorigin of the temporary new user coordinate system is at a point translated from the given vertex by (-markerWidth * refX /

viewBoxWidth, -markerHeight * refY / viewBoxHeight) in the temporary new user coordinate system, where:
o markerWidth and markerHeight are the values of attributes markerWidth and markerHeight on the 'marker' element

o refX and refY are the values of attributes refX and refY on the 'marker’ el ement

o viewBoxWidth and viewBoxHeight are the width and height values on on the viewBox attribute on the 'marker' element,
respectively.
If the viewBox attribute is not specified, then viewBoxWidth and viewBoxHeight are assumed to have the same values as
markerWidth and markerHeight.

The rendering effect of amarker isasif the contents of the referenced 'marker’ element were deeply cloned into a separate non-exposed DOM tree
for each instance of the marker. Because the cloned DOM tree is non-exposed, the SVG DOM does not show the cloned instance of the marker.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced 'marker' element into a non-exposed DOM tree also
copies any property values resulting from the CSS cascade [CSS2-CASCADE] on the referenced element and its contents. CSS2 selectors can be

applied to the original (i.e., referenced) elements because they are part of the forma document structure. CSS2 selectors cannot be applied to the
(conceptually) cloned DOM tree because its contents are not part of the formal document structure.

Property inheritance, however, works asif the referenced element had been textually included as a deeply cloned child within the document tree.
The referenced element inherits properties from the element that referenced the marker and any ancestors of that element. The marker instance does
not inherit properties from the 'marker' element's origina parents.

In the generated content, for each instance of a given marker, a'g' is created which carries with it al property values resulting from the CSS cascade
[CSS2-CASCADE] on the referencing element (exception: any marker properties are stripped off). Within this'g' is another 'g’ which carries with it
all property values resulting from the CSS cascade [CSS2-CA SCADE] on the 'marker' element. The original contents of the 'marker' element are
deep-cloned within the inner 'g' element.

For illustrative purposes, we'll repeat the marker example shown earlier:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"
"http://ww.w3. org/ TR/ 2000/ CR- SVG- 20000802/ DTD/ svg- 20000802. dt d" >
<svg wi dt h="4i n" hei ght ="2i n"
vi ewBox="0 0 4000 2000" >
<def s>
<mar ker id="Triangle"
vi ewBox="0 0 10 10" refX="0" refY="5"
mar ker Uni t s=" st r okeW dt h"
mar ker W dt h="4" mar ker Hei ght =" 3"
orient="auto">
<path d="M 0 O L 105 L 0 10 z" />

</ mar ker >

</ def s>

<rect x="10" y="10" wi dth="3980" hei ght ="1980"
style="fill:none; stroke:blue; stroke-w dth:10"/>

<desc>Pl aci ng an arrowhead at the end of a path.

</ desc>

<path d="M 1000 750 L 2000 750 L 2500 1250"

style="fill:none; stroke:black; stroke-w dth: 100;

mar ker-end: url (#Triangle)" />
</ svg>

View this example as SVG (SV G-enabled browsers only)

The rendering effect of the above file will be visually identical to the following:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000802/ / EN'
"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="4i n" hei ght="2i n"
vi ewBox="0 0 4000 2000" >

<desc>Fil e whi ch produces the sane effect
as the marker exanple file, but without
usi ng markers.

</ desc>

<rect x="10" y="10" wi dth="3980" hei ght="1980"

file:///D|/Public/CR-SVG-20000802/images/painting/marker.svg

style="fill:none; stroke:blue; stroke-w dth:10"/>

<l-- The path draws as before, but w thout the marker properties -->
<path d="M 1000 750 L 2000 750 L 2500 1250"
style="fill:none; stroke:black; stroke-w dth:100" />
<l-- The followi ng | ogic sinulates draw ng a narker
at final vertex of the path. -->
<l-- First off, nove the origin of the user coordinate system
so that the origin is now aligned with the end point of the path. -->

<g transforn¥"transl at e(2500, 1250)" >

<I-- Rotate the coordinate system 45 degrees because
the marker specified orient="auto" and the final segnent
of the path is going in the direction of 45 degrees. -->
<g transform="rotate(45)" >

<l-- Scale the coordinate system by the current val ue of
the 'stroke-wi dth' property, which is 100. -->
<g transforne"scal e(100)" >

<l-- Scal e the coordinate system by
(markerWdth / viewBoxWdth, markerHeight / viewBoxHei ght)
to achieve the effect of the 'viewBox' attribute on the 'marker'. -->

<g transforn¥"scale(.4,.3)" >

<l-- Translate the coordinate systemby (-refX -refY) so that
(refX,refY) within the marker will align with the vertex. -->
<g transform="transl ate(0,-5)" >

<l-- This 'g" elenment carries al
property values on the 'path' resulting fromthe CSS cascade. -->
<g style="fill:none; stroke: bl ack; stroke-w dth:100">
<l-- This 'g' elenent carries al
property values on the original 'nmarker' elerment. -->
<g style="fill:black; stroke:none">
<l-- Expand out the contents of the 'marker' elenent. -->
<path d="M 0 O L 10 5L 0 10 z" />
</ g>
</ g>
</ g>
</ g>
</ g>
</ g>
</ g>
</ svg>

View this example as SV G (SVG-enabled browsers only)

11.7 Rendering properties

The SVG user agent performs color interpolations and compositing in the following cases:
« when rendering gradients
« when performing color animations (see 'animateColor')
« when performing a pha compositing of graphics elements into the current background

« when performing various filter effects

The 'color-interpolation’ property specifies whether color interpolations and compositing shall be performed in the SRGB [SRGB] color space or in
a(light energy linear) linearized RGB color space.

The conversion formulas between sRGB color space and linearized RGB color space can be found in [SRGB]. The following formula shows the
conversion from sRGB to linearized RGB:

file:///D|/Public/CR-SVG-20000802/images/painting/marker-simulated.svg

R [sRGB]
G [sRGB]
B' [sRGB]

R sRGB] / 255
g sRaB] / 255
B[sRGB] / 255

If R[sRGB], G[sRGB], B [SRGB] <= 0.04045

R[linearRGB] = R[sRGB] / 12.92
FlinearRGB] = G[sR&B] / 12.92
B[linearRGB] = B [sR&B] / 12.92

else if R[sRG], G[sR&E], B [sRGE] > 0.04045

R linearR&B] = ((R [sRG&B] + 0.055) / 1.055) ~ 2.4
FlinearRGB] = ((G[sR&B] + 0.055) / 1.055) ~ 2.4
B[linearRGB] = ((B [sRGB] + 0.055) / 1.055) ~ 2.4

Out-of-range color values, if supported by the user agent, also are converted using the above formulas. (See Clamping values which are restricted to
aparticular range.)
‘color-interpolation’

Value: auto | SRGB | linearRGB | inherit

Initial: SRGB

Appliesto: color interpolation and compositing operations
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes
auto

Indicates that the user agent can choose either the SRGB or linear RGB spaces for color interpolation. This option indicates that the author
doesn't require that color interpolation occur in a particular color space.

SRGB
Indicates that color interpolation should occur in the SRGB color space.
linearRGB
Indicates that color interpolation should occur in the linearized RGB color space as described above.
The creator of SV G content might want to provide a hint to the implementation about how to make speed vs. quality tradeoffs as it performs color

interpolation and compositing. The 'color-rendering' property provides a hint to the SV G user agent about how to optimize its color interpolation
and compositing operations:

‘color-rendering'

Value: auto | optimizeSpeed | optimizeQuality | inherit
Initial: auto
Appliesto: color interpolation and compositing operations
Inherited: yes
Percentages: N/A
Media: visua
Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall be given more importance than
speed.

optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over quality. For RGB display devices, this option will sometimes cause the
user agent to perform color interpolation and compositing in the device RGB color space.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed.

The creator of SV G content might want to provide a hint to the implementation about what tradeoffs to make as it renders vector graphics elements
such as 'path’ elements and basic shapes such as circles and rectangles. The 'shape-rendering' property provides these hints.

‘shape-rendering'
Value: auto | optimizeSpeed | crispEdges |
geometricPrecision | inherit
Initial: auto
Appliesto: al elements
Inherited: yes

Percentages: N/A

Media: visual
Animatable: yes
auto

Indicates that the user agent shall make appropriate tradeoffs to balance speed, crisp edges and geometric precision, but with geometric
precision given more importance than speed and crisp edges.

optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over geometric precision and crisp edges. This option will sometimes cause the
user agent to turn off shape anti-aliasing.

crispEdges

Indicates that the user agent shall attempt to emphasize the contrast between clean edges of artwork over rendering speed and geometric
precision. To achieve crisp edges, the user agent might turn off anti-aliasing for all lines and curves or possibly just for straight lines which
are close to vertical or horizontal. Also, the user agent might adjust line positions and line widths to align edges with device pixels.

geometricPrecision
Indicates that the user agent shall emphasize geometric precision over speed and crisp edges.

The creator of SV G content might want to provide a hint to the implementation about what tradeoffs to make as it renders text. The 'text-rendering'
property provides these hints.

‘text-rendering'
Value: auto | optimizeSpeed | optimizeL egibility |
geometricPrecision | inherit
Initial: auto
Appliesto: 'text' elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes
auto

Indicates that the user agent shall make appropriate tradeoffs to balance speed, legibility and geometric precision, but with legibility given
more importance than speed and geometric precision.

optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over legibility and geometric precision. This option will sometimes cause the
user agent to turn off text anti-aliasing.

optimizel egibility
Indicates that the user agent shall emphasize legibility over rendering speed and geometric precision. The user agent will often choose
whether to apply anti-aliasing techniques, built-in font hinting or both to produce the most legible text.
geometricPrecision
Indicates that the user agent shall emphasize geometric precision over legibility and rendering speed. This option will usually cause the user
agent to suspend the use of hinting so that glyph outlines are drawn with comparable geometric precision to the rendering of path data.
The creator of SV G content might want to provide a hint to the implementation about how to make speed vs. quality tradeoffs asit performsimage
processing. The 'image-rendering' property provides a hint to the SV G user agent about how to optimize itsimage rendering.:
‘image-rendering'

Value: auto | optimizeSpeed | optimizeQuality | inherit
Initial: auto
Appliesto: images
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes
auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall be given more importance than
speed.
optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over quality. This option will sometimes cause the user agent to use a bilinear
image resampling agorithm.

optimizeQuality

Indicates that the user agent shall emphasize quality over rendering speed. This option will sometimes cause the user agent to use a bicubic
image resampling algorithm.

11.8 Inheritance of painting properties

The values of any of the painting properties described in this chapter can be inherited from a given object's parent. Painting, however, is aways
done on each leaf-node individually, never at the'q’ level. Thus, for the following SV G, even though the gradient fill is specified on the 'd’, the

gradient is simply inherited through the 'g' element down into each rectangle, each of which is rendered such that itsinterior is painted with the

gradient.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="7cm' hei ght="2cn' >
<desc>Gradients apply to | eaf nodes
</ desc>
<g>
<def s>
<linearGadi ent id="MyGradient" gradi entUnits="o0bjectBoundi ngBox">
<stop offset="0% style="stop-col or: #F60"/ >
<stop offset="100% styl e="stop-col or: #FF6"/>
</linear G adi ent >
</ def s>
<g style="fill:url (#MW/G adi ent)">
<rect x="1cni y="1cni wi dth="2cn hei ght="1cni/>
<rect x="4cm' y="l1lcm' wi dth="2cnm' hei ght="1cni'/>
</ g>
</ g>
</ svg>

View this example as SVG (SV G-enabled browsers only)

11.9 DOM interfaces

The following interfaces are defined below: SV GPaint, SV GMarkerElement.

Interface SVGPaint

The SVGPaint interface corresponds to basic type <paint> and represents the values of properties fill' and 'stroke'.
IDL Definition

i nterface SVGPai nt : SVGCol or {
/1 Paint Types

const unsi gned short SVG_PAI NTTYPE_UNKNOMN = 0;
const unsigned short SVG_PAI NTTYPE_RGBCOLOR = 1;
const unsigned short SVG PAI NTTYPE_RGBCOLOR_| CCCOLOR = 2;
const unsigned short SVG _PAI NTTYPE_NONE = 101,
const unsi gned short SVG _PAI NTTYPE_CURRENTCOLOR = 102;
const unsi gned short SVG_PAI NTTYPE_URI _NONE = 103;
const unsigned short SVG PAI NTTYPE_URI _CURRENTCOLOR = 104;
const unsigned short SVG PAI NTTYPE_URI _RGBCOLOR = 105;
const unsi gned short SVG PAI NTTYPE_URI _RGBCOLOR_|I CCCOLOR = 106;
readonly attribute unsigned short paintType;
readonly attribute DOVString uri;
void setUi (in DOVString uri);
voi d setPaint (in unsigned short paintType, in DOMString uri, in css::RGBCol or
SVA CCCol or iccColor);
i

Definition group Paint Types

in

file:///D|/Public/CR-SVG-20000802/images/painting/inheritance.svg

Defined constants
SVG_PAINTTYPE_UNKNOWN

SVG_PAINTTYPE_RGBCOLOR
SVG_PAINTTYPE_RGBCOLOR_ICCCOLOR

SVG_PAINTTYPE_NONE
SVG_PAINTTYPE_CURRENTCOLOR
SVG_PAINTTYPE_URI_NONE

SVG_PAINTTYPE_URI_CURRENTCOLOR
SVG_PAINTTYPE_URI_RGBCOLOR

SVG_PAINTTYPE_URI_RGBCOLOR_ICCCOLOR

Attributes
readonly unsigned short paintType

The paint typeis not one of predefined types. It isinvalid to attempt to
define anew value of thistype or to attempt to switch an existing value to
thistype.

An sRGB color has been specified without an aternative ICC color
specification.

An sRGB color has been specified along with an aternative |CC color
specification.

Corresponds to a'none' value on a <paint> specification.

Corresponds to a'currentColor' value on a <paint> specification.

A URI has been specified, along with either an explicit or an implicit 'none’
as the backup paint method in case the URI is unavailable or invalid.

A URI has been specified, along with "currentColor' as the backup paint
method in case the URI is unavailable or invalid.

A URI has been specified, along with an SRGB color as the backup paint
method in case the URI is unavailable or invalid.

A URI has been specified, along with both an SRGB color and aternate ICC
color as the backup paint method in case the URI is unavailable or invalid.

The type of paint, identified by one of the constants above.

readonly DOM String uri

When the paintType specifies a URI, this attribute holds the URI string. When the paintType does not specify a URI, this attribute is

null.
M ethods

setUri
Setsthe paintType to SVG_PAINTTYPE_URI_NONE and sets uri to the specified value.
Parameters

in DOMString uri The URI for the desired paint server.

No Return Value
No Exceptions

setPaint

Sets the paintType as specified by the parameters. If pai nt Type requiresa URI, then ur i must be non-null and avalid string;
otherwise, uri must be null. If pai nt Type requires an RGBColor, thenr gbCol or must be avalid RGBColor object; otherwise,
r gbCol or must benull. If pai nt Type requires an SVGICCColor, theni ccCol or must be avalid SV GICCColor object;

otherwise, i ccCol or must be null.
Parameters

in unsigned short paintType One of the defined constants for paintType.
in DOM String uri The URI for the desired paint server, or null.
in css::RGBColor rgbColor The specification of an SRGB color, or null.
in SVGICCColor iccColor The specification of an ICC color, or null.

No Return Value
No Exceptions

Interface SVGMarkerElement

The SV GMarkerElement interface corresponds to the 'marker' element.

IDL Definition

i nterface SVGvar ker El enent
SVGEl enent
SVGLangSpace,

SVGEXxt er nal Resour cesRequi r ed,

SVGSt yl abl e,
SVGFi t ToVi ewBox {

/1 Marker Unit Types

const unsigned short SVG MARKERUNI TS_UNKNOMW

const unsi gned short SVG_MARKERUNI TS_USERSPACEONUSE
const unsi gned short SVG_MARKERUNI TS _USERSPACE
const unsigned short SVG MARKERUNI TS_STROKEW DTH

/1 Marker Orientation Types

const unsi gned short SVG MARKER_ ORI ENT_UNKNOWN
const unsi gned short SVG_MARKER ORI ENT_AUTO

const unsigned short SVG MARKER ORI ENT_ANGLE

NP whRo

readonly attribute SVGAni mat edLength refX;
readonly attribute SVGAni nat edLengt h refy;
readonly attribute SVGAni mat edEnunerati on markerUnits;
readonly attribute SVGAni nat edLength mar ker W dt h;
readonly attribute SVGAni mat edLength mar ker Hei ght ;
readonly attribute SVGAni mat edEnunerati on orient Type;
readonly attribute SVGAni mat edAngl e ori ent Angl e;

void setOrient ToAuto ()
[

voi d set Ori ent ToAngl e (n SVGAngl e angle);

}s

Definition group Marker Unit Types
Defined constants

SVG_MARKERUNITS UNKNOWN The marker unit typeis not one of predefined types. It isinvalid to attempt to
define anew value of thistype or to attempt to switch an existing value to this

type.
SVG_MARKERUNITS USERSPACEONUSE The value of attribute markerUnits is 'userSpaceOnUse'.
SVG_MARKERUNITS _USERSPACE The value of attribute markerUnitsis 'userSpace'.
SVG_MARKERUNITS_STROKEWIDTH The value of attribute markerUnitsis 'strokeWidth'.
Definition group Marker Orientation Types

Defined constants

SVG_MARKER_ORIENT_UNKNOWN The marker orientation is not one of predefined types. It isinvalid to attempt to define a
new value of thistype or to attempt to switch an existing value to this type.
SVG_MARKER_ORIENT_AUTO Attribute orient has value 'auto'.
SVG_MARKER_ORIENT_ANGLE Attribute orient has an angle value.
Attributes
readonly SV GAnimatedL ength refX
Corresponds to attribute refX on the given 'marker' element.
readonly SV GAnimatedL ength refY
Corresponds to attribute refY on the given 'marker' element.
readonly SV GAnimatedEnumeration markerUnits
Corresponds to attribute markerUnits on the given 'marker' element. One of the Marker Units Types defined above.
readonly SV GAnimatedL ength markerWidth
Corresponds to attribute markerWidth on the given 'marker' element.
readonly SV GAnimatedL ength markerHeight
Corresponds to attribute markerHeight on the given 'marker' element.
readonly SV GAnimatedEnumeration orientType
Corresponds to attribute orient on the given 'marker' element. One of the Marker Orientation Types defined above.
readonly SV GAnimatedAngle orientAngle

Corresponds to attribute orient on the given 'marker' element. If markerUnitsis SVG_MARKER_ORIENT_ANGLE, the angle value
for attribute orient; otherwise, it will be set to zero.

Methods
setOrientToAuto
Sets the value of attribute orient to ‘auto’.
No Parameters
No Return Vaue

No Exceptions
setOrientToAngle
Sets the value of attribute orient to the given angle.
Parameters
in SVGAngle angle The angle value to use for attribute orient.
No Return Value
No Exceptions

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

12 Color

Contents

o 12.1 Introduction
o 12.2 The'color' property

« 12.3 Color profile descriptions

o 12.3.1 Overview of color profile descriptions

o 12.3.2 Alternative ways for defining a color profile description

o 12.3.3 The 'color-profile’ element

o 12.3.4 The 'color-profile-src' element

o 12.3.5 @color-profile when using CSS styling
o 12.4 DOM interfaces

12.1 Introduction

All SVG colors are specified in the SRGB color space (see [SRGB]). At aminimum, SV G user agents shall conform to the color behavior
requirements specified in the Colors chapter of the CSS2 specification (see [CSS2]).

Additionally, SVG content can specify an alternate color specification using an |CC profile (see [ICC32)]). If ICC-based colors are provided and the

SV G user agent supports ICC color, then the ICC-based color takes precedence over the SRGB color specification. Note that color interpolation
occursin an RGB color space even if an |CC-based color specification is provided (see 'color-interpolation').

12.2 The 'color' property

The 'color' property is used to provide a potential indirect value (currentColor) for the 'fill', 'stroke, 'stop-color', 'flood-color', 'lighting-color'
properties.
‘color'

Value: <color> | inherit

Initial: depends on user agent

Appliesto: 'fill' and 'stroke' properties

Inherited: see | nheritance of Painting Properties
Percentages: N/A

Media: visua

Animatable: yes

Except for any additional information provided in this specification, the normative definition of the property isin [CSS2].

12.3 Color profile descriptions

12.3.1 Overview of color profile descriptions

The International Color Consortium has established a standard, the ICC Profile [ICC32], for documenting the color characteristics of input and
output devices. Using these profiles, it is possible to build atransform and correct visual datafor viewing on different devices.

A color profile description provides the bridge between an ICC profile and references to that |CC profile within SVG content. The color profile
description is added to the user agent's list of known color profiles and then used to select the relevant profile. The color profile description contains
descriptors for the location of the color profile on the Web, a name to reference the profile and information about rendering intent.

file:///D|/Public/CR-SVG-20000802/indexlist.html
http://www.color.org/

12.3.2 Alternative ways for defining a color profile description

Color profile descriptions can be specified in either of the following ways:
« a'color-profile’ element

« an @color-profile rule within a CSS style sheet (only applicable for user agents which support using CSS [CSS2] to style the SV G content)

12.3.3 The 'color-profile' element

<! ELEMENT color-profile (%lescTitl eMetadata;, color-profile-src) >
<! ATTLI ST color-profile

Y%stdAttrs;

nanme CDATA #REQUI RED

rendering-intent (auto | perceptual | relative-colorinetric | saturation | absolute-colorinetric)
"auto" >

Attribute definitions:
name = "<name>"

The name which is used as the first parameter for icc-color specifications within 'fill', 'stroke, 'stop-color', 'flood-color' and 'lighting-color'

property values to identify the color profile to use for the ICC color specification. Note that if <name> is not provided, it will be impossible
to reference the given color profile description.
Animatable: no.

rendering-intent = "auto | perceptua | relative-colorimetric | saturation | absol ute-colorimetric"

‘rendering-intent’ permits the specification of a color profile rendering intent other than the default. 'rendering-intent’ is applicable primarily
to color profiles corresponding to CMYK color spaces. The different options cause different methods to be used for trandating colorsto the
color gamut of the target rendering device:

auto

Thisisthe default behavior. The user-agent determines the best intent based on the content type. For image content containing an
embedded profile, it shal be assumed that the intent specified within the profile is the desired intent. Otherwise, the user agent shall
use the current profile and force the intent, overriding any intent that might be stored in the profile itself.

per ceptual

This method, often the preferred choice for images, preserves the relationship between colors. It attempts to maintain relative color
values among the pixels as they are mapped to the target device gamut. Sometimes pixel values that were originally within the target
device gamut are changed in order to avoid hue shifts and discontinuities and to preserve as much as possible the overall appearance
of the scene.

saturation

Preserves the relative saturation (chroma) values of the original pixels. Out of gamut colors are converted to colors that have the same
saturation but fall just inside the gamut.

relative colorimetric

Leaves colors that fall inside the gamut unchanged. This method usually converts out of gamut colors to colors that have the same
lightness but fall just inside the gamut.

absolute colorimetric
Disables white point matching when converting colors. This option is generally not recommended.

Animatable: no.

Attributes defined el sewhere:
%ostdAttrs;.

12.3.4 The 'color-profile-src' element

<! ELEMENT col or-profile-src EMPTY >
<I' ATTLI ST col or-profile-src

st dALtrs;

%l i nkRef Attrs;

xlink: href %JRI; #REQU RED >

Attribute definitions:
xlink:href ="<uri>"

The name or location of a standard ICC profile resource. Due to the size of profiles, the <uri> may specify a specia name representing a
standard profile. The name sRGB, being the standard WWW color space, is defined separately because of its significance, although the rules
regarding application of any specia profile shall beidentical.
Animatable: no.

Attributes defined elsewhere:

%stdAttrs;, %xlinkRefAttrs;.

12.3.5 @color-profile’ when using CSS styling

When the document is styled using CSS, the @color -pr ofile rule can be used to specify a color profile description. The general formiis:

@olor-profile { <color-profile-description>}
where the <col or-profile-description> has the form:

descriptor: val ue;

(-]

descriptor: val ue;

Each @color-profile rule specifies avalue for every color profile descriptor, either implicitly or explicitly. Those not given explicit valuesin therule
take theinitial value listed with each descriptor in this specification. These descriptors apply solely within the context of the @color-profilerulein
which they are defined, and do not apply to document language elements. Thus, there is no notion of which elements the descriptors apply to, or
whether the values are inherited by child elements.

The following are the descriptors for a <color-profile-description>:
'src' (Descriptor)

Values:sRGB | <uri> | inherit
Initial: auto
Media: visua
sRGB
The source profile is assumed to be SRGB [SRGB]. This differs from auto in that it overrides an embedded profile inside an image.

<uri>

The name or location of a standard ICC profile resource. Due to the size of profiles, the <uri> may specify a special name representing a
standard profile. The name sRGB, being the standard WWW color space, is defined separately because of its significance, although the rules
regarding application of any special profile shall be identical.

'name’ (Descriptor)

Values;<name>
Initial: undefined
Media: visual
<name>
See the description for the name attribute on the 'color-profile’ element. Note that if <name> is not provided, it will be impossible to
reference the given @color-profile definition.

'rendering-intent' (Descriptor)

values: auto | perceptual | relative-colorimetric |
) saturation | absol ute-colorimetric

Initial: auto

Media: visual

Animatable: no

See the description for the rendering-intent attribute on the 'color-profile’ element.

12.4 DOM interfaces

The following interfaces are defined below: SV GColorProfileElement, SV GColorProfileSrcElement, SV GColorProfileRule.

Interface SVGColorProfileElement

The SV GColorProfileElement interface corresponds to the 'color-profile’ element.
IDL Definition

interface SVGCol or Profil eEl enent
SVGEE enent ,
SVGRenderi ngl ntent {

attribute DOVBtring nane;

/'l rai ses DOVException on setting
attribute unsigned short renderinglntent;

/'l rai ses DOVException on setting

H

Attributes
DOM String name
Corresponds to property name within an @color-profile rule.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

unsigned short renderingl ntent
The type of rendering intent, identified by one of the SV GRenderinglIntent constants.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

Interface SVGColorProfileSrcElement

The SV GColorProfileSrcElement interface corresponds to the 'col or-profile-src' element.
IDL Definition

interface SVGCol or Profil eSrcEl enment
SVCGEl enent ,
SVGAURI Ref erence {};

Interface SVGColorProfileRule

The SV GColorProfileRule interface represents an @color-profile rule in a CSS style sheet. An @color-profile rule identifies a |CC profile which
can be referenced within a given document.

Support for the SVGColorProfileRule interface is only required in user agents that support styling with CSS.

IDL Definition

interface SVGCol or Profil eRul e :
SVGECSSRul e,
SVGRenderi ngl ntent {

attribute DOVBtring src;

/'l raises DOVException on setting
attribute DOVString namne;

/'l raises DOVException on setting
attribute unsigned short renderinglntent;

/'l raises DOVException on setting

I

Attributes
DOMString src
Corresponds to property src within an @color-profile rule.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
DOM String name
Corresponds to property name within an @color-profile rule.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
unsigned short renderingl ntent
The type of rendering intent, identified by one of the SV GRenderinglIntent constants.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

13 Gradients and Patterns

Contents

« 13.1 Introduction
o 13.2 Gradients
o 13.2.1 Introduction
o 13.2.2 Linear gradients
o 13.2.3 Radial gradients
o 13.2.4 Gradient stops
13.3 Patterns
13.4 DOM interfaces

13.1 Introduction

With SV G, you canfill (i.e., paint the interior) or stroke (i.e., paint the outline) of shapes and text using one of the
following:

« color
« gradients (linear or radial)
« patterns (vector or image, possibly tiled)

SV G uses the general notion of apaint server. Gradients and patterns are just specific types of built-in paint servers.

Paint servers are referenced using a URI reference on a fill' or 'stroke’ property.

13.2 Gradients

13.2.1 Introduction

Gradients consist of continuously smooth color transitions along a vector from one color to another, possibly followed
by additional transitions along the same vector to other colors. SV G provides for two types of gradients, linear

gradientsand radial gradients.

Once defined, gradients are then referenced using 'fill' or 'stroke' or properties on a given graphics element to indicate
that the given element shall befilled or stroked with the referenced gradient.

file:///D|/Public/CR-SVG-20000802/indexlist.html

13.2.2 Linear gradients

Linear gradients are defined by a'linear Gradient' element.

<IENTITY % | inear G adi entExt "" >
<! ELEMENT | i near G adi ent (%lescTitl eMetadata;, (stop|ani mate| set | ani mat eTr ansf orm

% inearGadientExt;)*) >
<I ATTLI ST linear G adi ent
%St dAttrs;
%Il inkRef Attrs;
xlink:href %JRI; #l MPLIED
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
gradi entUnits (user SpaceOnUse | user Space | object Boundi ngBox) #l MPLI ED
gr adi ent Tr ansf orm %r ansf or nii st; #l MPLI ED
x1 %Coor di nat e; #l MPLI ED
y1l % Coordi nate; #l MPLIED
x2 YCoordi nate; #l MPLI ED
%Coor di nat e; #l MPLI ED
spreadMet hod (pad | reflect | repeat) "pad" >

N

Attribute definitions:
gradientUnits = "user SpaceOnUse | user Space | objectBoundingBox"

Defines the coordinate system for attributes x1, y1, x2, y2.

If gradientUnits="userSpaceOnUse", x1, y1, X2, y2 represent valuesin the current user coordinate system in
place at the time when the 'linearGradient’ element is referenced (i.e., the user coordinate system for the element
referencing the 'linearGradient' element viaa fill' or 'stroke’ property).

If gradientUnits="userSpace", x1, y1, x2, y2 represent values in the current user coordinate system in place at
the time when the 'linearGradient' element is defined.

If gradientUnits="objectBoundingBox", then x1, y1, X2, y2 represent fractions or percentages of the bounding
box of the element to which the gradient is applied (see Object bounding box units). In this case, the stripes of
the linear gradient are perpendicular to the gradient vector in object bounding box space (i.e., the abstract
coordinate system where (0,0) is at the top/left of the object bounding box and (1,1) is at the bottom/right of the
object bounding box). When the object's bounding box is not square, the stripes that are conceptually
perpendicular to the gradient vector within object bounding box space will render non-perpendicular relative to
the gradient vector in user space due to application of the non-uniform scaling transformation from bounding
box space to user space.

If attribute gradientUnits is not specified, then the effect is asif avalue of userSpaceOnUse were specified.
Animatable: yes.

gradientTransform = "<transform-list>"

Contains the definitions of an optional additional transformation from the gradient coordinate system onto the
target coordinate system (i.e., userSpaceOnUse, userSpace or objectBoundingBox). This allows for things such
as skewing the gradient. This additional transformation matrix is post-multiplied to (i.e., inserted to the right of)
any previously defined transformations, including the implicit transformation necessary to convert from object
bounding box units to user space.

Animatable: yes.

x1 = "<coordinate>"

x1, y1, x2, y2 define agradient vector for the linear gradient. This gradient vector provides starting and ending
points onto which the gradient stops are mapped. The values of x1, y1, X2, y2 can be either numbers or

percentages.
If the attribute is not specified, the effect isas if avalue of "0%" were specified.
Animatable: yes.

y1 = "<coordinate>"

See x1.

If the attribute is not specified, the effect isas if avalue of "0%" were specified.
Animatable: yes.

X2 = "<coordinate>"

See x1.

If the attribute is not specified, the effect isasif avalue of "100%" were specified.
Animatable: yes.

y2 = "<coordinate>"

See x1.

If the attribute is not specified, the effect isasif avalue of "0%" were specified.
Animatable: yes.

spreadMethod = "pad | reflect | repeat”

Indicates what happens if the gradient starts or ends inside the bounds of the target rectangle. Possible values
are: pad, which says to use the terminal colors of the gradient to fill the remainder of the target region, reflect,
which saysto reflect the gradient pattern start-to-end, end-to-start, start-to-end, etc. continuously until the target
rectangle isfilled, and repeat, which says to repeat the gradient pattern start-to-end, start-to-end, start-to-end,
etc. continuously until the target region isfilled.

Animatable: yes.

xlink:href ="<uri>"

A URI referenceto adifferent 'linearGradient' or 'radia Gradient' element within the current SV G document

fragment. Any 'linearGradient' attributes which are defined on the referenced element which are not defined on
this element are inherited by this element. If this element has no defined gradient stops, and the referenced
element does (possibly due to its own href attribute), then this element inherits the gradient stop from the
referenced element. Inheritance can be indirect to an arbitrary level; thus, if the referenced element inherits
attribute or gradient stops due to its own href attribute, then the current element can inherit those attributes or
gradient stops.

Animatable: yes.

Attributes defined el sewhere:
%stdAttrs;, YoxlinkRef Attrs;, external ResourcesRequired.

Percentages are allowed for x1, y1, x2, y2. For gradientUnits="userSpaceOnUse" or gradientUnits="userSpace",
percentages represent values relative to the current viewport. For gradientUnits="objectBoundingBox", percentages
represent values relative to the bounding box for the object.

If x1 =x2 andyl =y2, then the areato be painted will be painted as a single color using the color and opacity of the last
gradient stop.

Example lingradO1 shows how to fill arectangle by referencing alinear gradient paint server.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

“http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg wi dt h="8cm' hei ght ="4cni' >

<desc>Exanple lingrad0l1 - fill a rectangle by referencing a

i near gradient paint server</desc>
<g>
<def s>
<l i near Gradi ent id="MyG adient">
<stop of fset="5% styl e="stop-col or: #F60"/ >
<stop of fset="95% styl e="stop-col or: #FF6"/ >
</linear G adi ent >

</ def s>
<l-- Qutline the drawing area in blue -->
<rect style="fill:none; stroke:blue"

x=".01lcnm y=".01lcni width="7.98cm' hei ght="3.98cn'/>

<!-- The rectangle is filled using a |inear gradient paint server -->
<rect style="fill:url (#WG adi ent); stroke: bl ack"
x="1lcm y="1lcm w dt h="6cni hei ght="2cni/>
</ g>
</ svg>

Example lingrad01
View this example as SV G (SV G-enabled browsers only)

13.2.3 Radial gradients

Radial gradients are defined by a'radialGradient' element.

<IENTITY %radi al Gadi ent Ext "" >
<! ELEMENT radi al G adi ent (%lescTitl eMet adat a;, (st op| ani mat e| set | ani mat eTr ansf or m

% adi al Gradi ent Ext;)*) >
<! ATTLI ST radi al G adi ent

st dAttrs;

Ml i nkRef Attrs;

xlink: href %JRI; #l MPLIED

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

gradi ent Units (user SpaceOnUse | user Space | object Boundi ngBox) #l MPLI ED
gradi ent Transform % ransfornlist; #l MPLI ED

cx % Coordi nate; #l MPLI ED

cy % Coordi nate; #l MPLIED

r %.ength; #l MPLI ED

file:///D|/Public/CR-SVG-20000802/images/pservers/lingrad01.svg

fx % Coordi nate; #l MPLI ED
fy % oordi nate; #l MPLIED
spreadMethod (pad | reflect | repeat) "pad" >

Attribute definitions:
gradientUnits = "user SpaceOnUse | user Ypace | objectBoundingBox"

Defines the coordinate system for attributes cx, cy, r, fx, fy.

If gradientUnits="userSpaceOnUse", cx, cy, I, fX, fy represent values in the current user coordinate system in
place at the time when the ‘radial Gradient’ element is referenced (i.e., the user coordinate system for the element
referencing the ‘radial Gradient' element viaa fill' or 'stroke' property).

If gradientUnits=" user Space", cx, ¢y, r, fx, fy represent valuesin the current user coordinate system in place at
the time when the 'linearGradient' element is defined.

If gradientUnits=" objectBoundingBox", then cx, cy, r, fx, fy represent fractions or percentages of the
bounding box of the element to which the gradient is applied (see Object bounding box units). In this case, the
rings of the radial gradient are circular with respect to the object bounding box space (i.e., the abstract coordinate
system where (0,0) is at the top/left of the object bounding box and (1,1) is at the bottom/right of the object
bounding box). When the object's bounding box is not square, the rings that are conceptually circular within
object bounding box space will render as elliptical due to application of the non-uniform scaling transformation
from bounding box space to user space.

If attribute gradientUnits is not specified, then the effect is as if avalue of userSpaceOnUse were specified.
Animatable: yes.

gradientTransform = "<transform-list>"

Contains the definitions of an optional additional transformation from the gradient coordinate system onto the
target coordinate system (i.e., userSpaceOnUse, userSpace or objectBoundingBox). This allows for things such
as skewing the gradient. This additional transformation matrix is post-multiplied to (i.e., inserted to the right of)
any previously defined transformations, including the implicit transformation necessary to convert from object
bounding box units to user space.

Animatable: yes.

cx = "<coordinate>"

cx, ¢y, r definethe largest (i.e., outermost) circle for the radial gradient. The gradient will be drawn such that the
100% gradient stop is mapped to the perimeter of thislargest (i.e., outermost) circle.

If the attribute is not specified, the effect isas if avalue of "50%" were specified.

Animatable: yes.

cy = "<coordinate>"

See cx.
If the attribute is not specified, the effect isasif avalue of "50%" were specified.
Animatable: yes.

r = "<length>"
Seecx.
A negative valueis an error (see Error processing). A value of zero will cause the areato be painted asasingle
color using the color and opacity of the last gradient stop.

If the attribute is not specified, the effect isas if avalue of "50%" were specified.
Animatable: yes.

fx = "<coordinate>"

fx, fy define the focal point for the radial gradient. The gradient will be drawn such that the 0% gradient stop is

mapped to (fx, fy).
If attribute fx is not specified, fx will coincide with cx.

Animatable: yes.

fy = "<coordinate>"

Seefx.
If attribute fy is not specified, fy will coincide with cy.
Animatable: yes.
spreadMethod = "pad | reflect | repeat”
Indicates what happens if the gradient starts or ends inside the bounds of the object(s) being painted by the

gradient. Has the same values and meanings as the spreadM ethod attribute on 'linearGradient' element.
Animatable: yes.

xlink:href ="<uri>"

A URI reference to adifferent 'linearGradient' or ‘radial Gradient' element within the current SVG document
fragment. Any ‘radial Gradient' attributes which are defined on the referenced element which are not defined on
this element are inherited by this element. If this element has no defined gradient stops, and the referenced
element does (possibly due to its own href attribute), then this element inherits the gradient stop from the
referenced element. Inheritance can be indirect to an arbitrary level; thus, if the referenced element inherits
attribute or gradient stops due to its own href attribute, then the current element can inherit those attributes or
gradient stops.

Animatable: yes.

Attributes defined €l sewhere:
%stdAttrs;, YoxlinkRef Attrs;, external ResourcesRequired.

Percentages are allowed for attributes cx, cy, r, fx and fy. For gradientUnits="userSpaceOnUse" or
gradientUnits="userSpace", percentages represent values relative to the current viewport. For
gradientUnits="objectBoundingBox", percentages represent values relative to the bounding box for the object.

If the point defined by fx and fy lies outside the circle defined by cx, cy and r, then the user agent shall set the focal
point to the intersection of the line from (cx, cy) to (fx, fy) with the circle defined by cx, cy andr.

Example radgrad01 shows how to fill arectangle by referencing alinear gradient paint server.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"
"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg wi dt h="8cni' hei ght ="4cni' >
<desc>Exanpl e radgrad01 - fill a rectangle by referencing a
radi al gradi ent paint server</desc>

<g>
<def s>
<radi al Gradi ent i d="MyG adi ent"
cx="4cm' cy="2cni r="3cni' fx="4cnm fy="2cni>
<stop of fset="0% style="stop-color:red"/>
<stop of fset="50% styl e="stop-col or:blue"/>
<stop of fset="100% style="stop-color:red"/>
</radi al G adi ent >
</ def s>
<l-- Qutline the drawing area in blue -->
<rect style="fill:none; stroke:bl ue"

x=".01lcn y=".0lcn w dth="7.98cm height="3.98cnm/>

<I-- The rectangle is filled using a radial gradient paint server -->
<rect style="fill:url (#WG adi ent); stroke: bl ack"
x="1lcm y="1lcm w dt h="6cni hei ght="2cnl/>
</ g>
</ svg>

Example radgrad01
View this example as SV G (SV G-enabled browsers only)

13.2.4 Gradient stops

The ramp of colorsto use on agradient is defined by the 'stop' elements that are child elements to either the
'linearGradient' element or the 'radial Gradient' element.

<IENTITY % stopExt "" >
<! ELEMENT stop (ani mate| set| ani nat eCol or

%t opExt;)* >

<! ATTLI ST stop
%t dALtrs;
class % asslLi st; #l MPLI ED
style %5tyl eSheet; #l MPLI ED
%Pr esent ati onAttri butes-G adi ents;
of fset %.ength; #REQU RED >

Attribute definitions;
offset = "length”

The offset attribute is either a <number> (usually ranging from 0 to 1) or a percentage (correspondingly usually
ranging from 0% to 100%) which indicates where the gradient stop is placed. For linear gradients, the offset
attribute represents a location along the gradient vector. For radial gradients, it represents a percentage distance
from (fx,fy) to the edge of the outermost/largest circle.

Animatable: yes.

Attributes defined elsewhere:
%stdAttrs;, class, style, %oPresentationAttributes-Gradients;.

The 'stop-color' property indicates what color to use at that gradient stop. The keyword currentColor and ICC colors can
be specified in the same manner as within a <paint> specification for the fill' and 'stroke’ properties.

file:///D|/Public/CR-SVG-20000802/images/pservers/radgrad01.svg

'stop-color'

Value: currentColor |
<color> [icc-color(<name>,<icccolorvaue>+)] |
inherit

Initial: black

Appliesto: 'stop' elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

The 'stop-opacity' property defines the opacity of a given gradient stop.

'stop-opacity’
Value: <alphavalue> | inherit
Initial: 1
Appliesto: 'stop' elements
Inherited: no
Percentages: N/A
Media: visual

Animatable: yes

Some notes on gradients:

« Gradient offset values less than O (or less than 0%) are rounded up to 0%. Gradient offset values greater than 1
(or greater than 100%) are rounded down to 100%.

o Itisnecessary that at least two stops defined to have a gradient effect. If no stops are defined, then painting shall
occur asif 'none' were specified as the paint style. If one stop is defined, then paint with the solid color fill using
the color defined for that gradient stop.

« Each gradient offset value is required to be equal to or greater than the previous gradient stop's offset value. If a
given gradient stop's offset value is not equal to or greater than all previous offset values, then the offset valueis
adjusted to be equal to the largest of all previous offset values.

« If two gradient stops have the same offset value, then the latter gradient stop controls the color value at the
overlap point.

13.3 Patterns

A patternis used to fill or stroke an object using a pre-defined graphic object which can be replicated ("tiled") at fixed
intervalsin x and y to cover the areas to be painted.

Patterns are defined using a'pattern' element and then referenced by propertiesfill: and stroke:.

<IENTITY % patternkExt "" >
<! ELEMENT pattern (desc|title| netadataldefs|

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| view swi tch| al al t d yphDef |

script|styl e|] synbol | marker | cli pPat h| mask|

| i near G adi ent | radi al G adi ent |pattern|filter|cursor|font]
ani mat e| set | ani mat eMvbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face

%ceExt ; Y%patternkxt;)* >

<I ATTLI ST pattern
YstdAttrs;
Il i nkRef Attrs;
xlink: href %JRI; #l MPLI ED
% est Attrs:;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
cl ass % assLi st; #l| MPLI ED
style %styl eSheet; #l MPLI ED
%r esent ati onAttri butes-All;
vi ewBox %/ ewBoxSpec; #l MPLI ED
preserveAspect Rati o %°reserveAspect Rati oSpec; 'xM dYMd neet'
patternUnits (userSpaceOnUse | user Space | object Boundi ngBox) #l MPLI ED
patternTransform %ransforniist; #l MPLI ED
X %Coor di nat e; #l MPLI ED
y % oor di nate; #l MPLI ED
wi dth %.ength; #REQUI RED
hei ght %.engt h; #REQU RED >

Attribute definitions:
patternUnits = "user SpaceOnUse | user Space | objectBoundingBox™

Defines the coordinate system for attributes x, y, width, height and the contents of the 'pattern'.

If patternUnits="userSpaceOnUse", X, Yy, width, height and the contents of the 'pattern’ represent valuesin the
current user coordinate system in place at the time when the 'pattern’ element is referenced (i.e., the user
coordinate system for the element referencing the 'pattern’ element viaa'fill' or 'stroke’ property).

If patternUnits="userSpace", X, y, width, height and the contents of the 'pattern’ represent values in the current
user coordinate system in place at the time when the 'pattern’ element is defined.

If patternUnits="objectBoundingBox", X, y, width, height represent fractions or percentages of the bounding box
of the element to which the pattern is applied. Additionally, the user coordinate system for the contents of the
pattern is established using the bounding box of the element to which the pattern is applied. (See Object
bounding box units.)

If attribute patternUnitsis not specified, then the effect is asif a value of userSpaceOnUse were specified.
Animatable: yes.

patternTransform = "<transform-list>"

Contains the definitions of an optional additional transformation from the pattern coordinate system onto the
target coordinate system (i.e., userSpaceOnUse, userSpace or objectBoundingBox). This allows for things such
as skewing the pattern tiles. This additional transformation matrix is post-multiplied to (i.e., inserted to the right
of) any previously defined transformations, including the implicit transformation necessary to convert from
object bounding box units to user space.

Animatable: yes.

X = "<coordinate>"

X, Y, width, height indicate how the pattern tiles are placed and spaced and represent coordinates and valuesin
the coordinate space specified by patter nUnits.

If the attribute is not specified, the effect isasif avalue of "0%" were specified.

Animatable: yes.

y = "<coordinate>"

See X.
If the attribute is not specified, the effect isasif avalue of "0%" were specified.
Animatable: yes.

width = "<length>"

See X.

A negative value is an error (see Error processing). A value of zero disables rendering of the element (i.e., no
paint is applied).

Animatable: yes.

height = "<length>"

Seex.

A negative valueis an error (see Error processing). A value of zero disables rendering of the element (i.e., no
paint is applied).

Animatable: yes.

xlink:href ="<uri>"

A URI reference to adifferent 'pattern’ element within the current SV G document fragment. Any attributes
which are defined on the referenced element which are not defined on this element are inherited by this element.
If this element has children, and the referenced element does (possibly due to its own href attribute), then this
element inherits the children from the referenced element. Inheritance can be indirect to an arbitrary level; thus,
if the referenced element inherits attributes or children due to its own href attribute, then the current element can
inherit those attributes or gradient stops.

Animatable: yes.

Attributes defined elsewhere:

%stdAttrs;, %langSpaceAttrs;, class, %testAttrs;, external ResourcesRequired, viewBox, preserveAspectRatio,
%oxlinkRefAttrs;, style, YoPresentationAttributes-All;.

Example patternO1 shows how to fill arectangle by referencing alinear gradient paint server.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg wi dt h="8cn' hei ght="4cn" >
<def s>
<pattern id="Triangl ePattern"
x="0" y="0" width="1cnm hei ght="1cnt
vi ewBox="0 0 10 10" >
<path d="M O O L 7 0L 3.57 z" style="fill:red; stroke: blue"/>
</ pattern>
</ def s>

<l-- Qutline the drawing area in blue -->
<rect style="fill:none; stroke:blue"

x=".01lcnm y=".0lcnt width="7.98cm' hei ght="3.98cn/>
<I-- The ellipse is filled using a triangle pattern paint server
and stroked with black -->
<ellipse style="fill:url (#Triangl ePattern); stroke:black"

cx="4cm' cy="2cni rx="3.5cm" ry="1.5cni />
</ svg>

Example pattern01

View this example as SV G (SV G-enabled browsers only)

13.4 DOM interfaces

The following interfaces are defined below: SV GGradientElement, SV GLinearGradientElement,
SV GRadia GradientElement, SV GStopElement, SV GPatternElement.

Interface SVGGradientElement

The SV GGradientElement interface is a base interface used by SV GLinearGradientElement and
SV GRadial GradientElement.

IDL Definition

i nterface SVGG adi ent El enent
SVCEl enent
SVGURI Ref er ence,
SVCGEXt er nal Resour cesRequi r ed,
SVGUni t Types {

/1 Spread Method Types

const unsi gned short SVG _SPREADVETHOD UNKNOAN
const unsi gned short SVG _SPREADVETHOD PAD
const unsigned short SVG SPREADVETHOD REFLECT
const unsi gned short SVG _SPREADVETHOD REPEAT

whHEQ

readonly attribute SVGAni nat edEnunerati on gradientUnits;
readonly attribute SVGAni mat edTransfornii st gradi ent Transform
readonly attribute SVGAni mat edEnunerati on spr eadMet hod;

file:///D|/Public/CR-SVG-20000802/images/pservers/pattern01.svg

s

Definition group Spread Method Types
Defined constants

SVG_SPREADMETHOD_UNKNOWN Thetypeis not one of predefined types. It isinvalid to attempt
to define a new value of thistype or to attempt to switch an
existing value to this type.

SVG_SPREADMETHOD_PAD Corresponds to value pad.
SVG_SPREADMETHOD_REFLECT Corresponds to value reflect.
SVG_SPREADMETHOD_REPEAT Corresponds to value repest.
Attributes
readonly SV GAnimatedEnumeration gradientUnits

Corresponds to attribute gradientUnits on the given element. Takes one of the constants defined in
SVGUnitTypes.

readonly SVGAnimatedTransformList gradientTransform
Corresponds to attribute gradientTransform on the given element.
readonly SV GAnimatedEnumeration spreadMethod
Corresponds to attribute spreadM ethod on the given element. One of the Spread Method Types.

Interface SVGLinearGradientElement

The SV GLinearGradientElement interface corresponds to the 'linearGradient' element.
IDL Definition

i nterface SVG.i near G adi ent El enent : SVGG adi ent El enrent {
readonly attribute SVGAni mat edLengt h x1;
readonly attribute SVGAni mat edLength y1;
readonly attribute SVGAni mat edLengt h x2;
readonly attribute SVGAni nat edLength y2;

}

Attributes

readonly SV GAnimatedL ength x1

Corresponds to attribute x1 on the given 'linearGradient' element.
readonly SVGAnimatedLength y1

Corresponds to attribute y1 on the given 'linearGradient’ element.
readonly SV GAnimatedL ength x2

Corresponds to attribute x2 on the given 'linearGradient’ element.
readonly SV GAnimatedL ength y2

Corresponds to attribute y2 on the given 'linearGradient’ element.

Interface SVGRadialGradientElement

The SV GRadia GradientElement interface corresponds to the 'radial Gradient' element.
IDL Definition

i nterface SVGRadi al Gradi ent El enent : SVGG adi ent El enent {
readonly attribute SVGAni nat edLength cx;
readonly attribute SVGAni mat edLengt h cy;
readonly attribute SVGAni mat edLength r;
readonly attribute SVGAni mat edLengt h fx;
readonly attribute SVGAni mat edLength fy;

s

Attributes

readonly SV GAnimatedL ength cx

Corresponds to attribute cx on the given 'radial Gradient' element.
readonly SV GAnimatedL ength cy

Corresponds to attribute cy on the given 'radial Gradient' element.
readonly SVGAnimatedLength r

Corresponds to attribute r on the given ‘radial Gradient' element.
readonly SV GAnimatedL ength fx

Corresponds to attribute fx on the given 'radial Gradient' element.
readonly SV GAnimatedL ength fy

Corresponds to attribute fy on the given 'radialGradient' element.

Interface SVGStopElement

The SV GStopElement interface corresponds to the 'stop' el ement.
IDL Definition

i nterface SVGStopEl enent
SVGEl enent ,
SVGSt yl abl e {

readonly attribute SVGAni nat edNunber offset;
1

Attributes
readonly SV GAnimatedNumber offset
Corresponds to attribute offset on the given 'stop' element.

Interface SVGPatternElement

The SV GPatternElement interface corresponds to the 'pattern’ element.
IDL Definition

i nterface SVGPatter nEl enent
SVCGEl enent
SVGEURI Ref er ence,
SVGTest s,
SVG.angSpace,
SVCGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGFi t ToVi ewBox,
SVGUni t Types {

readonly attribute SVGAni mat edEnuner ati on patternUnits;
readonly attribute SVGAni mat edTransfornli st patternTransform

readonly attribute SVGAni mat edLengt h X;
readonly attribute SVGAni mat edLengt h y;
readonly attribute SVGAni mat edLengt h wi dt h;
readonly attribute SVGAni mat edLengt h hei ght ;
1
Attributes

readonly SV GAnimatedEnumeration patternUnits

Corresponds to attribute patternUnits on the given 'pattern' element. Takes one of the constants defined in
SVGUnitTypes.

readonly SVGAnimatedTransformList patternTransform
Corresponds to attribute patternTransform on the given 'pattern’ element.
readonly SV GAnimatedL ength x
Corresponds to attribute x on the given 'pattern’ element.
readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'pattern' element.
readonly SV GAnimatedL ength width
Corresponds to attribute width on the given 'pattern’ element.
readonly SV GAnimatedL ength height
Corresponds to attribute height on the given 'pattern’ element.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

14 Clipping, Masking and Compositing

Contents

o 14.1 Introduction

o 14.2 Simple apha compositing
o 14.3 Clipping paths
o 14.3.1 Introduction
o 14.3.2 Theinitia clipping path
0 14.3.3 The'overflow' and ‘clip' properties

o 14.3.4 Clip to viewport vs. clip to viewBox

o 14.3.5 Establishing a new clipping path
o 14.4 Masking
» 14.5 Object and group opacity: the ‘opacity’ property
« 14.6 DOM interfaces

14.1 Introduction

SV G supports the following clipping/masking features:

« clipping paths, which uses any combination of 'path’, 'text' and basic shapes to serve as the outline of a (in the
absense of antialiasing) 1-bit mask, where everything on the "inside" of the outline is allowed to show through but
everything on the outside is masked out

« masks, which are container elements which can contain graphics € ements or other container elements which define

aset of graphicsthat isto be used as a semi-transparent mask for compositing foreground objects into the current
background.

One key distinction between a clipping path and a mask is that clipping paths are hard masks (i.e., the silhouette consists of

either fully opaque pixels or fully transparent pixels, with the possible exception of antialiasing along the edge of the
silhouette) whereas masks consist of an image where each pixel value indicates the degree of transparency vs. opacity. In a
mask, each pixel value can range from fully transparent to fully opague.

SV G supports only simple apha blending compositing (see Simple Alpha Compositing).

(Insert drawings showing a clipping path, a grayscale imagemask, simple apha blending and more complex blending.)

file:///D|/Public/CR-SVG-20000802/indexlist.html

14.2 Simple alpha compositing

Graphics elements are blended into the elements already rendered on the canvas using simple apha compositing, in which
the resulting color and opacity at any given pixel on the canvas isthe result of the following formulas (all color values use
premultiplied apha):

Er, Eg, Eb - Elenent color val ue

Ea - El emrent al pha val ue

C, Cg, Cb - Canvas col or val ue (before bl endi ng)
Ca - Canvas al pha val ue (before bl endi ng)
', Cg, Cb' - Canvas color value (after bl ending)
ca' - Canvas al pha val ue (after bl ending)
Cda' =1- (1- Ea) * (1 - Ca)

' =(1- Ea) * O + FEr

Gy =(1- Ea) * Cg + Eg

Cb' =(1- Ea) * Cb + Eb

The following rendering properties, which provide information about the color space in which to perform the compositing
operations, apply to compositing operations:

« 'color-interpolation’
« 'color-rendering'

14.3 Clipping paths

14.3.1 Introduction

The clipping path restricts the region to which paint can be applied. Conceptually, any parts of the drawing that lie outside
of the region bounded by the currently active clipping path are not drawn. A clipping path can be thought of as a 1-bit mask.

14.3.2 The initial clipping path

When an 'svg' element is either the root element in the document or is embedded within a document whose layout is

determined according to the layout rules of CSS or XSL, then the user agent must establish an initial clipping path for the
SVG document fragment. The 'overflow' and 'clip' properties along with additional SV G user agent processing rules
determine theinitial clipping path which the user agent establishes for the SV G document fragment:

14.3.3 The 'overflow' and 'clip' properties

‘over flow'
Value: visible | hidden | scroll | auto | inherit
Initial: See prose
Appliesto: elements which establish anew viewport
Inherited: no

Percentages. N/A

Media: visual
Animatable: yes

The 'overflow' property has the same parameter values and has the same meaning as defined in [CSS2-overflow]; however,
the following additional points apply:

« The'overflow' property only applies to elements that establish new viewports, such as'svg' elements. (See the
discussion of the elements which establish a new viewport.)

» When an outermost SV G 'svg' element is embedded inline within a parent XML grammar which uses CSS layout
[CSS2-LAYOUT] or XSL formatting [XSL], if the 'overflow' property has the value hidden, then the user agent will

establish an initia clipping path equal to the bounds of the initial viewport; otherwise, the initial clipping path is set
according to the clipping rules as defined in [CSS2-overflow].

« When an outermost SVG 'svg' element is standalone or embedded inline within a parent XML grammar which does
not use CSS layout [CSS2-LAYOUT] or XSL formatting [XSL], the 'overflow' property on the outermost 'svg'

element isignored for the purposes of visual rendering and the initial clipping path is set to the bounds of the initial
viewport.

« For'svg' elementsthat are embedded inside of an ancestor SV G document fragment (i.e., without a 'foreignObject’
element between the inner 'svg' and the nearest ancestor 'svg’) or for any other elements which establish a new
viewport, the 'overflow' property determines whether an additional new clipping path is established around the
bounds of the viewport established by the given element. If the value of the 'overflow' property is hidden, then a new
clipping path is established; otherwise, no new clipping path is established.

o Theinitia valuefor 'overflow' as defined in [CSS2-overflow] is 'visible'; however, the User agent style sheet
specifies that the ‘overflow' property on al elements within an SVG document fragment has the value ‘hidden'.

Asaresult of the above, the default behavior of SV G user agentsis to establish a clipping path to the bounds of the initial
viewport and to establish a new clipping path for each element which establishes a new viewport.

For stand-alone SV G viewers or in situations where an SV G document fragment is embedded inline within a parent XML
grammar which does not use CSS layout or XSL formatting, then the initial clipping path must be set to the bounds of the
viewing region in which the SV G document fragment is rendered, even if the 'overflow' property is set to avalue other than
hidden.

For related information, see Clip to viewport vs. clip to viewBox.

‘clip’
Value: <shape> | auto | inherit
Initial: auto
Appliesto: elements which establish a new viewport
Inherited: no
Percentages. N/A
Media: visua
Animatable: yes

The 'clip' property only applies to e ements which establish a new viewport. The 'clip' property has the same parameter
values as defined in [CSS2-clip]. Unitless values, which indicate current user coordinates, are permitted on the coordinate

values on the <shape>. The value of "auto" defines a clipping path along the bounds of the viewport created by the given
element.

14.3.4 Clip to viewport vs. clip to viewBox

It isimportant to note that initial values for the 'overflow' and 'clip' properties and the User agent style sheet will result in an
initia clipping path that is set to the bounds of the initial viewport. When attributes viewBox and preserveAspectRatio
attributes are specified on a viewport-creating element, it is sometime desirable that the initial viewport be set to the bounds

of the viewBox instead of the viewport, particularly when preserveAspectRatio specifies uniform scaling and the aspect
ratio of the viewBox does not match the aspect ratio of the viewport.

To set theinitial clipping path to the bounds of the viewBox instead of the viewport, set the bounds of 'clip' property to the
same rectangle as specified on the viewBox attribute. (Note that the parameters do not match. 'clip' takes values <top>,
<right>,<bottom> and <left>, whereas viewBox takes values <min-x>, <min-y>, <width> and <height>.)

14.3.5 Establishing a new clipping path

A clipping path is defined with a'clipPath' element. A clipping path is used/referenced using the 'clip-path’ property.

A 'clipPath’ element can contain 'path’ elements, 'text' elements, other vector graphic shapes (such as 'circl€’) or a'use'

element. If a'use’ element isachild of a'clipPath’ element, it must directly reference path, text or vector graphic shape
elements. Indirect references are an error (see Error processing). The silhouettes of the child elements are logically OR'd

together to create a single silhouette which is then used to restrict the region onto which paint can be applied.

Itisan error if the 'clip-path’ property references a non-existent object or if the referenced object is not a'clipPath’ el ement
(see Error processing).

For a given graphics element, the actual clipping path used will be the intersection of the clipping path specified by its
‘clip-path’ property (if any) with any clipping paths on its ancestors, as specified by the 'clip-path’ property on the ancestor
elements, or by the 'overflow' property on ancestor elements which establish a new viewport. Also, see the discussion of the
initial clipping path.)

A couple of notes:

« The'clipPath’ element itself and its child elements do not inherit clipping paths from the ancestors of the ‘clipPath'
element.

« The'clipPath’ element or any of its children can specify property 'clip-path'.
If avalid 'clip-path’ referenceis placed on a'clipPath’ element, the resulting clipping path is the intersection of the
contents of the 'clipPath’ element with the referenced clipping path.
If avalid 'clip-path’ referenceis placed on one of the children of a'clipPath’ element, then the given child element is

clipped by the referenced clipping path before OR'ing the silhouette of the child element with the silhouettes of the
other child elements.

<IENTITY %clipPat hExt "" >
<! ELEMENT clipPath (%lescTitl eMet adat a; ,

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
%eExt; %l i pPat hExt;)*) >

<I' ATTLI ST clipPath
st dAttrs;
% est Attrs;
% angSpaceAttrs:;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assList; #| MPLI ED
style %styl eSheet; #l MPLI ED
9%Pr esent ati onAttributes-Fill Stroke;
%Pr esent ati onAttri but es- Font Sel ecti on;
%Pr esent ati onAttri but es- G aphics;
9%Pr esent ati onAttri but es- Text Cont ent El enent s;

%°r esent ati onAttri but es- Text El enents;

transform %l ransfornLi st; #l MPLI ED

clipPathUnits (user SpaceOnUse | user Space | object Boundi ngBox) #l MPLI ED >

Attribute definitions:
clipPathUnits = "user SpaceOnUse | user Space | objectBoundingBox"

Defines the coordinate system for the contents of the 'clipPath'.

If clipPathUnits="userSpaceOnUse", the contents of the 'clipPath’ represent values in the current user coordinate
system in place at the time when the 'clipPath’ element is referenced (i.e., the user coordinate system for the element
referencing the 'clipPath’ element viathe 'clip-path’ property).

If clipPathUnits="userSpace", the contents of the 'clipPath’ represent values in the current user coordinate system in
place at the time when the 'clipPath’ element is defined.

If clipPathUnits="objectBoundingBox", then the user coordinate system for the contents of the 'clipPath’ element is
established using the bounding box of the element to which the clipping path is applied (see Object bounding box

units).
If attribute clipPathUnits is not specified, then the effect isas if a value of userSpaceOnUse were specified.
Animatable: yes.

Attributes defined el sewhere;

%stdAttrs;, %olangSpaceAttrs;, class, transform, %testAttrs;, external ResourcesRequired, style,
%PresentationAttributes-Fil | Stroke;, %oPresentati onAttributes-FontSel ection;, %Presentati onAttributes-Graphics;,
%Presentati onAttributes-TextContentElements;, %oPresentati onAttributes-TextElements;.

‘clip-path’
Value: <uri> | none | inherit
Initial: none
Appliesto: all elements
Inherited: no
Percentages. N/A
Media: visual

<uri>

Animatable: yes

A URI reference to another graphical object within the same SV G document fragment which will be used as the
clipping path.

‘clip-rule
Value: evenodd | nonzero | inherit
Initial: evenodd
Appliesto: graphics elements within a'clipPath’ element
Inherited: yes
Percentages. N/A
Media: visua

Animatable: yes

evenodd

See description of fill-rule' property.

nonzero

See description of 'fill-rule' property.

The 'clip-rule' property only appliesto graphics elements that are contained within a 'clipPath’' element. The following
fragment of code will cause anonzero clipping rule to be applied to the clipping path because 'clip-rul€' is specified on the

‘path’ element that defines the clipping shape:

<g style="clip-rule: evenodd">
<clipPath id="Wdip">

<path d="..." style="clip-rul e:nonzero" />
</clipPat h>
<rect style="clip-path:url (#wdip)" ... [>
</ g>

whereas the following fragment of code will not cause a nonzero clipping rule to be applied because the ‘clip-rul€' is
specified on the referencing element, not on the object defining the clipping shape:

<g style="clip-rule: evenodd">
<clipPath id="Wdip">

<path d="..." />
</ cl i pPat h>
<rect style="clip-path:url(#Wdip); clip-rule:nonzero" ... />

</ g>

14.4 Masking

In SVG, you can specify that any other graphics object or 'g' element can be used as an apha mask for compositing the
current object into the background.

A mask is defined with a'mask’ element. A mask is used/referenced using the 'mask’ property.
A 'mask’ can contain any graphical elements or grouping elementssuch asa'g'’.

Itisan error if the 'mask’ property references a non-existent object or if the referenced object is not a'mask’ element (see
Error Processing).

The effect isasif the child elements of the 'mask’ are rendered into an offscreen image. Any graphical object which
uses/references the given 'mask’ element will be painted onto the background through the mask, thus completely or partialy
masking out parts of the graphical object.

For afour-channel RGBA graphics object that is used as a mask, both the color channels and the alpha channel of the mask
contribute to the masking operation. The alphamask that is used to composite the current object into the background
represents the product of the luminance of the color channels (determined using the luminance-to-alpha formulas as defined
in the 'feColorMatrix’ filter primitive) and the alpha channel from the mask.

For athree-channel RGB graphics object that is used as a mask (e.g., when referencing a 3-channel image file), the effect is
asif the object were converted into a 4-channel RGBA image with the al pha channel uniformly set to 1.

For asingle-channel image that is used as a mask (e.g., when referencing a 1-channel grayscale imagefile), the effect isas
if the object were converted into a 4-channel RGBA image, where the single channel from the referenced object is used as
the alpha channel and the color channels are set to 100% white.

The effect of amask isidentical to what would have happened if there were no mask but instead the alpha channel of the
given object were multiplied with the mask's resulting alpha values (i.e., the product of the mask's luminance from its color
channels multiplied by the mask's alpha channel).

Note that SV G 'path”s, shapes (e.g., ‘circle’) and 'text’ are al treated as four-channel RGBA images for the purposes of
masking operations.

Example mask01 uses an image to mask arectangle.
<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >

<svg Wi dt h="8cm' hei ght="3cm'>
<desc>Exanpl e mask01 - blue text masked with gradi ent agai nst red background
</ desc>
<def s>
<linearGadient id="Gradient" x1="0cm' y1="0cm' x2="8cn' y2="0cni >
<stop offset="0" style="stop-col or: bl ack; stop-opacity:0"/>
<stop offset="1" styl e="stop-col or: bl ack; stop-opacity:1"/>
</linear Gradi ent >
<mask id="Mask">
<rect x="0cn' y="0cnmt w dth="8cnl height="3cm' style="fill:url (#Gadient)" />
</ mask>
<text id="Text" x="4cnl' y="2cni
style="font-fam |ly: Verdana; font-size:lcm text-anchor:m ddle">

Masked text
</text>
</ def s>
<l-- Draw a pale red rectangle in the background -->
<rect x="0cnmt y="0cni w dth="8cni' hei ght="3cnt style="fill:#FF8080"/>
<l-- Draw the text string twice. First, filled blue, with the nmask applied.
Second, outlined in black wthout the mask. -->
<use xlink:href="#Text" style="fill:blue; mask:url (#Mask)"/>
<use xlink:href="#Text" style="fill:none; stroke:black; stroke-w dth:.02cn/>
</ svg>

Example mask01

View this example as SV G (SV G-enabled browsers only)

<IENTITY % maskExt "" >
<! ELEMENT mask (desc|title| netadat a| def s

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| view swi tch| al al t d yphDef |

script|styl e|] synbol | marker | cli pPat h| mask]|

l i near Gradi ent | radi al G adi ent | pattern|filter|cursor|font]
ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face

%ceExt; %raskExt;)* >

<I ATTLI ST nmask
Y%stdAtLtrs;
% est Attrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
cl ass % assList; #| MPLI ED

file:///D|/Public/CR-SVG-20000802/images/masking/mask01.svg

style %styl eSheet; #l MPLIED

%Pr esent ati onAttri butes-All;

transform % ransformiist; #l MPLIED

maskUnits (user SpaceOnUse | user Space | object Boundi ngBox) #| MPLI ED
X YCoor di nat e; #l| MPLI ED

y %Coordi nat e; #l MPLI ED

wi dth %.ength; #I MPLI ED

hei ght %.ength; #I MPLIED >

Attribute definitions:
maskUnits = "user paceOnUse | user Yoace | objectBoundingBox"

Defines the coordinate system for attributes x, y, width, height and the contents of the 'mask’.

If maskUnits="userSpaceOnUse", X, y, width, height and the contents of the 'mask’ represent values in the current
user coordinate system in place at the time when the 'mask’ element is referenced (i.e., the user coordinate system for
the element referencing the 'mask’ element viathe 'mask’ property).

If maskUnits="userSpace", X, y, width, height and the contents of the 'mask’ represent values in the current user
coordinate system in place at the time when the 'mask’ element is defined.

If maskUnits="objectBoundingBox", then the user coordinate system for the contents of the ‘mask’ element is
established using the bounding box of the element to which the clipping path is applied (see Object bounding box

units).
If attribute maskUnitsis not specified, then the effect isasif avalue of userSpaceOnUse were specified.
Animatable: yes.

X = "<coordinate>"

The x-axis coordinate of one corner of the rectangle for the largest possible offscreen buffer. Note that the clipping
path used to render any graphics within the mask will consist of the intersection of the current clipping path
associated with the given object and the rectangle defined by X, y, width, height.

If the attribute is not specified, the effect isasif avalue of "0%" were specified.

Animatable: yes.

y = "<coordinate>"

The y-axis coordinate of one corner of the rectangle for the largest possible offscreen buffer.
If the attribute is not specified, the effect isasif avalue of "0%" were specified.
Animatable: yes.

width = "<length>"

The width of the largest possible offscreen buffer. Note that the clipping path used to render any graphics within the
mask will consist of the intersection of the current clipping path associated with the given object and the rectangle
defined by x, y, width, height.

A negative valueis an error (see Error processing). A value of zero disables rendering of the el ement.

If the attribute is not specified, the effect isasif avalue of "100%" were specified.

Animatable: yes.

height = "<length>"

The height of the largest possible offscreen buffer.

A negative valueis an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect isasif avalue of "100%" were specified.

Animatable; yes.

Attributes defined elsewhere:

YostdAttrs;, %langSpaceAttrs;, class, transform, %otestAttrs;, external ResourcesRequired, style,
%PresentationAttributes-All;.

Thefollowing is adescription of the 'mask’ property.

lmw(l
Value: <uri> | none | inherit
Initial: none
Appliesto: all elements
Inherited: no
Percentages. N/A
Media: visual
Animatable: yes
<uri>

A URI reference to another graphical object which will be used as the mask.

14.5 Object and group opacity: the 'opacity’ property

There are severa opacity properties within SVG:
« Fill opacity
« Stroke opacity
« Gradient stop opacity

« Object/group opacity (described here)

Except for object/group opacity (described just below), al other opacity properties are involved in intermediate rendering
operations. Object/group opacity can be thought of conceptually as a postprocessing operation. Conceptually, after the
object/group is rendered into an RGBA offscreen image, the object/group opacity setting specifies how to blend the
offscreen image into the current background.

'opacity’
Value: <alphavalue> | inherit
Initial: 1
Appliesto: all elements
Inherited: no
Percentages. N/A
Media: visua

Animatable: yes

<alphavalue>
The uniform opacity setting to be applied across an entire object. Any values outside the range 0.0 (fully
transparent) to 1.0 (fully opague) will be clamped to this range. (See Clamping values which are restricted to a

particular range.) If the object is a container element such asa'g’, then the effect is asif the contents of the 'g' were

blended against the current background using a mask where the value of each pixel of the mask is <alphavalue>.
(See Simple apha compositing.)

Example opacity0l, illustrates various usage of the 'opacity’ property on elements and groups.

<?xm version="1. 0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
“http://ww. w3. org/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg wi dth="12cni' hei ght="3. 5cni" viewBox="0 0 1200 350">
<desc>Exanpl e opacity0l - opacity property</desc>

<rect x="1" y="1" wi dth="1198" hei ght ="348"
style="fill:none; stroke:blue"/>

<!-- Background blue rectangle -->
<rect x="1cnt y="1lcni w dt h="10cm' height="1.5cm" style="fill:#0000ff" />

ransparent -->
:red; opacity:1" />

<l-- Red circles going fromopaque to nearly t
ill
| :red; opacity:.8" />
I
I
I

<circle cx="2cnt cy="1lcnt r=".5cn' style="fil
<circle cx="4cnt' cy="1lcnt' r=".5cm' style="fil
Il:red; opacity:.6" />
Il:red; opacity:.4" />
|:red; opacity:.2" [>

<circle cx="6cm' cy="1lcm' r=".5cm" style="fi
<circle cx="8cmt' cy="1lcm' r=".5cm" style="fi
<circle cx="10cnm' cy="1cnmi r=".5cn style="fi

<l -- Opaque group, opaque circles -->
<g style="opacity:1">
<circle cx="1.825cm' cy="2.5cnm r=".5cnm" style="fill:red; opacity:1" />

<circle cx="2.175cn' cy="2.5cm' r=".5cm" style="fill:green; opacity:1" />
</ g>
<l-- Group opacity: .5, opacity circles -->
<g style="opacity:.5">
<circle cx="3.825cn' cy="2.5cm' r=".5cm" style="fill:red; opacity:1" />
<circle cx="4.175cm' cy="2.5cnm" r=".5cm' style="fill:green; opacity:1" />
</ g>
<!-- Opaque group, sem -transparent green over red -->

<g style="opacity:1">
<circle cx="5.825cm' cy="2.5cm' r=".5cm' style="fill:red; opacity:.5" />

<circle cx="6.175cn cy="2.5cm' r=".5cm" style="fill:green; opacity:.5" />
</ g>
<!-- Opaque group, sem -transparent red over green -->
<g style="opacity:1">
<circle cx="8.175cnm' cy="2.5cm' r=".5cm" style="fill:green; opacity:.5" />
<circle cx="7.825cnt cy="2.5cn r=".5cm style="fill:red; opacity:.5" />
</ g>
<l-- Goup opacity .5, senmi-transparent green over red -->

<g style="opacity:.5">
<circle cx="9.825cnt cy="2.5cn r=".5cm style="fill:red; opacity:.5" />
<circle cx="10.175cnm cy="2.5cnt r=".5cnt" style="fill:green; opacity:.5" />
</ g>
</ svg>

Example opacity0l

View this example as SV G (SV G-enabled browsers only)

In the example above, the top row of circles have differing opacities, ranging from 1.0 to 0.2. The bottom row illustrates
five'g elements, each of which contains overlapping red and green circles, as follows:

« Thefirst group shows the opaque case for reference. The group has opacity of 1, as do the circles.
« The second group shows group opacity when the elements in the group are opaque.

« Thethird and fourth group show that opacity is not commutative. In the third group (which has opacity of 1), a
semi-transparent green circle is drawn on top of a semi-transparent red circle, whereas in the fourth group a

file:///D|/Public/CR-SVG-20000802/images/masking/opacity01.svg

semi-transparent red circle is drawn on top of a semi-transparent green circle. Note that area where the two circles
intersect display different colors. The third group shows more green color in the intersection area, whereas the fourth
group shows more red color.

« Thefifth group shows the multiplicative effect of opacity settings. Both the circles and the group itself have opacity
settings of .5. Theresult is that the portion of the red circle which does not overlap with the green circle (i.e., the
top/right of the red circle) will blend into the blue rectangle with accumulative opacity of .25 (i.e., .5*.5), which,
after blending into the blue rectangle, resultsin a blended color which is 25% red and 75% blue.

14.6 DOM interfaces

The following interfaces are defined below: SV GClipPathElement, SV GMaskElement.

Interface SVGClipPathElement

The SV GClipPathElement interface corresponds to the 'clipPath’ element.
IDL Definition

i nterface SVGO i pPat hEl enent
SVCEl enent ,
SVGTest s,
SVGE.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
SVGUni t Types {

readonly attribute SVGAni mat edEnunerati on cli pPathUnits;

};

Attributes
readonly SV GAnimatedEnumeration clipPathUnits

Corresponds to attribute clipPathUnits on the given 'clipPath’ element. Takes one of the constants defined in
SVGUnitTypes.

Interface SVGMaskElement

The SV GMaskElement interface corresponds to the 'mask’ element.
IDL Definition

i nterface SVGWaskEl enent
SVGE enent
SVGTest s,
SVGL.angSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTIr ansf or mabl e,

SVGUni t Types {

readonly attribute SVGAni mat edEnunerati on maskUnits;

readonly attribute SVGAni mat edLength X;
readonly attribute SVGAni mat edLength Y,
readonly attribute SVGAni mat edLength wi dt h;
readonly attribute SVGAni mat edLength hei ght ;
1
Attributes

readonly SV GAnimatedEnumeration maskUnits

Corresponds to attribute maskUnits on the given 'mask’ element. Takes one of the constants defined in
SVGUnitTypes.

readonly SVGAnimatedL ength x

Corresponds to attribute x on the given 'mask’ element.
readonly SV GAnimatedLength y

Corresponds to attribute y on the given 'mask’ element.
readonly SV GAnimatedL ength width

Corresponds to attribute width on the given 'mask’ element.
readonly SV GAnimatedL ength height

Corresponds to attribute height on the given 'mask’ element.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

15 Filter Effects

Contents

« 15.1 Introduction

« 15.2 Anexample

« 15.3 The filter' element

o 15.4 The filter' property
« 15.5 Filter effects region

« 15.6 Accessing the background image

o 15.7 Filter primitives overview

o 15.7.1 Overview
o 15.7.2 Common attributes

o 15.7.3 Filter primitive sub-region

« 15.8 Light source elements and properties
o 15.8.1 Introduction
o 15.8.2 Light source 'feDistantLight'
o 15.8.3 Light source 'fePointLight'
o 15.8.4 Light source 'feSpotLight'
o 15.8.5 The 'lighting-color' property

« 15.9 Filter primitive 'feBlend'
« 15.10 Filter primitive 'feColorMatrix'
o 15.11 Filter primitive 'feComponentTransfer'

« 15.12 Filter primitive feComposite

« 15.13 Filter primitive ‘feConvolveMatrix'

« 15.14 Filter primitive feDiffuselighting'

« 15.15 Filter primitive feDisplacementM ap'
« 15.16 Filter primitive ‘feFlood'

« 15.17 Filter primitive ‘feGaussianBlur'

« 15.18 Filter primitive felmage’

« 15.19 Filter primitive ‘feMerge’

« 15.20 Filter primitive feMorphology"

« 15.21 Filter primitive feOffset’

« 15.22 Filter primitive feSpecularLighting'
« 15.23 Filter primitive feTile

« 15.24 Filter primitive feTurbulence

« 15.25 DOM interfaces

15.1 Introduction

This chapter describes SV G's declarative filter effects feature set, which when combined with the 2D power of SV G can describe much of the
common artwork on the Web in such away that client-side generation and alteration can be performed easily.

file:///D|/Public/CR-SVG-20000802/indexlist.html

A filter effect consists of a series of graphics operations that are applied to a given source graphic to produce a modified graphical result. The result of
the filter effect is rendered to the target device instead of the original source graphic. The following illustrates the process:

H)y == b

Original source graphic Result of filter affect

View this example as SVG (SV G-enabled browsers only)

Filter effects are defined by 'filter' elements. To apply afilter effect to a graphics element or a container el ement, you set the value of the filter'
property on the given element such that it references the filter effect.

Each filter' element contains a set of filter primitives as its children. Each filter primitive performs a single fundamental graphical operation (e.g., a
blur or alighting effect) on one or more inputs, producing a graphical result. Because most of the filter primitives represent some form of image
processing, in most cases the output from afilter primitive is asingle RGBA image.

The original source graphic or the result from afilter primitive can be used asinput into one or more other filter primitives. A common application is
to use the source graphic multiple times. For example, asimplefilter could replace one graphic by two by adding a black copy of original source
graphic offset to create a drop shadow. In effect, there are now two layers of graphics, both with the same original source graphics.

When applied to grouping elements such as'd', the 'filter' property applies to the contents of the group as awhole. The group's children do not render
to the screen directly; instead, the graphics commands necessary to render the children are stored temporarily. Typically, the graphics commands are
executed as part of the processing of the referenced filter' element via use of the keywords SourceGraphic or SourceAlpha.

15.2 An example

The following shows an example of afilter effect.

Example filtersO1 - introducing filter effects.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 03Decenber 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dth="7.5cm' hei ght="5cm" vi ewBox="0 0 200 120" >
<title>Exanple filtersOl.svg - introducing filter effects</title>
<desc>An exanpl e which conbines nultiple filter primtives
to produce a 3D lighting effect on a graphic consisting
of the string "SVG' sitting on top of oval filled in red
and surrounded by an oval outlined in red.</desc>
<def s>
<filter id="MyFilter">
<desc>Produces a 3D lighting effect.</desc>
<f eGaussi anBl ur in="Sour ceAl pha" stdDeviation="4" result="blur"/>
<feOfset in="blur" dx="4" dy="4" result="offsetBlur"/>
<f eSpecul arLi ghting i n="blur" surfaceScal e="5" specul ar Const ant ="1"
specul ar Exponent =" 10" styl e="Ili ghting-col or: white"
resul t="specCut">
<f ePoi nt Li ght x="-5000" y="-10000" z="20000"/>
</ f eSpecul ar Li ghti ng>
<f eConposite in="specQut" in2="SourceAl pha" operator="in" result="specCQut"/>
<f eConposi te i n="SourceG aphi c" in2="specQut" operator="arithnetic"
k1="0" k2="1" k3="1" k4="0" result="litPaint"/>
<f eMer ge>
<f eMer geNode i n="of fsetBlur"/>
<f eMergeNode in="litPaint"/>
</ f eMer ge>
</[filter>
</ def s>
<rect x="1" y="1" wi dth="198" hei ght="118" style="fill:#888888; stroke:blue"/>
<g style="filter:url (#WFilter)">
<g>
<path style="fill:none; stroke:#D90000; stroke-w dth: 10"
d="Mb0, 90 C0, 90 0, 30 50, 30 L150, 30 C200, 30 200,90 150,90 z" />

file:///D|/Public/CR-SVG-20000802/images/filters/filters00.svg

<path style="fill:#D90000"
d="M60, 80 C30,80 30,40 60,40 L140,40 C170,40 170,80 140,80 z" />

<g style="fill:#FFFFFF; stroke:bl ack; font-size:45; font-famly: Verdana">
<text x="52" y="76">SVG/text>
</ g>
</ g>
</ g>
</ svg>

e

=l 4

Example filtersO1

View this example as SVG (SVG-enabled browsers only)

The filter effect used in the example above is repeated here with reference numbers in the left column before each of the six filter primitives:

<filter id="MFilter">
<desc>Produces a 3D lighting effect.</desc>
<f eGaussi anBl ur i n="Sour ceAl pha" stdDevi ati on="4" result="blur"/>
<feOfset in="blur" dx="4" dy="4" result="offsetBlur"/>
<f eSpecul ar Li ghting in="blur" surfaceScal e="5" specul ar Const ant =" 1"
specul ar Exponent =" 10" styl e="li ghti ng-col or: white"
resul t ="specQut ">
<f ePoi nt Li ght x="-5000" y="-10000" z="20000"/>
</ f eSpecul ar Li ghti ng>
4 <feConposite in="specQut" in2="SourceAl pha" operator="in" result="specQut"/>
5 <feConposite in="SourceG aphic" in2="specQut" operator="arithnetic"
k1="0" k2="1" k3="1" k4="0" result="litPaint"/>

WN P

6 <feMerge>
<f eMer geNode i n="of fsetBlur"/>
<f eMergeNode in="litPaint"/>
</ f eMer ge>
</filter>

The following pictures show the intermediate image results from each of the six filter elements:

Cl =

Source graphic After filter primitivel After filter primitive2 After filter primitive 3

| | |
= o | o

After filter primitive4 After filter primitive5 After filter primitive 6

1. Filter primitive 'feGaussianBlur' takes input SourceAlpha, which is the alpha channel of the source graphic. The result is stored in atemporary
buffer named "blur". Note that "blur" is used as input to both filter primitives 2 and 3.

2. Filter primitive TeOffset’ takes buffer "blur", shifts the result in a positive direction in both x and y, and creates a new buffer named
"offsetBlur". The effect isthat of a drop shadow.

3. Filter primitive feSpecularLighting’, uses buffer "blur" as amodel of a surface elevation and generates a lighting effect from a single point
source. Theresult is stored in buffer "specOut".

file:///D|/Public/CR-SVG-20000802/images/filters/filters01.svg

4. Filter primitive 'feComposite' masks out the result of filter primitive 3 by the original source graphics alpha channel so that the intermediate
result is no bigger than the original source graphic.

5. Filter primitive 'feComposite’ composites the result of the specular lighting with the original source graphic.

6. Filter primitive TeMerge’ composites two layers together. The lower layer consists of the drop shadow result from filter primitive 2. The upper
layer consists of the specular lighting result from filter primitive 5.

15.3 The 'filter' element

The description of the filter' element follows:

<IENTITY %filterExt "" >

<! ELEMENT filter (%lescTitleMetadata;, (feBl end|feFl ood|

f eCol or Mat ri x| f eConponent Tr ansf er |

f eConposi t e| f eConvol veMatri x| feDi f f useLi ghti ng| f eDi spl acenent Map|

f eGaussi anBl ur | f el mage| f eMer ge|

f eMor phol ogy| f eCf f set | f eSpecul ar Li ght i ng|

feTile|feTurbul ence|

ani mat e| set_

%ilterExt;)*) >

ATTLI ST filter

st dAttrs;

9l i nkRef Attrs;

xlink:href 9%JRI: #l| MPLI ED

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #|l MPLI ED

cl ass %l asslLi st; #l MPLI ED

style ¥styl eSheet; #l MPLI ED

9Pr esentati onAttributes-All;

filterUnits (userSpaceOnUse | userSpace | objectBoundi ngBox) #l MPLI ED
primtiveUnits (userSpaceOnUse | userSpace | object Boundi ngBox) #l MPLI ED
X %Coor di nat e; #l MPLI ED

y %Coordi nate; #l MPLIED
wi dt h %.ength; #I MPLI ED
hei ght %.ength; #l MPLI ED
filterRes CDATA #l VPLI ED >

<

Attribute definitions:

filterUnits = "user SpaceOnUse | user Space | objectBoundingBox"
See Filter effects region.

primitiveUnits = "user SpaceOnUse | user Space | objectBoundingBox"

Specifies the coordinate system for the various length values within the filter primitives.

If primitiveUnits=" user SpaceOnUse", any length values within the filter definitions represent values in the current user coordinate system in
place at the time when the filter' element isreferenced (i.e., the user coordinate system for the element referencing the filter' element viaa
filter' property).

If primitiveUnits=" user Space" , any length values within the filter definitions represent valuesin the current user coordinate system in place
at the time when the 'filter' element is defined.

If primitiveUnits=" objectBoundingBox" , then any length values within the filter definitions represent fractions or percentages of the
bounding box on the referencing element (see Object bounding box units).

If attribute primitiveUnitsis not specified, then the effect isas if avalue of userSpaceOnUse were specified.

Animatable: yes.

X = "x-coordinate"

See Filter effects region.
y = "y-coordinate"

See Filter effects region.
width = "length”

See Filter effects region.

height = "length"

See Filter effects region.

filterRes = "<number> [<number>]"

See Filter effectsregion.

xlink:href ="<uri>"

A URI reference to another ‘filter' element within the current SV G document fragment. Any attributes which are defined on the referenced
filter' element which are not defined on this element are inherited by this element. If this element has no defined filter nodes, and the
referenced element has defined filter nodes (possibly due to its own href attribute), then this element inherits the filter nodes defined from the
referenced 'filter' element. Inheritance can be indirect to an arbitrary level; thus, if the referenced 'filter' element inherits attributes or itsfilter
node specification due to its own href attribute, then the current element can inherit those attributes or filter node specifications.

Animatable: yes.

Attributes defined elsewhere:

%stdAttrs;, %olangSpaceAttrs;, %oxlinkRefAttrs; external ResourcesRequired, %oPresentationAttributes-All;.

15.4 The 'filter' property

The description of the 'filter' property is asfollows:

filter'

<uri>

none

Value: <uri> | none | inherit

Initial: none

Appliesto: graphics and container elements
Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

A URI reference to a 'filter' element which defines the filter effects that shall be applied to this element.

Do not apply any filter effects to this element.

15.5 Filter effects region

A 'filter' element can define aregion on the canvas on which a given filter effect applies and can provide a resolution for any intermediate continuous
tone images used to process any raster-based filter primitives. The 'filter' element has the following attributes which work together to define the filter
effectsregion:

filter Units={ user SpaceOnUse | user Space | objectBoundingBox }.
Defines the coordinate system for attributes x, y, width, height.

If filter Units=" user SpaceOnUse" , X, y, width, height and any length values within the filter definitions represent values in the current user
coordinate system in place at the time when the 'filter' element is referenced (i.e., the user coordinate system for the element referencing the
filter' element viaa filter' property).

If filter Units=" user Space" (the default), X, y, width, height and any length values within the filter definitions represent values in the current
user coordinate system in place at the time when the filter' element is defined.

If filter Units=" objectBoundingBox" , then x, y, width, height represent fractions or percentages of the bounding box on the referencing
element (see Object bounding box units).

If attribute filterUnitsis not specified, then the effect is asif avalue of userSpaceOnUse were specified.
Animatable: yes.

X, ¥, width, height, which indicate the rectangle for the largest possible offscreen buffer. The coordinate system for these attributes depends
on the value for attribute filterUnits.

Negative values for width or height are an error (see Error processing). Zero values disable rendering of the element which referenced the
filter.

Animatable: yes.

filter Res (which hastheform x- pi xel s [y- pi xel s]) indicates the width and height of the intermediate images in pixels. If not
provided, then areasonable default resolution appropriate for the target device will be used. (For displays, an appropriate display resolution,
preferably the current display's pixel resolution, isthe default. For printing, an appropriate common printer resolution, such as 400dpi, isthe
default.)

Negative values are an error (see Error processing). Zero values disable rendering of the element which referenced thefilter.

Animatable: yes.
For performance reasons on display devices, it is recommended that the filter effect region is designed to match pixel-for-pixel with the background.
It is often necessary to provide padding space because the filter effect might impact bits slightly outside the tight-fitting bounding box on a given

object. For these purposes, it is possible to provide negative percentage values for X, y and percentages values greater than 100% for width, height.
For example, x="-10%" y="-10%" width="120%" height="120%".

15.6 Accessing the background image

Two possible pseudo input images for filter effects are Backgroundlmage and BackgroundAlpha, which each represent an image snapshot of the
canvas under the filter region at the time that the <filter> element isinvoked. Backgroundlmage represents both the color values and a pha channel of
the canvas (i.e., RGBA pixel values), whereas BackgroundAlpha represents only the a pha channel.

Implementations of SV G user agents often will need to maintain supplemental background image buffersin order to support the Backgroundlmage
and BackgroundAIpha pseudo input images. Sometimes, the background image buffers will contain an in-memory copy of the accumulated painting
operations on the current canvas.

Because in-memory image buffers can take up significant system resources, SV G content must explicitly indicate to the SV G user agent that the
document needs access to the background image before Backgroundl mage and BackgroundAlpha pseudo input images can be used. The property

which enables access to the background image is 'enable-background':

‘enabl e-background'

Value: accumulate | new [(<x> <y> <width> <height>)] | inherit
Initial: accumulate

Appliesto: container elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: no

‘enable-background' is only applicable to container elements and specifies how the SV G user agents manages the accumulation of the background
image.
A value of new indicates two things:

« It enablesthe ability of children of the current container element to access the background image.

« Itindicatesthat anew (i.e., initialy fully transparent) background image canvasis established and that (in effect) al children of the current
container element shall be rendered into the new background image canvas in addition to being rendered onto the target device.

A meaning of enable-background: accumulate (the initial/default value) depends on context:

« If an ancestor container el ement has a property value of "enable-background:new’, then all graphics elements within the current container
element are rendered both onto the parent container element's background image canvas and onto the target device.

« Otherwise, thereis no current background image canvas, so it is only necessary to render graphics elements onto the target device. (No need to
render to the background image canvas.)

If afilter effect specifies either the Backgroundl mage or the BackgroundAIpha pseudo input images and no ancestor container element has a property
value of "enable-background:new', then the background image request is technically in error. Processing will proceed without interruption (i.e., no
error message) and a fully transparent image shall be provided in response to the request.

The optional (<x>,<y>,<width>,<height>) parameters on the new value indicate the sub-region of user space where access to the background image

is allowed to happen. These parameters enable the SV G user agent potentially to allocate smaller temporary image buffers than the default values,
which might require the SV G user agent to allocate buffers as large as the current viewport. Thus, the values <x>,<y> <width>,<height> act asa
clipping rectangle on the background image canvas. Negative values for <width> or <height> are an error (see Error processing). Zero values for
<width> or <height> have the effect of making the background image empty (i.e., fully transparent).

15.7 Filter primitives overview

15.7.1 Overview

This section describes the various filter primtives that can be assembed to achieve a particular filter effect.

Unless otherwise stated, all image filters operate on linear premultiplied RGBA samples. Filters which work more naturally on non-premultiplied data
(feColorMatrix and feComponentTransfer) will temporarily undo and redo premultiplication as specified. All raster effect filtering operations take 1
to N input RGBA images, additional attributes as parameters, and produce a single output RGBA image.

The RGBA result from each filter primitive will be clamped into the allowable ranges for colors and opacity values. Thus, for example, the result

from agiven filter primitives will have any negative color values or opacity values adjusted up to color/opacity of zero.
15.7.2 Common attributes

The following attributes are available for most of the filter primitives:

<IENTITY %filter_primtive_attributes
"X Y% Coordi nate; #l MPLI ED

y %Coor di nate: #| MPLI ED
width %ength: # MPLIED
hei ght %.ength; #l MPLI ED

resul t CDATA #| MPLI ED' >

<IENTITY %filter_primtive_attributes_with_in
"Ofilter_primtive_attributes;
in CDATA #l MPLI ED" >
Attribute definitions:
X = "<coordinate>"
The minimum x coordinate for the sub-region which restricts calculation and rendering of the given filter primitive. See filter region

sub-region.
Animatable: yes.

y = "<coordinate>"

The minimum y coordinate for the sub-region which restricts calculation and rendering of the given filter primitive. See filter region
sub-region. Animatable: yes.

width = "<length>"

The width of the sub-region which restricts cal culation and rendering of the given filter primitive. See filter region sub-region.

A negative value is an error (see Error processing). A value of zero disables the effect of the given filter primitive (i.e., theresult isafully
transparent image).

Animatable: yes.

height = "<length>"
The height of the sub-region which restricts calculation and rendering of the given filter primitive. See filter region sub-region.
A negative value is an error (see Error processing). A value of zero disables the effect of the given filter primitive (i.e., theresult isafully

transparent image).
Animatable: yes.

result = "<filter-primitive-reference>"

Assigned name for this filter primitive. If supplied, then graphics that result from processing this filter primitive can be referenced by an in
attribute on a subsequent filter primitive within the same filter' element. If no valueis provided, the output will only be available for re-use as
theimplicit input into the next filter primitive if that filter primitive provides no value for itsin attribute.

Note that a <filter-primitive-reference> isnot an XML ID; instead, a <filter-primitive-reference> is only meaningful within a given filter'
element and thus have only local scope. It islegal for the same <filter-primitive-reference> to appear multiple times within the same 'filter'

element. When referenced, the <filter-primitive-reference> will use the closest preceding filter primitive with the given result.
Animatable: yes.

in ="SourceGraphic | SourceAlpha | Backgroundimage | BackgroundAlpha | FillPaint | StrokePaint | <filter-primitive-reference>"

Identifies input for the given filter primitive. The value can be either one of six keywords or can be a string which matches a previous result
attribute value within the same filter' element. If no value is provided and thisisthefirst filter primitive, then thisfilter primitive will use
SourceGraphic asitsinput. If no value is provided and this is a subsequent filter primitive, then this filter primitive will use the result from the
previous filter primitive asits input.

If the value for result appears multiple times within a given 'filter' element, then areference to that result will use the closest preceding filter
primitive with the given value for attribute result. Forward referencesto results are an error.

Definitions for the six keywords:
SourceGraphic

This keyword represents the graphics elements that were the original input into the 'filter' element. For raster effects filter primitives,
the graphics elements will be rasterized into an initially clear RGBA raster in image space. Pixels left untouched by the original graphic
will be left clear. Theimage is specified to be rendered in linear RGBA pixels. The apha channel of thisimage captures any
anti-aliasing specified by SVG. (Since the raster islinear, the apha channel of thisimage will represent the exact percent coverage of
each pixel.)

SourceAlpha
This keyword represents the graphics elements that were the original input into the 'filter' element. SourceAlpha has all of the same
rules as SourceGraphic except that only the apha channel is used. The input image is an RGBA image consisting of implicitly black
color values for the RGB channels, but whose alpha channel is the same as SourceGraphic. If this option is used, then some
implementations might need to rasterize the graphics elementsin order to extract the alpha channel.

Backgroundimage

This keyword represents an image snapshot of the canvas under the filter region at the time that the filter' element was invoked. See
Accessing the background image.

BackgroundAlpha
Same as Backgroundl mage except only the alpha channel is used. See SourceAlpha and Accessing the background image.
FillPaint
This keyword represents the value of the 'fill' property on the target element for the filter effect. The FillPaint image has conceptually

infinite extent. Frequently thisimage is opague everywhere, but it might not be if the "paint" itself has alpha, asin the case of an alpha
gradient or transparent pattern.

StrokePaint

This keyword represents the value of the 'stroke' property on the target element for the filter effect. The StrokePaint image has

conceptually infinite extent. Frequently thisimage is opaque everywhere, but it might not beif the "paint” itself has alpha, asin the
case of an aphagradient or transparent pattern.

Animatable: yes.

15.7.3 Filter primitive sub-region

All filter primitives have attributes x, y, width and height which identify a sub-region which restricts calculation and rendering of the given filter
primitive. These attributes are defined according to the same rules as other filter primitives' coordinate and |ength attributes.

X, Y, width and height default to the union (i.e., tightest fitting bounding box) of the sub-regions defined for al referenced nodes. If there are no
referenced nodes (e.g., for 'felmage’ or 'feTurbulence', which have no specified value for in, or if in="SourceGraphic") or for 'feTile' (whichis
special), the default subregion is 0%,0%,100%,100%, where percentages are relative to the dimensions of the filter region.

X, Y, width and height act as a hard clip clipping rectangle.

All intermediate offscreens are defined to not exceed the intersection of x, y, width and height with the filter region. The filter region and any of the

X, Y, width and height sub-regions are to be set up such that all offscreens are made big enough to accommodate any pixels which even partly
intersect with either the filter region or the x,y,width,height subregions.

‘felmage’ scales the referenced image to fit exactly into the sub-region specified by x, y, width and height.
‘feTile references a previous filter primitive and then stitches the tiles together based on the x, y, width and height values of the referenced filter
primitive.

15.8 Light source elements and properties

15.8.1 Introduction

The following sections define the elements that define a light source, 'feDistantLight’, 'fePointLight' and ‘feSpotLight', and property 'lighting-color’,
which defines the color of the light.

15.8.2 Light source 'feDistantLight'’

<! ELEMENT feDi stantLight (animate|set)* >
<! ATTLI ST feDi stantLi ght

st dAttrs;

azi mut h %\unber; #l MPLI ED

el evati on %%unber; #l MPLI ED >

Attribute definitions:
azimuth = "<number>"

Direction angle for the light source on the XY plane, in degrees.
Animatable: yes.

elevation = "<number>"

Direction angle for the light source on the Y Z plane, in degrees.
Animatable: yes.

Attributes defined elsewhere:
YostdAttrs;.

15.8.3 Light source 'fePointLight’

<! ELEMENT fePointLi ght (ani nate|set)* >
<! ATTLI ST fePoi nt Li ght

st dALtrs;

X YNunber; #l MPLI ED

y Yunber; #l MPLI ED

Z Y%Nunber; #l MPLIED >

Attribute definitions:
X = "<number>"

X location for the light source.
Animatable: yes.

y ="<number>"

Y location for the light source.
Animatable: yes.

Z ="<number>"

Z location for the light source.
Animatable: yes.

Attributes defined elsewhere:
YostdAttrs;.

15.8.4 Light source 'feSpotLight’

<! ELEMENT feSpot Li ght (ani mate|set)* >
<I ATTLI ST feSpot Li ght

YstdAttrs;

X YNunber; #l MPLI ED

y Y%Nunber; #l MPLI ED

z YNunber; #l MPLI ED

poi nt sAt X %unber; #l MPLI ED

poi nt sAtY Yunber; #l MPLI ED

poi nt sAt Z Yunber; #l MPLI ED

specul ar Exponent Y%N\unber; #l MPLI ED

limtingConeAngl e %Nunber; #l MPLIED >

Attribute definitions:
X ="<number>"

X location for the light source.
Animatable: yes.

y ="<number>"

Y location for the light source.
Animatable: yes.

z ="<number>"

Z location for the light source.
Animatable: yes.

pointsAtX = "<number>"
X location of the point at which the light source is pointing.

Animatable: yes.
pointsAtY ="<number>"

Y location of the point at which the light source is pointing.
Animatable: yes.

pointsAtZ = "<number>"

Z location of the point at which the light source is pointing.
Animatable: yes.

specularExponent = "< number>"

Exponent value controlling the focus for the light source.
Animatable: yes.

limitingConeAngle = "<number>"

A limiting cone which restricts the region where the light is projected. No light is projected outside the cone. limitingConeAngle represents the
angle between the spot light axis (i.e. the axis between the light source and the point to which it is pointing at) and the spot light cone. User
agents should apply a smoothing technique such as anti-aliasing at the boundary of the cone.

If no valueis specified, then no limiting cone will be applied.

Animatable: yes.

Attributes defined elsewhere:
YostdAttrs;.

15.8.5 The 'lighting-color' property

The 'lighting-color' property defines the color of the light source for filter primitives 'feDiffuseLighting' and ‘feSpecularLighting'.

'lighting-color'
Value: currentColor |
<color> [icc-color(<name>,<icccolorvalue>+)] |
inherit
Initial: white

Appliesto: 'feDiffuselighting' and 'feSpecularLighting' elements
Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

15.9 Filter primitive 'feBlend'

Thisfilter composites two objects together using commonly used imaging software blending modes. It performs a pixel-wise combination of two
input images.

<! ELEMENT feBlend (ani mate|set)* >
<! ATTLI ST feBl end
st dALtrs;
%ilter primtive attributes with in;
in2 CDATA #REQUI RED
nmode (normal | multiply | screen | darken | lighten) "normal" >

Attribute definitions:
mode = "normal | multiply | screen | darken | lighten"

One of the image blending modes (see table below). Default is: normal.
Animatable: yes.

in2 = "(seein attribute)"

The second input image to the blending operation. This attribute can take on the same values as the in attribute.
Animatable: yes.

Attributes defined elsewhere:
YostdAttrs;, %filter primitive attributes with in;.

For all feBlend modes, the result opacity is computed as follows:

gr =1 - (1-ga)*(1-qgb)

For the compositing formulas below, the following definitions apply:

cr = Result color (RGB) - prenultiplied

ga = Opacity value at a given pixel for imge A

gb = Opacity value at a given pixel for inmage B

ca = Color (RGB) at a given pixel for image A - premultiplied
chb = Color (RGB) at a given pixel for image B - prenultiplied

The following table provides the list of available image blending modes:

Image Blending Mode Formulafor computing result color

normal cr=(1-ga*chb+ca

multiply cr = (1-ga)*cb + (1-gb)*ca + ca*cb

screen cr=cb+ca-ca*cbh

darken |cr:Min((1-qa)*cb+ca, (1-qgb) * ca+ch)
lighten |cr:Max((1-qa)*cb+ca, (1-qgb) * ca+ch)

Example feBlend shows examples of the five blend modes.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC//DID SVG 20000802/ / EN"
“http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTD/ svg- 20000802. dt d" >
<svg wi dt h="5cn' hei ght="5cm' vi ewBox="0 0 500 500" >
<title>Exanpl e feBlend - Exanples of feBlend nodes</title>
<desc>Five text strings blended into a gradient,
with one text string for each of the five feBlend nodes. </ desc>
<def s>
<l i near Gradi ent id="M/G adient" gradientUnits="user SpaceOnUse"
x1="100" y1="0" x2="300" y2="0">
<stop offset="0" styl e="stop-col or: #000000"/ >
<stop offset=".33" style="stop-color:#fffff"/>
<stop offset=".67" styl e="stop-col or: #f f 0000"/ >
<stop offset="1" styl e="stop-col or: #808080"/ >
</linear G adi ent >
<filter id="Normal">
<f eBl end node="nornal " in2="Backgroundl mage" i n="SourceG aphic"/>
</filter>
<filter id="Miltiply">
<f eBl end node="mul ti ply" in2="Backgroundl nage" in="SourceG aphic"/>
</filter>
<filter id="Screen">
<f eBl end node="screen" in2="Backgroundl mage" i n="SourceG aphic"/>
</filter>
<filter id="Darken">
<f eBl end node="dar ken" in2="Backgroundl mage" i n="SourceG aphic"/>

</[filter>
<filter id="Lighten">
<f eBl end node="1ighten" in2="Backgroundl mage" i n="SourceG aphic"/>
</[filter>
</ def s>
<rect style="fill:none; stroke: bl ue"

x="1" y="1" w dt h="498" hei ght ="498"/>
<g styl e="enabl e- background: new'>
<rect x="100" y="20" w dth="300" hei ght="460" style="fill:url (#WG adient)"/>
<g style="font-fam |ly: Verdana; font-size:75; fill:#888888; fill-opacity:.6">
<text x="50" y="90" style="filter:url (#Normal)">Normal </text>
<text x="50" y="180" style="filter:url (#Mltiply)">Miltiply</text>
<text x="50" y="270" style="filter:url (#Screen)">Screen</text>
<text x="50" y="360" style="filter:url (#Darken)">Darken</text>
<text x="50" y="450" style="filter:url (#Lighten)">Lighten</text>
</ g>
</ g>
</ svg>

Example feBlend

View this example as SV G (SV G-enabled browsers only)

15.10 Filter primitive ‘feColorMatrix'

Thisfilter applies a matrix transformation:

| R | | a00 a0l a02 a03 a04 | | R
| G | | al0 all al2 al3 al4 | | G|
| B | = | a20 a2l a22 a23 a24 | * | B |
| A | | a30 a31 a32 a33 a34 | | A
| 1 | | o o 0O 0 1 | | 1]

on the RGBA color and alpha values of every pixel on the input graphics to produce a result with a new set of RGBA color and alpha values.

The caculations are performed on non-premultiplied color values. If the input graphics consists of premultiplied color values, those values are
automatically converted into non-premultiplied color values for this operation.

These matrices often perform an identity mapping in the alpha channel. If that is the case, an implementation can avoid the costly undoing and redoing
of the premultiplication for al pixelswith A = 1.

<! ELEMENT feCol or Matrix (ani nate|set)* >
<I ATTLI ST feCol or Matrix
st dALtrs;
%ilter primtive attributes with_in;
type (matrix | saturate | hueRotate | |um nanceToAl pha) "matrix"
val ues CDATA #| MPLI ED >

Attribute definitions:
type = "matrix | saturate | hueRotate | luminanceToAlpha

Indicates the type of matrix operation. The keyword matrix indicates that afull 5x4 matrix of values will be provided. The other keywords
represent convenience shortcuts to allow commonly used color operations to be performed without specifying a complete matrix.
Animatable: yes.

values = "list of <number>s"
The contents of values depends on the value of attribute type:

o For type="matrix", valuesisalist of 20 matrix values (a00 a01 a02 a03 a04 al0 all ... a34), separated by whitespace and/or a comma.
For example, the identity matrix could be expressed as:

type="matrix"
values="1 0000 01000 00100 0O0O01D0"

o For type="saturate", valuesis asingle real number value (0 to 1) or one percentage value (e.g., 50%). A saturate operation is equivalent

file:///D|/Public/CR-SVG-20000802/images/filters/feBlend.svg

to the following matrix operation:

| R | | 0.213+0.787s 0.715-0.715s 0.072-0.072s 0 O | | R
| G | | 0.213-0.213s 0.715+0.285s 0.072-0.072s 0 O | | G|
| B | =]0.213-0.213s 0.715-0.715s 0.072+0.928s 0 0 | * | B |
| A | 0 0 0 1 0| | A
| 1] | 0 0 0 0 1] | 1|
o For type="hueRotate", valuesis asingle one real number value (degrees). A hueRotate operation is equivalent to the following matrix

operation:

| R | | a00 a0l a02 O O | | R

| G | | a10 all al2 O O | | G|

| B | = | a20 a21 a22 0 O | * | B

| A | O 0 0 1 0| | A

| 1] | O 0 0 0 1| | 1]

where the terms a00, a01, etc. are calculated as follows:

| a0l a0l a02 | [+0. 213 +0.715 +0.072]

| al0 all al2 | = [+0.213 +0.715 +0.072] +

| a20 a21 a22 | [+0.213 +0.715 +0.072]
[+0.787 -0.715 -0.072]

cos(hueRotate value) * [-0.212 +0.285 -0.072] +
[-0.213 -0.715 +0.928]
[-0.213 -0.715+0. 928]

sin(hueRotate value) * [+0.143 +0.140-0. 283]
[-0.787 +0.715+0.072]

Thus, the upper left term of the hue matrix turns out to be:

. 213 + cos(hueRotate val ue)*. 787 - sin(hueRotate val ue)*. 213
o For type="luminanceToAlpha’, valuesis not applicable. A luminanceToAlpha operation is equivalent to the following matrix

operation:

| R | | 0 0 0O 0 0| | R

| G | | 0 0 0 0 0| | G]

| B | = | 0 0 0 0 0| *| B

| A | | 0.2125 0.7154 0.0721 0 O] | A

| 1 | | 0 0 0 0 1| | 1]
Animatable: yes.

Attributes defined elsewhere:
Y%stdAttrs:, %ofilter primitive attributes with in;.

Example feColorMatrix shows examples of the four types of feColorMatrix operations.

<?xm version="1.0"?>
<I DOCTYPE svg PUBLIC "-//WBC//DID SVG 20000802/ / EN"
"http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg wi dt h="8cni' hei ght="5cm' vi ewBox="0 0 800 500" >
<title>Exanple feColorMatrix - Exanples of feCol orMatrix operations</title>
<desc>Five text strings showing the effects of feCol orMatri x:
an unfiltered text string acting as a reference,
use of the feColorMatrix matrix option to convert to grayscal e,

use of the feColorMatrix saturate option
use of the feColorMatrix hueRotate option
and use of the feCol orMatrix | um nanceToAl pha option. </ desc>
<def s>
<l inearGradi ent id="M/G adient" gradientUnits="user SpaceOnUse"
x1="100" y1="0" x2="500" y2="0">
<stop offset="0" style="stop-color:#f f00ff"/>
<stop offset=".33" style="stop-col or: #88f f 88"/ >
<stop offset=".67" style="stop-col or: #2020ff"/>
<stop offset="1" styl e="stop-col or: #d00000"/ >
</linear G adi ent >
<filter id="Matrix" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% height="100% >
<feCol orMatrix type="matrix" in="SourceG aphic"
values=".33 .33 .33 00
.33 .33.3300
.33 .33.3300
.33 .33 .3300"/>
</[filter>
<filter id="Saturate40" filterUnits="objectBoundi ngBox"
x="0% y="0% wi dth="100% height="100% >
<feCol orMatri x type="saturate" in="SourceG aphic" val ues="40%/>
</[filter>
<filter id="HueRotate90" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% hei ght="100% >
<feCol orMatri x type="hueRotate" in="SourceG aphic" val ues="90"/>
</filter>
<filter id="Lum nanceToAl pha" filterUnits="objectBoundi ngBox"
x="0% y="0% wi dth="100% hei ght="100% >
<feCol orMatri x type="1um nanceToAl pha" in="SourceG aphic" result="a"/>
<f eConposi te in="SourceG aphi c" in2="a" operator="in" />
</filter>
</ def s>
<rect style="fill:none; stroke:bl ue"
x="1" y="1" w dt h="798" hei ght ="498"/>
<g style="font-famly: Verdana; font-size:75;
font-weight:bold; fill:url(#WG adient)">
<rect x="100" y="0" w dt h="500" hei ght="20" />
<text x="100" y="90">Unfiltered</text>
<text x="100" y="190" style="filter:url (#Matrix)">Matrix</text>
<text x="100" y="290" style="filter:url (#Saturate20)">Saturate</text>
<text x="100" y="390" style="filter:url (#HueRot at e90)">HueRot at e</t ext >
<text x="100" y="490" style="filter:url (#Lunm nanceToAl pha)">Lum nance</t ext>
</ g>
</ svg>

T EE

U tered

S rate
H otate

Example feColorMatrix

View this example as SV G (SV G-enabled browsers only)

file:///D|/Public/CR-SVG-20000802/images/filters/feColorMatrix.svg

15.11 Filter primitive 'feComponentTransfer

Thisfilter primitive performs component-wise remapping of data as follows:

R = feFuncR(R)
G = feFunc G)
B' = feFuncB(B)
A = feFuncA(A)

for every pixel. It alows operations like brightness adjustment, contrast adjustment, color balance or thresholding.

The calculations are performed on non-premultiplied color values. If the input graphics consists of premultiplied color values, those values are
automatically converted into non-premultiplied color values for this operation. (Note that the undoing and redoing of the premultiplication can be
avoided if feFuncA istheidentity transform and all alpha values on the source graphic are set to 1.)

<! ELEMENT feConponent Transfer (feFuncR?, feFuncG?, f eFuncB?, f eFuncA?) >
<I ATTLI ST feConponent Tr ansf er

Yst dAttrs;

%ilter primtive attributes with in; >

<IENTITY % conponent _transfer_function_attributes
"type (identity | table | discrete | linear | gamm) #REQUI RED

t abl eVal ues CDATA #| MPLI ED

sl ope YWNunber; #l MPLI ED

i ntercept %\unber; #l MPLIED

anpl i tude Y%\unber; #l MPLI ED

exponent % N\unber; #| MPLI ED

of fset YNunber; #| MPLIED' >

<! ELEMENT feFuncR (ani mate|set)* >
<! ATTLI ST feFuncR
st dALtrs;
%conponent _transfer_function_attributes; >

<
<

ELEMENT feFuncG (ani mate|set)* >

ATTLI ST feFuncG

st dALtrs;

%onponent _transfer_function_attributes; >

<
<

ELEMENT feFuncB (ani mate|set)* >

ATTLI ST feFuncB

st dAttrs;

%onponent _transfer_function_attributes; >

<l
<

ELEMENT feFuncA (animate|set)* >

ATTLI ST feFuncA

YstdAttrs;

%onponent _transfer_function_attributes; >

The specification of the transfer functionsis defined by the sub-elements to ‘feComponentTransfer':
'feFuncR', transfer function for red component of the input graphic
'feFuncG', transfer function for green component of the input graphic
'feFuncB', transfer function for blue component of the input graphic
'feFuncA', transfer function for alpha component of the input graphic

The attributes below apply to sub-elements 'feFuncR', 'feFuncG', ‘feFuncB' and 'feFuncA' define the transfer functions.

Attribute definitions:
type = "identity | table | discrete| linear | gamma”

Indicates the type of component transfer function. The type of function determines the applicability of the other attributes.
o For identity:

cC =¢C
o For table, the function is defined by linear interpolation into alookup table defined by attribute tableVal ues. Interpolations use the
following formula:

kIN<=C< (k+1)/N =>C = v + (C- kIN*N* (V41 - Vi)

o For discrete, the function is defined by the step function defined by attribute tableValues. Interpolations use the following formula:
k/IN <= C< (k+1)/N => C' = v,

o For linear, the function is defined by the following linear equation:

C'=dope* C + intercept

o For gamma, the function is defined by the following exponential function:

C' = amplitude * pow(C, exponent) + offset
Animatable: yes.
tableVaues ="(list of <number>s)"

When type="table", the list of <number>sv0,v1,...vn, separated by white space and/or a comma, which define the lookup table.
Animatable: yes.

slope = "<number>"

When type="linear", the slope of the linear function.
Animatable: yes.

intercept = "<number>"

When type="linear", the intercept of the linear function.
Animatable: yes.

amplitude = "<number>"

When type="gamma, the amplitude of the gamma function.
Animatable: yes.

exponent = "<number>"

When type="gamma', the exponent of the gamma function.
Animatable: yes.

offset = "<number>"

When type="gamma, the offset of the gamma function.
Animatable: yes.

Attributes defined elsewhere:
Y%stdAttrs;, %ofilter primitive attributes with in;.

Example feComponentTransfer shows examples of the four types of feComponentTransfer operations.

<?xm version="1.0"?>
<I DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg wi dt h="8cm' hei ght ="4cnm' vi ewBox="0 0 800 400">
<titl e>Exanpl e feConponent Transfer - Exanpl es of feConponentTransfer operations</title>
<desc>Four text strings showi ng the effects of feConponent Transfer
an identity function acting as a reference,
use of the feConponent Transfer table option
use of the feConponentTransfer |inear option
and use of the feConponent Transfer ganma option. </ desc>
<def s>
<l i near Gradi ent id="M/G adient" gradientUnits="user SpaceOnUse"
x1="100" y1="0" x2="600" y2="0">
<stop offset="0" style="stop-col or: #f f0000"/ >
<stop offset=".33" style="stop-col or: #00f f 00"/ >
<stop offset=".67" styl e="stop-col or: #0000ff"/>
<stop offset="1" styl e="stop-col or: #000000"/ >
</linear G adi ent >
<filter id="ldentity" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% hei ght="100% >
<f eConponent Tr ansf er >
<f eFuncR type="identity"/>

<f eFuncG type="identity"/>
<f eFuncB type="identity"/>
<f eFuncA type="identity"/>
</ f eConponent Tr ansf er >
</[filter>
<filter id="Table" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% height="100% >
<f eConponent Tr ansf er >

<f eFuncR type="tabl e" tabl eVal ues="0 0 1 1"/>
<f eFuncG type="tabl e" tableValues="1 1 0 0"/>
<feFuncB type="tabl e" tableValues="0 1 1 0"/>

</ f eConponent Tr ansf er >
</filter>
<filter id="Linear" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% hei ght="1009% >
<f eConponent Tr ansf er >

<f eFuncR type="linear" slope=".5" intercept=".25"/>
<f eFuncG type="linear" slope=".5" intercept="0"/>
<f eFuncB type="linear" slope=".5" intercept=".5"/>
</ f eConponent Tr ansf er >
</filter>

<filter id="Gamm" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% hei ght="100% >
<f eConponent Tr ansf er >
<f eFuncR type="gamma" anplitude="2" exponent="5" offset="0"/>
<f eFuncG type="gamm" anplitude="2" exponent="3" offset="0"/>
<f eFuncB type="gamm" anplitude="2" exponent="1" offset="0"/>
</ f eConponent Tr ansf er >
</filter>
</ def s>
<rect style="fill:none; stroke: bl ue"
x="1" y="1" w dt h="798" hei ght="398"/>
<g style="font-famly: Verdana; font-size:75;
font-weight:bold; fill:url(#WG adient)">
<rect x="100" y="0" w dt h="600" hei ght="20" />
<text x="100" y="90">ldentity</text>
<text x="100" y="190" style="filter:url (#Tabl e)">Tabl eLookup</text>
<text x="100" y="290" style="filter:url (#Linear)">Li near Func</text>
<text x="100" y="390" style="filter:url (#Gnma)">GmmaFunc</text>
</ g>
</ svg>

Identity
1blelL

LinearFunc

GammaFunc

Example feComponentTransfer

View this example as SVG (SV G-enabled browsers only)

15.12 Filter primitive 'feComposite'
Thisfilter performs the combination of the two input images pixel-wise in image space using one of the Porter-Duff [PORTERDUFF] compositing
operations. over, in, atop, out, xor. Additionally, a component-wise arithmetic operation (with the result clamped between [0..1]) can be applied.

The arithmetic operation is useful for combining the output from the 'feDiffusel ighting' and ‘feSpecularLighting' filters with texture data. It is also
useful for implementing dissolve. If the arithmetic operation is chosen, each result pixel is computed using the following formula:

file:///D|/Public/CR-SVG-20000802/images/filters/feComponentTransfer.svg

result = k1*i1*i2 + k2*i1l + k3*i2 + k4

For these operations, the extent of the resulting image can be affected. In other words, even if two images do not overlap in image space, the extent for
over will essentially include the union of the extents of the two input images.

<! ELEMENT feConposite (animate|set)* >
<! ATTLI ST feConposite
YstdAttrs;
%ilter primtive attributes with_ in;
in2 CDATA #REQUI RED
operator (over | in | out | atop | xor | arithnetic) "over"
k1 %\unber; # MPLI ED
YNunber ; #l MPLI ED
k3 9YNunber; #l MPLI ED
%\unber; #l MPLI ED >

R

=~

=~

Attribute definitions:
operator = "over | in| out | atop | xor | arithmetic"

The compositing operation that is to be performed. All of the operator types except arithmetic match the correspond operation as described in
[PORTERDUFF]. The arithmetic operator is described above.

Animatable: yes.
k1 ="<number>"

Only applicableif operator="arithmetic".
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

k2 ="<number>"

Only applicableif operator="arithmetic".
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

k3 ="<number>"

Only applicableif operator="arithmetic".
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

k4 ="<number>"

Only applicableif operator="arithmetic".
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

in2 = "(seein attribute)"
The second input image to the compositing operation. This attribute can take on the same values as the in attribute.
Animatable: yes.

Attributes defined elsewhere:
%stdAttrs;, %filter primitive attributes with in;.

Example feComposite shows examples of the six types of feComposite operations. It also shows two different techniques to using the
Backgroundimage as part of the compositing operation.

Thefirst two rows render bluish triangles into the background. A filter is applied which composites reddish triangles into the bluish triangles using
one of the compositing operations. The result from compositing is drawn onto an opaque white temporary surface, and then that result is written to the
canvas. (The opagque white temporary surface obliterates the original bluish triangle.)

The last two rows apply the same compositing operations of reddish triangles into bluish triangles. However, the compositing result is directly
blended into the canvas (the opague white temporary surface technique is not used). In some cases, the results are different than when atemporary
opague white surface is used. The original bluish triangle from the background shines through wherever the compositing operation resultsin
completed transparent pixel. In other cases, the result from compositing is blended into the bluish triangle, resulting in a different final color value.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg wi dth="11cn' hei ght="6.5cn{" vi ewBox="0 0 1100 650">
<title>Exanpl e feConposite - Exanples of feConposite operations</title>
<desc>Four rows of six pairs of overlapping triangles depicting

the six different feConposite operators under different
opacity values and different clearing of the background. </ desc>
<def s>
<desc>Define two sets of six filters for each of the six conpositing operators.
The first set wi pes out the background i mage by flooding with opaque white.
The second set does not wi pe out the background, with the result
that the background sonetinmes shines through and is other cases
is blended into itself (i.e., "double-counting").</desc>
<filter id="overFlood" filterUnits="o0bjectBoundi ngBox" x="-5% y="-5% w dth="110%
hei ght ="110% >
<f eFl ood style="fl ood-color:#ffffff; flood-opacity:1" result="flood"/>
<f eConposi te i n="SourceG aphi c" i n2="Backgroundl mage" operator="over" result="conp"/>
<f eMer ge> <f eMer geNode i n="fl ood"/> <feMergeNode i n="conp"/> </feMerge>
</[filter>
<filter id="inFlood" filterUnits="objectBoundi ngBox" x="-5% y="-5% wi dth="110% hei ght="110% >
<f eFl ood style="flood-color:#ffffff; flood-opacity:1" result="flood"/>
<f eConposi te in="SourceG aphi c" in2="Backgroundl mage" operator="in" result="conp"/>
<f eMer ge> <f eMergeNode i n="fl ood"/> <feMergeNode i n="conmp"/> </feMerge>
</[filter>
<filter id="outFlood" filterUnits="objectBoundi ngBox" x="-5% y="-5% wi dth="110%
hei ght ="110% >
<f eFl ood style="fl ood-color:#ffffff; flood-opacity:1" result="flood"/>
<f eConposi te in="SourceG aphi c" in2="Backgroundl mage" operator="out" result="conmp"/>
<f eMer ge> <f eMergeNode i n="fl ood"/> <feMergeNode i n="conmp"/> </feMerge>
</[filter>
<filter id="atopFlood" filterUnits="objectBoundi ngBox" x="-5% y="-5% wi dth="110%
hei ght ="110% >
<f eFl ood style="fl ood-color:#ffffff; flood-opacity:1" result="flood"/>
<f eConposi te i n="SourceG aphi c" in2="Backgroundl mage" operator="atop" result="conmp"/>
<f eMer ge> <f eMergeNode i n="fl ood"/> <feMergeNode i n="conmp"/> </feMerge>
</[filter>
<filter id="xorFlood" filterUnits="objectBoundi ngBox" x="-5% y="-5% w dth="110%
hei ght ="110% >
<f eFl ood style="fl ood-color:#ffffff; flood-opacity:1" result="flood"/>
<f eConposi te i n="SourceG aphi c" in2="Backgroundl mage" operator="xor" result="comp"/>
<f eMer ge> <f eMergeNode in="fl ood"/> <feMergeNode i n="conmp"/> </feMerge>
</[filter>
<filter id="arithmeticFlood" filterUnits="objectBoundi ngBox"
x="-5% y="-5% w dth="110% hei ght="110% >
<f eFl ood style="fl ood-color:#ffffff; flood-opacity:1" result="flood"/>
<f eConposi te in="SourceG aphi c" in2="Backgroundl mage" result="conp"
operator="arithnetic" kl=".5" k2=".5" k3=".5" k4=".5"/>
<f eMer ge> <f eMergeNode i n="fl ood"/> <feMergeNode i n="conmp"/> </feMerge>
</[filter>
<filter id="overNoFl ood" filterUnits="objectBoundi ngBox" x="-5% y="-5% w dth="110%
hei ght ="110% >
<f eConposi te in="SourceG aphi c" in2="Backgroundl mage" operator="over" result="conmp"/>
</[filter>
<filter id="inNoFlood" filterUnits="objectBoundi ngBox" x="-5% y="-5% w dth="110%
hei ght ="110% >
<f eConposi te in="SourceG aphi c" in2="Backgroundl mage" operator="in" result="conp"/>
</filter>
<filter id="outNoFl ood" filterUnits="objectBoundi ngBox" x="-5% y="-5% w dth="110%
hei ght =" 110% >
<f eConposi te in="SourceG aphi c" in2="Backgroundl mage" operator="out" result="comp"/>
</[filter>
<filter id="atopNoFl ood" filterUnits="objectBoundi ngBox" x="-5% y="-5% w dth="110%
hei ght ="110% >
<f eConposi te in="SourceG aphi c" in2="Backgroundl mage" operator="atop" result="conmp"/>
</filter>
<filter id="xorNoFl ood" filterUnits="objectBoundi ngBox" x="-5% y="-5% w dth="110%
hei ght ="110% >
<f eConposi te i n="SourceG aphi c" in2="Backgroundl mage" operator="xor" result="comp"/>
</[filter>
<filter id="arithmeti cNoFl ood" filterUnits="o0objectBoundi hgBox"
x="-5% y="-5% w dth="110% hei ght="110% >
<f eConposi te in="SourceG aphi c" in2="Backgroundl mage" result="conp"
operator="arithmetic" ki=".5" k2=".5" k3=".5" k4=".5"/>
</filter>
<path id="Bluel00" d="M O O L 100 O L 100 100 z" style="fill:#00ffff"/>
<path id="Red100" d="M O O L O 100 L 100 O z" style="fill:#ffooff"/>

<path id="Blue50" d="M 0 125 L 100 125 L 100 225 z" style="fill:#00ffff; fill-opacity:.5"/>
<path id="Red50" d="M 0 125 L 0 225 L 100 125 z" style="fill:#ff00ff; fill-opacity:.5"/>
<g id="TwoBl ueTri angl es" >
<use xlink: href="#Bl uel00"/ >
<use xlink: href="#Bl ue50"/>
</ g>
<g i d="Bl ueTri angl es" >
<use transforne"transl ate(275,25)" xlink:href="#TwoBl ueTri angl es"/ >
<use transfornm="transl at e(400, 25)" xli nk: href ="#TwoBl ueTri angl es"/ >
<use transforne"transl ate(525,25)" xlink: href="#TwoBl ueTri angl es"/ >
<use transforn¥"transl ate(650,25)" xlink:href="#TwoBl ueTri angl es"/ >
<use transfornm="transl ate(775,25)" xlink: href="#TwoBl ueTri angl es"/ >
<use transforne"transl ate(900, 25)" xlink: href ="#TwoBl ueTri angl es"/ >
</ g>
</ def s>

<rect style="fill:none; stroke:blue" x="1" y="1" w dt h="1098" hei ght ="648"/>
<g style="font-fam |ly: Verdana; font-size:40; shape-rendering:cri spedges">
<desc>Render the exanples using the filters that draw on top of
an opaque white surface, thus obliterating the background. </ desc>
<g styl e="enabl e- backgr ound: new' >
<text x="15" y="75">opacity 1.0</text>
<text x="15" y="115" style="font-size:27">(with feFl ood)</text>
<text x="15" y="200">opacity 0.5</text>
<text x="15" y="240" style="font-size:27">(with feFl ood)</text>
<use xlink: href="#Bl ueTri angl es"/ >
<g transform="transl ate(275, 25)" >
<use xlink: href="#Red100" style="filter:url (#overFl ood)"/>
<use xlink: href="#Red50" style="filter:url (#overFl ood)"/>
<text x="5" y="275">over</text>
</ g>
<g transform="transl at e(400, 25) ">
<use xlink:href="#Red100" style="filter:url (# nFlood)"/>
<use xlink:href="#Red50" style="filter:url (#inFlood)"/>
<text x="35" y="275">in</text>
</ g>
<g transfornm="transl at e(525, 25) ">
<use xlink:href="#Red100" style="filter:url (#outFl ood)"/>
<use xlink: href="#Red50" style="filter:url (#outFlood)"/>
<text x="15" y="275">out</text>
</ g>
<g transform="transl at e(650, 25) ">
<use xlink: href="#Red100" style="filter:url (#atopFl ood)"/>
<use xlink:href="#Red50" style="filter:url (#atopFl ood)"/>
<text x="10" y="275">atop</text>
</ g>
<g transform="transl ate(775, 25)">
<use xlink: href="#Red100" style="filter:url (#xorFl ood)"/>
<use xlink: href="#Red50" style="filter:url (#xorFl ood)"/>
<text x="15" y="275">xor</text>
</ g>
<g transform="transl at e(900, 25)" >
<use xlink:href="#Red100" style="filter:url (#arithmeticFlood)"/>
<use xlink: href="#Red50" style="filter:url (#arithneticFl ood)"/>
<text x="-25" y="275">arithnetic</text>
</ g>
</ g>
<g transform="transl ate(0, 325)" styl e="enabl e- backgr ound: new'>
<desc>Render the exanples using the filters that do not obliterate
t he background, thus sonetines causing the background to continue
to appear in sone cases, and in other cases the background
i mmge blends into itself ("double-counting").</desc>
<text x="15" y="75">opacity 1.0</text>
<text x="15" y="115" style="font-size:27">(wi thout feFlood)</text>
<text x="15" y="200">opacity 0.5</text>
<text x="15" y="240" style="font-size:27">(wi thout feFlood)</text>
<use xlink:href="#Bl ueTri angl es"/>
<g transfornm="transl at e(275, 25) ">
<use xlink: href="#Red100" style="filter:url (#over NoFl ood)"/>
<use xlink: href="#Red50" style="filter:url (#overNoFl ood)"/>

<text x="5" y="275">over</text>

</ g>

<g transfornm="transl at e(400, 25)" >
<use xlink: href="#Red100" style="filter:url (# nNoFl ood)"/>
<use xlink: href ="#Red50" style="filter:url (# nNoFl ood)"/>
<text x="35" y="275">in</text>

</ g>

<g transform="transl at e(525, 25)" >
<use xlink: href="#Red100" style="filter:url (#outNoFl ood)"/>
<use xlink: href="#Red50" style="filter:url (#outNoFl ood)"/>
<text x="15" y="275">out</text>

</ g>

<g transforn¥"transl ate(650, 25)">
<use xlink: href="#Red100" style="filter: urI(#atopthIood)"/>
<use xlink: href="#Red50" style="filter:url (#atopNoFl ood)"/>
<text x="10" y="275">atop</text>

</ g>

<g transforne"transl ate(775, 25)">
<use xlink:href="#Red100" style="filter:url (#xorNoFl ood)"/>
<use xlink: href ="#Red50" style="filter:url (#xorNoFl ood)"/>
<text x="15" y="275">xor</text>

</ g>

<g transform="transl at e(900, 25) ">

<use xlink: href="#Red100" style="filter:url (#arithneti cNoFl ood)"/>
<use xlink:href="#Red50" style="filter:url (#arithneticNoFl ood)"/>

<text x="-25" y="275">arithnetic</text>
</ g>
</ g>
</ g>
</ svg>

opacity 1.0 ' v > v }
{with feFlood)
opacity 0.5 v

{with feFlood)

over in out atop xor arithmetic

opacity 1.0 ' v ’ V }
{without feFlood)
opacity 0.5 W%

{without feFlood)
over in out atop xor arithmetic

Example feComposite
View this example as SV G (SV G-enabled browsers only)

15.13 Filter primitive 'feConvolveMatrix'

feConvolveMatrix applies a matrix convolution filter effect. A convolution combines pixels in the input image with neighboring pixels to produce a
resulting image. A wide variety of imaging operations can be achieved through convolutions, including blurring, edge detection, sharpening,

embossing and beveling.

A matrix convolution is based on an n-by-m matrix (the convolution kernel) which describes how a given pixel value in the input image is combined
with its neighboring pixel values to produce aresulting pixel value. Each result pixel is determined by applying the kernel matrix to the corresponding

source pixel and its neighboring pixels.

To illustrate, suppose you have ainput image which is 5 pixels by 5 pixels, whose color values are as follows:

0 20 40 235 235
100 120 140 235 235

file:///D|/Public/CR-SVG-20000802/images/filters/feComposite.svg

200 220 240 235 235
225 225 255 255 255
225 225 255 255 255

and you define a 3-by-3 convolution kernel as follows:

123

456
789

Let's focus on the pixel at the second row and second column of the image (source pixel value is 120). Assuming the simplest case (where the input

image's pixel grid aligns perfectly with the kernel's pixel grid) and assuming default values for attributes divisor, targetX and targetY, then resulting
pixel value will be:

(1* 0 + 2* 20 + 3* 40 +
4*100 + 5*120 + 6*140 +
7*200 + 8*220 + 9*240) / (1+2+3+4+5+6+7+8+9)

Because they operate on pixels, matrix convolutions are inherently resol ution-dependent. To make ‘feConvolveMatrix produce resolution-independent
results, an explicit value should be provided for either the filterRes attribute on the 'filter' element and/or attribute kernel UnitLength.

kernelUnitLength, in combination with the other attributes, defines an implicit pixel grid in the filter effects coordinate system (i.e., the coordinate
system established by the filterUnits attribute). If the pixel grid established by kernel UnitL ength does not align perfectly with the pixel grid
established by attribute filterRes, then the input image will be temporarily resampled to align its pixels with kernel UnitLength. The convolution
happens on the resampled image. After applying the convolution, the image is resampled back to its original resolution.

<! ELEMENT feConvol veMatrix (animate|set)* >
<! ATTLI ST feConvol veMatri x
%ilter primtive attributes_with in;
order CDATA #REQUI RED
kernel Matri x CDATA #REQUI RED
di vi sor YNunber; #l MPLI ED
bi as YNunber; #l MPLI ED
target X % nteger; #l MPLIED
targetY % nteger; #l MPLIED
edgeMode (duplicate|w ap| none) "duplicate"
kernel Uni t Lengt h CDATA #I MPLI ED
preserveAl pha %Bool ean; #l MPLIED >

Attribute definitions:
order = "<orderX> [<orderY>]"

Indicates the number of cellsin each dimension for kernelMatrix. The values provided must be <integer>s greater than zero. If two values are
provided, the values are separated by space characters and/or a comma. <orderX> indicates the number of columnsin the matrix. <orderY >
indicates the number of rows in the matrix. If <orderY > isnot provided, it defaults to <orderX>.

A typical valueisorder="3". It isrecommended that only small values (e.g., 3) be used; higher values may result in very high CPU overhead
and usually do not produce results that justify the impact on performance.

If the attribute is not specified, the effect isasif avalue of "3" were specified.

Animatable: yes.

kernelMatrix = "<list of numbers>"

Thelist of <number>s that make up the kernel matrix for the convolution. VValues are separated by space characters and/or acomma. The
number of entriesin the list must equal <orderX> times <orderY>.
Animatable: yes.

divisor = "<number>"

After applying the kernelMatrix to the input image to yield a number, that number is divided by divisor to yield the final destination color
value. A divisor that isthe sum of all the matrix values tends to have an evening effect on the overall color intensity of the result. It isan error
to specify adivisor of zero. The default value is the sum of all valuesin kernelMatrix, with the exception that if the sum is zero, then the
divisorissetto 1.

Animatable: yes.

bias = "<number>"

After applying the kernelMatrix to the input image to yield a number and applying the divisor, the bias attribute is added to each component.

One application of biasiswhen it is desirable to have .5 gray value be the zero response of the filter. If biasis not specified, then the effect is
asif avalue of zero were specified.
Animatable: yes.

targetX = "<integer>"

Determines the positioning in X of the convolution matrix relative to a given target pixel in the input image. The leftmost column of the matrix
is column number zero. The value must be such that: 0 <=targetX < orderX. By default, the convolution matrix is centered in X over each
pixel of the input image (i.e., targetX = floor (orderX / 2)).

Animatable: yes.

targetY = "<integer>"

Determines the positioning in Y of the convolution matrix relative to a given target pixel in the input image. The topmost row of the matrix is
row number zero. The value must be such that: 0 <= targetY < orderY. By default, the convolution matrix is centered in Y over each pixel of
the input image (i.e., targetY = floor (orderY /2)).

Animatable: yes.

edgeMode = "duplicate | wrap | none"

Determines how to extend the input image as necessary with color values so that the matrix operations can be applied when the kernel is
positioned at or near the edge of the input image.

"duplicate" indicates that the input image is extended along each of its borders as necessary by duplicating the color values at the given edge of
the input image.

Original N by- errage where mekM 1 and n=N-1:

11 12 1im 1M

21 22 ... 2m2M

nln2 ... nmnM

NL N2 ... Nm NM

Ext ended by two pixels using "duplicate":

11 11 11 12 ... 1m 1M iM 1M
1111 1112 ... Im1M 1M 1M
1111 1112 ... 1Im1M 1M 1M
2121 21 22... 2m2M 2M2M
ninl nln2...nomnM nMnM
NLNL NLN2... N\mNM NMNM
NLNL NLN2... N\mNM NMNM
NLNL NLN2... N\mNM NMNM

"wrap" indicates that the input image is extended by taking the color values from the opposite edge of the image.

Ext ended by two pixels using "wap":

nm nM nl n2 nm Nm nl n2
Nm NM N1N2...NmNM N1 N2
IMIm 11 12 ... Imi1M 11 12
2M2m 21 22 ... 2m2M 21 22
nmnM nln2... nmnM nl n2
NMmMNM NI N ... NmNM NI N2
ImiM 11 12 ... Imi1M 11 12
2m2M 21 22 ... 2m2M 21 22

"none" indicates that the input image is extended with pixel values of zero for R, G, B and A.

Animatable: yes.
kernelUnitLength = "<xLength> [<yLength>]"

Indicates the intended distance in current filter units (i.e., units as determined by the value of attribute filterUnits) between successive columns
and rows, respectively, in the kernelMatrix. By specifying value(s) for kernelUnitLength, the kernel becomes defined in a scalable, abstract
coordinate system. If kernelUnitLength is not specified, the default value is one pixel in the offscreen bitmap, which is a pixel-based
coordinate system, and thus potentially not scalable. For some level of consistency across display media and user agents, it is necessary that a
value be provided for at least one of filterRes and kernelUnitLength. In some implementations, the most consistent results and the fastest
performance will be achieved if the pixel grid of the temporary offscreen images aligns with the pixel grid of the kernel.

A negative or zero value is an error (see Error processing).

Animatable: yes.

preserveAlpha="false | true"

A value of false indicates that the convolution will apply to al channels, including the apha channel.

A value of true indicates that the convolution will only apply to the color channels. In this case, the filter will temporarily unpremultiply the
color component values, apply the kernel, and then re-premultiply at the end.

If preserveAlphais not specified, then the effect is asif avalue of false were specified.

Animatable: yes.

Attributes defined elsewhere:
Y%stdAttrs;, %ofilter primitive attributes with in;.

15.14 Filter primitive 'feDiffuseLighting’

Thisfilter primitive lights an image using the alpha channel as a bump map. The resulting image is an RGBA opaque image based on the light color
with alpha = 1.0 everywhere. The lighting calculation follows the standard diffuse component of the Phong lighting model. The resulting image
depends on the light color, light position and surface geometry of the input bump map.

The light map produced by thisfilter primitive can be combined with a texture image using the multiply term of the arithmetic 'feComposite’
compositing method. Multiple light sources can be simulated by adding several of these light maps together before applying it to the texture image.

The resulting RGBA image is computed as follows:

Dy=kg* NL*L,
Dg=kg* N.L* L
Db:kd* N.L * Lb
D,=1.0

where
kq = diffuse lighting constant
N = surface normal unit vector, afunction of x and y

L = unit vector pointing from surface to light, a function of x and y in the point and spot light cases
Ly,LgLp=RGB components of light, afunction of x and y in the spot light case

N isafunction of x and y and depends on the surface gradient as follows:

The surface described by the input alphaimage A, (X,y) is:
Z (xy) = surfaceScale* Aj, (X,y)
Surface normal is calculated using the Sobel gradient 3x3 filter:

Ny (X,y)= - surfaceScale * 1/4*((I(x+1,y-1) + 2*I(x+1y) + I(x+1,y+1))
- (I(x-1,y-1) + 2*I(x-1,y) + I(x-1,y+1)))

Ny (x,y)=- surfaceScale * 1/4*((1(x-Ly+1) + 2*I(x,y+1) + [(x+1y+1))
- (I(x-1,y-1) + 2*I(x,y-1) + I(x+1,y-1)))

N, (xy) = 1.0

N = (Ny, Ny, N;) / Norm((Ny,Ny,N_))
L, the unit vector from the image sample to the light, is calculated as follows:

For Infinite light sourcesit is constant:

L, = cos(azimuth)* cos(elevation)
Ly = -sin(azimuth)* cos(elevation)
L, = sin(elevation)

For Point and spot lightsit is afunction of position:

L, = Lighty - X

Ly= L.ighty -y

L, = Light, - Z(x,y)

L =(Ly Ly, L)/ Norm(Ly, Ly, L))

where Light,, Lighty, and Light, are the input light position.

LrLgLyp, thelight color vector, is afunction of position in the spot light case only:

L, = Light,* pow((-L.S),specul arExponent)
L4 = Lightg*pow((-L .S),specul arExponent)
Ly, = Light,* pow((-L.S),specularExponent)

where Sisthe unit vector pointing from the light to the point (pointsAtX, pointsAtY, pointsAtZ) in the x-y plane:

S, = pointsAtX - Light,
Sy = pointsAtY - Light,
S, = pointsAtZ - Light,

$=(S.S,,S)/Norm(S,, S, S,)

If L.Sispositive, nolightis present. (L, =Ly =Ly =0)

<! ELEMENT feDiffuselighting ((feDi stantLight|fePointLight]|feSpotLight), (ani mate|set| ani mateCol or)*)
>
<I ATTLI ST feDi ffuselLighting

st dAttrs;

class % assList; #l MPLIED

style ¥styl eSheet; #l MPLIED

9Presentati onAttributes-LightingEffects;

%ilter primtive attributes with in;

surfaceScal e %Wunber:; #l MPLI ED

di f fuseConst ant %N\unber; #| MPLIED >

Attribute definitions:
surfaceScale = "<number>"

height of surface when A, = 1.
Animatable: yes.

diffuseConstant = "<number>"

kd in Phong lighting model. In SV G, this can be any non-negative number.
Animatable: yes.

Attributes defined elsewhere:
YostdAttrs;, %filter primitive attributes with in;.

The light source is defined by one of the child elements 'feDistantLight’, 'fePointLight' or 'feSpotLight'. The light color is specified by property
'lighting-color'.

15.15 Filter primitive 'feDisplacementMap'

Thisfilter primitive uses the pixels values from the image from in2 to spatially displace the image from in. Thisis the transformation to be performed:

P (x,y) < P(x + scale * ((XC(x,y) - .5), y + scale * (YC(x,y) - .5))

where P(x,y) istheinput image, in, and P'(x,y) isthe destination. XC(x,y) and Y C(x,y) are the component values of the designated by the
xChannel Selector and yChannel Selector. For example, to use the R component of in2 to control displacement in x and the G component of Image2 to
control displacement iny, set xChannel Selector to "R" and yChannel Selector to "G".

The displacement map defines the inverse of the mapping performed.

Thisfilter can have arbitrary non-localized effect on the input which might require substantial buffering in the processing pipeline. However with this
formulation, any intermediate buffering needs can be determined by scale which represents the maximum displacement in either x or y.

<! ELEMENT feDi spl acenent Map (ani mate|set)* >
<! ATTLI ST feDi spl acenent Map
st dAttrs;
%ilter primtive attributes with_ in;
in2 CDATA #REQUI RED
scal e YN\unber; #| MPLI ED
xChannel Sel ector (R]| G|
yChannel Sel ector (R | G|

A A
A A >

B |
B

Attribute definitions:
scale = "<number>"

Displacement scale factor.
Animatable: yes.

xChannelSelector ="R| G | B| A"

Indicates which channel from in2 to use to displace the pixelsin in along the x-axis.
Animatable: yes.

yChannelSelector ="R| G | B| A"

Indicates which channel from in2 to use to displace the pixelsin in along the y-axis.
Animatable: yes.

in2 = "(seein attribute)"

The second input image, which is used to displace the pixelsin the image from attribute in. This attribute can take on the same values asthe in
attribute.
Animatable: yes.

Attributes defined elsewhere:
YostdAttrs;, %filter primitive attributes with in;.

15.16 Filter primitive 'feFlood’

Thisfilter primitive creates an image with infinite extent filled with the color and opacity values from properties 'flood-color' and 'flood-opacity'.

<! ELEMENT f eFl ood (ani nat e| set | ani mateCol or)* >
<! ATTLI ST f eFl ood

st dAttrs;

class % assList; #l MPLI ED

style ¥styl eSheet; #l MPLI ED

9%Pr esent ati onAttri but es-feFl ood;

%ilter primtive attributes with in; >

Attributes defined elsewhere:
Y%stdAttrs;, %filter primitive attributes with in;, class, style, %PresentationAttributes-feFl ood:.

The 'flood-color' property indicates what color to use to flood the current filter primitive sub-region. The keyword currentColor and ICC colors can be
specified in the same manner as within a <paint> specification for the 'fill' and 'stroke’ properties.

‘flood-color'
Value: currentColor |
<color> [icc-color(<name>,<icccolorvalue>+)] |
inherit
Initial: black

Appliesto: 'feFlood' elements
Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

The 'flood-opacity' property defines the opacity value to use across the entire filter primitive sub-region.

'flood-opacity"'
Value: <alphavalue> | inherit
Initial: 1
Appliesto: 'feFlood' elements
Inherited: no
Percentages: N/A
Media: visual

Animatable: yes

15.17 Filter primitive 'feGaussianBlur’

Thisfilter primitive performs a Gaussian blur on the input image.

The Gaussian blur kernel is an approximation of the normalized convolution:
H(x) = exp(-x?/ (252)) / sqrt(2* pi*s?)

where's' is the standard deviation specified by stdDeviation.

The value of stdDeviation can be either one or two numbers. If two numbers are provided, the first number represents a standard deviation value along

the x-axis of the current coordinate system and the second value represents a standard deviation in Y. If one number is provided, then that value is
used for both X and Y.

Even if only one value is provided for stdDeviation, this can be implemented as a separable convolution.

For larger values of 's' (s>= 2.0), an approximation can be used: Three successive box-blurs build a piece-wise quadratic convolution kernel, which
approximates the Gaussian kernel to within roughly 3%.

let d = floor(s* 3*sqrt(2*pi)/4 + 0.5)
... if disodd, use three box-blurs of size 'd', centered on the output pixel.

... if diseven, two box-blurs of size'd' (the first one centered one pixel to the left, the second one centered one pixel to the right of the output pixel)
and one box blur of size'd+1' centered on the output pixel.

Frequently this operation will take place on apha-only images, such as that produced by the built-in input, SourceAlpha. The implementation may
notice this and optimize the single channel case. If the input has infinite extent and is constant, this operation has no effect. If the input hasinfinite
extent and is atile, the filter is evaluated with periodic boundary conditions.

<! ELEMENT f eGaussi anBlur (ani mate|set)* >
<! ATTLI ST feGaussi anBl ur

st dALtrs;

%ilter primtive attributes_with in;

st dDevi ati on CDATA #l MPLI ED >

Attribute definitions:
stdDeviation = "<number> [<number>]"

The standard deviation for the blur operation. If two <number>s are provided, the first number represents a standard deviation value along the
x-axis of the current coordinate system and the second value represents a standard deviation in Y. If one number is provided, then that valueis
used for both X and Y.
A negative valueis an error (see Error processing). A value of zero disables the effect of the given filter primitive (i.e., the resultisafully
transparent image).
Animatable: yes.

Attributes defined elsewhere:

%stdAttrs;, %ofilter primitive attributes with in;.

The example at the start of this chapter makes use of the feGaussianBlur filter primitive to create a drop shadow effect.

15.18 Filter primitive 'felmage'’

Thisfilter primitive refersto a graphic external to this filter element, which isloaded or rendered into an RGBA raster and becomes the result of the
filter primitive.

Thisfilter primitive can refer to an external image or can be a reference to another piece of SVG. It produces an image similar to the built-in image
source SourceGraphic except that the graphic comes from an external source.

If the xlink:href references a stand-alone image resource such as a JPEG or PNG file, then the image resource is rendered according to the behavior of
the 'image' element; otherwise, the referenced resource is rendered according to the behavior of the 'use’ element. In either case, the current user
coordinate system depends on the value of attribute primitiveUnits on the 'filter' element.

<! ELEMENT felmage (aninmate|set|ani mateTransform* >
<! ATTLI ST fel nage

st dALtrs;

9%l i nkRef Attrs;

xlink: href %JRI; #REQUI RED

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

cl ass % asslLi st; #l MPLI ED

style ¥styl eSheet; #l MPLI ED

%Pr esentati onAttributes-All;

transform %ransfornlist; # MPLI ED

%ilter primtive attributes; >

Attributes defined elsewhere:

Y%stdAttrs;, %olangSpaceAttrs;, class, transform, external ResourcesRequired, %oxlinkRefAttrs;, xlink:href, style, %oPresentationAttributes-All;,
%filter primitive attributes;.

15.19 Filter primitive 'feMerge'

Thisfilter primitive composites input image layers on top of each other using the over operator with Input1 on the bottom and the last specified input,
InputN, on top.

Many effects produce a number of intermediate layersin order to create the final output image. Thisfilter allows us to collapse those into asingle
image. Although this could be done by using n-1 Composite-filters, it is more convenient to have this common operation available in this form, and
offers the implementation some additional flexibility.

Each 'feMerge' element can have any number of ‘feMergeNode' subelements, each of which has an in attribute.

The canonical implementation of feMerge isto render the entire effect into one RGBA layer, and then render the resulting layer on the output device.
In certain cases (in particular if the output device itself is a continuous tone device), and since merging is associative, it might be a sufficient
approximation to evaluate the effect one layer at atime and render each layer individually onto the output device bottom to top.

If the topmost image input is SourceGraphic, the implementation is encouraged to render the layers up to that point, and then render the
SourceGraphic directly from its vector description on top.

<! ELEMENT feMerge (feMergeNode)* >
<! ATTLI ST feMerge

YstdAttrs;

%ilter primtive attributes; >

<! ELEMENT feMergeNode (ani mate|set)* >
<! ATTLI ST feMer geNode

Yst dAttrs;

in CDATA #l MPLIED >

Attributes defined elsewhere:
Y%stdAttrs;, %filter primitive attributes;, in.

The example at the start of this chapter makes use of the feMerge filter primitive to composite two intermediate filter results together.

15.20 Filter primitive ‘feMorphology"

Thisfilter primitive performs "fattening” or "thinning" of artwork. It is particularly useful for fattening or thinning an alpha channel.
The dilation (or erosion) kernel is arectangle with awidth of 2*x-radius+1 and a height of y-radius+1.

Frequently this operation will take place on a pha-only images, such as that produced by the built-in input, SourceAlpha. In that case, the
implementation might want to optimize the single channel case.

If the input has infinite extent and is constant, this operation has no effect. If the input has infinite extent and is atile, thefilter is evaluated with
periodic boundary conditions.

<! ELEMENT feMorphol ogy (ani nate|set)* >
<! ATTLI ST feMor phol ogy
YstdAttrs;
Y%ilter primtive attributes with in;
operator (erode | dilate) "erode"
radi us %.ength; #l MPLIED >

Attribute definitions:
operator = "erode | dilate"
A keyword indicating whether to erode (i.e., thin) or dilate (fatten) the source graphic.
Animatable: yes.
radius = "<number> [<number>]"
The radius (or radii) for the operation. If two <number>s are provided, the first number represents a x-radius in the current coordinate system

and the second value represents ay-radius. If one number is provided, then that value is used for both X and Y.
A negative value is an error (see Error processing). A value of zero disables the effect of the given filter primitive (i.e., theresult isafully

transparent image).
Animatable: yes.
Attributes defined elsewhere:
Y%ostdAttrs;, %filter primitive attributes with in;.

Example feMorphology shows examples of the four types of feMorphology operations.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20000802/ / EN"
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg wi dt h="5cnm' hei ght="7cm' vi ewBox="0 0 700 500" >
<titl e>Exanpl e feMrphol ogy - Exanples of erode and dilate</title>
<desc>Five text strings drawn as outlines.
The first is unfiltered. The second and third use 'erode'.
The fourth and fifth use "dilate'.</desc>
<def s>
<filter id="Erode3">
<f eMbr phol ogy oper at or="er ode" in="SourceG aphic" radius="3" />
</filter>
<filter id="Erode6">
<f eMor phol ogy oper at or ="erode" in="SourceG aphic" radi us="6" />
</[filter>
<filter id="Dilate3">
<f eMor phol ogy operator="dil ate" in="SourceG aphic" radius="3" />
</[filter>
<filter id="Di|ate6">
<f eMor phol ogy operator="dil ate" in="SourceG aphic" radius="6" />
</[filter>
</ def s>
<rect style="fill:none; stroke:blue; stroke-w dth:2"
x="1" y="1" w dt h="698" hei ght="498"/>
<g styl e="enabl e- background: new'>
<g style="font-fam |ly: Verdana; font-size:75;
fill:none; stroke:black; stroke-w dth:6">
<text x="50" y="90">Unfiltered</text>
<text x="50" y="180" style="filter:url (#Erode3)">Erode radius 3</text>
<text x="50" y="270" style="filter:url (#Erode6)">Erode radius 6</text>
<text x="50" y="360" style="filter:url(#Dilate3)">Dilate radius 3</text>
<text x="50" y="450" style="filter:url (#Di|late6)">Dilate radius 6</text>
</ g>
</ g>g
</ svg>

Unfiltered
Erode radius 3
Erode radius 6

Dilate radius 3
Dilabe radius 6

Example feMorphol ogy

View this example as SV G (SV G-enabled browsers only)

15.21 Filter primitive 'feOffset’

Thisfilter primitive offsets the input image relative to its current position in the image space by the specified vector.

Thisisimportant for effects like drop shadows.

< ELEMENT feOfset (animate|set)* >
<! ATTLI ST feO fset
YstdAttrs;
%ilter primtive attributes with in;
dx %.ength; #l MPLI ED
dy %.ength; #l MPLIED >

Attribute definitions:
dx ="<length>"

The amount to offset the input graphic along the x-axis.
Animatable: yes.

dy = "<length>"

The amount to offset the input graphic aong the y-axis.
Animatable: yes.

Attributes defined elsewhere:
Y%stdAttrs;, %ofilter primitive attributes with in;.

The example at the start of this chapter makes use of the feOffset filter primitive to offset the drop shadow from the original source graphic.

15.22 Filter primitive 'feSpecularLighting’

Thisfilter primitive lights a source graphic using the a pha channel as a bump map. The resulting imageis an RGBA image based on the light color.
The lighting cal culation follows the standard specular component of the Phong lighting model. The resulting image depends on the light color, light
position and surface geometry of the input bump map. The result of the lighting calculation is added. The filter primitive assumes that the viewer is at
infinity in the z direction (i.e., the unit vector in the eye direction is (0,0,1) everywhere).

Thisfilter primitive produces an image which contains the specular reflection part of the lighting calculation. Such amap is intended to be combined
with atexture using the add term of the arithmetic 'feComposite' method. Multiple light sources can be simulated by adding several of these light
maps before applying it to the texture image.

The resulting RGBA image is computed as follows:

S; = kg * pow(N.H, specularExponent) * L,
Sy = ks* pow(N.H, specularExponent) * L4
Sy = ks * pow(N.H, specularExponent) * L,
Sa = max(S;, Sy, Sp)

file:///D|/Public/CR-SVG-20000802/images/filters/feMorphology.svg

where
ks = specular lighting constant

N = surface normal unit vector, afunction of x and y
H = "halfway" unit vectorbetween eye unit vector and light unit vector

Lr,Lg,Lb = RGB components of light
See 'feDiffuselighting' for definition of N and (L, Lg, Lp).
The definition of H reflects our assumption of the constant eye vector E = (0,0,1):
H=(L + E) / Norm(L+E)
where L isthe light unit vector.

Unlike the feDiffuseLighting’, the feSpecularLighting’ filter produces a non-opague image. This is due to the fact that the specular result (S;,S;,S,,Sg)

is meant to be added to the textured image. The alpha channel of the result is the max of the color components, so that where the specular light is zero,
no additional coverage is added to the image and a fully white highlight will add opacity.

The 'feDiffusel ighting' and 'feSpecularLighting' filters will often be applied together. An implementation may detect this and cal culate both mapsin
one pass, instead of two.

<! ELEMENT feSpecul arLi ghting ((feDistantLight|fePointLight]|feSpotLight), (ani mate|set| ani mateCol or)*)
>

<! ATTLI ST feSpecul arLi ghting
st dAttrs;
class % assList; #| MPLIED
style ¥styl eSheet; #l MPLI ED
%Pr esent ati onAttributes-LightingEffects;
%ilter primtive attributes with in;
surfaceScal e ¥%Nunber; #Il MPLI ED
specul ar Const ant YNunber; #l MPLI ED
specul ar Exponent YN\unber; #l MPLI ED >

Attribute definitions:
surfaceScale = "<number>"

height of surface when A, = 1.
Animatable: yes.

specularConstant = "< number>"

ks in Phong lighting model. In SV G, this can be any non-negative number.
Animatable: yes.

specularExponent = "< number>"

Exponent for specular term, larger is more "shiny". Range 1.0 to 128.0.
Animatable: yes.

Attributes defined elsewhere:
YostdAttrs;, %filter primitive attributes with in;.

The light source is defined by one of the child elements 'feDistantLight’, 'fePointLight' or 'feDistantLight'. The light color is specified by property
'lighting-color'.

The example at the start of this chapter makes use of the feSpecularLighting filter primitive to achieve a highly reflective, 3D glowing effect.

15.23 Filter primitive 'feTile'

Thisfilter primitive creates an image with infinite extent by replicating the input image in image space.

Typically, the input image has been defined with afilter primitive sub-region in order to define the tiling rectangle.

<! ELEMENT feTile (animate|set)* >
<IATTLI ST feTile
YstdAttrs;
Y%ilter primtive attributes with in; >
Attributes defined el sewhere:
YostdAttrs;, %filter primitive attributes with in;.

15.24 Filter primitive 'feTurbulence'

Thisfilter primitive creates an image using the Perlin turbulence function. It allows the synthesis of artificial textures like clouds or marble. For a
detailed description the of the Perlin turbulence function, see "Texturing and Modeling", Ebert et al, AP Professional, 1994. The resulting image will
have maximal sizein image space.

It is possible to create bandwidth-limited noise by synthesizing only one octave.

The following C code shows the exact algorithm used for thisfilter effect.

For fractal Sum, you get a turbFunctionResult that is aimed at arange of -1 to 1 (the actual result might exceed this range in some cases). To convert to
acolor value, usetheformulacol or Val ue = ((turbFuncti onResult * 255) + 255) / 2,thenclamp totherange O to 255.

For turbulence, you get a turbFunctionResult that is aimed at arange of 0 to 1 (the actual result might exceed this range in some cases). To convert to
acolor value, usetheformulacol or Val ue = (turbFuncti onResult * 255),thenclamp to therange 0 to 255.

The following order is used for applying the pseudo random numbers. Aninitial seed value is computed based on attribute seed. Then the
implementation computes the lattice points for R, then continues getting additional pseudo random numbers relative to the last generated pseudo
random number and computes the lattice points for G, and so on for B and A.

/* Produces results in the range [1, 2**31 - 2].
Algorithmis: r = (a* r) nmd m

where a = 16807 and m= 2**31 - 1 = 2147483647

See [Park & MIler], CACMvol. 31 no. 10 p. 1195, Cct. 1988
To test: the algorithmshould produce the result 1043618065
as the 10,000th generated nunber if the original seed is 1.
*/

#defi ne RAND m 2147483647 /* 2**31 - 1 */

#define RAND a 16807 /* 7**5; primtive root of m?*/
#define RAND q 127773 /* m/ a */

#define RAND r 2836 /* m%a */

| ong setup_seed(l ong | Seed)

if (I1Seed <= 0) |Seed = -(I Seed % (RAND m - 1)) + 1;
if (1Seed > RAND m- 1) | Seed = RAND m - 1;
return | Seed;

}
| ong randon(| ong | Seed)
{

long result;

result = RAND a * (I Seed % RAND q) - RAND r * (I Seed / RAND Q);
if (result <= 0) result += RAND m

return result;

}

#defi ne BSi ze 0x100

#def i ne BM Oxf f

#defi ne PerlinN 0x1000

#define NP 12 /* 27PerlinN */

#defi ne NM Oxfff

static ulLatticeSel ector[BSi ze + BSize + 2];
static float fGradient[4][BSi ze + BSize + 2][2];
static void init(long | Seed)

{
float s;
int i, j, k;
| Seed set up_seed(| Seed);

for(k 0; k < 4; k++)

for(i = 0; i < BSize; i++)

uLatticeSelector[i] =1i;

for (j =05 j <2, j+4)
fGadient[kK][i][j] = (float)(((l Seed = randon(| Seed)) % (BSi ze + BSi ze)) - BSize) /
BSi ze;
e s = float(sqrt(fGadient[K][i][O] * fGadient[K][i][0O] + fGadient[Kk][i][1] *
fGadient[K][i][1]));
fGadient[K][i][O] /= s;
fGadient[K][i][1l] /= s;
}
. .
while(--i)
{

k = ulLatticeSelector[i];
uLatticeSelector[i] = ulLatticeSelector[j = (I Seed = randon(l Seed)) % BSi ze];
uLatticeSelector[j] = k;

for(i = 0; i < BSize + 2; i++)

uLatticeSelector[BSize + i] = ulLatticeSelector[i];
for(k = 0; k < 4; k++)
for(j =0; j <2; j++)
fGadient[K][BSize + i][j] = fGadient[k][i][]j];

}

#define s_curve(t) (t *t * (3. - 2. *t))
#define lerp(t, a, b) (a+t * (b - a)
fl oat noi se2(int nCol orChannel, float vec[2])

{
int bx0, bx1, byO, byl, b00, bl0, b01, bli,
float rx0, rx1, ry0O, ryl, *qg, sx, sy, a, b, t, u, v;
register i, j;
t = vec[0] + PerlinN
bx0 = ((int)t) & BM
bx1l = (bx0+1) & BM
rxo =t - (int)t;
rxl = rx0 - 1.0f;
t = vec[1l] + PerlinN;
by0 = ((int)t) & BM
byl = (byO+1) & BM
ry0 =t - (int)t;
ryl = ry0 - 1.0f;
i = ulLatticeSel ector[bx0];
j = uLatticeSel ector[bx1];
b00 = ulLatticeSelector[i + byO];
b10 = ulLatticeSelector[j + byO];
b01 = ulLatticeSelector[i + byl];
b1l = ulatticeSelector[j + byl];
sx = float(s_curve(rx0));
sy = float(s_curve(ry0));
g = fGadient[nCol orChannel][b00]; u =1rx0 * gq[0] + ry0 * g[1];
g = fGadient[nCol orChannel][b10]; v =rx1 * gq[0] + ry0 * g[1];
a = lerp(sx, u, v);
g = fGadient[nCol or Channel][bO1]; u = rx0 * g[0] + ryl * g[1];
g = fGadient[nCol orChannel][b11]; v =rx1 * gq[0] + ryl * g[1];
b =lerp(sx, u, v);
return lerp(sy, a, b);
}

/!l Returns 'turbFunctionResult'
float turbul ence(int nCol or Channel, float *point, float fBaseFreq, int nNunCctaves, bool
bFract al Sun)
{
float fSum = 0. O0f;
float vec[2];
float fFrequency = fBaseFreq;
for(int nOctave = 0; nCctave < nNunCOct aves; nCctave++)

vec[0]
vec[1]

f Frequency * point[0];
f Frequency * point[1];

i f(bFractal Sum

f Sum += fl oat (noi se2(nCol or Channel, vec) / (fFrequency / fBaseFreq));
el se

f Sum += fl oat (f abs(noi se2(nCol or Channel , vec)) / (fFrequency / fBaseFreq));
f Frequency *= 2;

return f Sum
}

<! ELEMENT f eTur bul ence (ani mate|set)* >
<! ATTLI ST feTurbul ence
YstdAttrs;
%ilter primtive attributes;
baseFr equency CDATA #l MPLI ED
nunOct aves % nt eger; #l MPLI ED
seed YWNunber; #l MPLI ED
stitchTiles (stitch | noStitch) "noStitch"
type (fractal Noise | turbul ence) "turbul ence" >

Attribute definitions:

baseFrequency = "<number> [<number>]"
The base frequency (frequencies) parameter(s) for the noise function. If two <number>s are provided, the first number represents a base
frequency in the X direction and the second value represents a base frequency in the Y direction. If one number is provided, then that valueis

used for both X and Y.
Animatable: yes.

numOctaves = "<integer>"

The numOctaves parameter for the noise function.
Animatable: yes.

seed = "<number>"

The starting number for the pseudo random number generator.
If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

stitchTiles = "titch | noStitch”

If stitchTiles="noStitch", no attempt it made to achieve smooth transitions at the border of tiles which contain a turbulence function.
Sometimes the result will show clear discontinuities at the tile borders.

If titchTiles="stitch", then the user agent will automatically adjust baseFrequency-x and baseFrequency-y values such that the feTurbulence
node's width and height (i.e., the width and height of the current subregion) contains an integral number of the Perlin tile width and height for
the first octave. The baseFrequency will be adjusted up or down depending on which way has the smallest relative (not absolute) change as
follows: Given the frequency, calculate | owFr eq=f | oor (wi dt h*frequency)/w dt h and

hi Freqg=cei | (wi dt h*frequency)/w dt h. If frequency/lowFreqg < hiFreg/frequency then use lowFreq, else use hiFreq. While
generating turbulence values, generate lattice vectors as normal for Perlin Noise, except for those lattice points that lie on the right or bottom
edges of the active area (the size of the resulting tile). In those cases, copy the lattice vector from the opposite edge of the active area.
Animatable: yes.

type = "fractalNoise | turbulence"

Indicates whether the filter primitive should perform a noise or turbulence function.
Animatable: yes.

Attributes defined elsewhere:
YostdAttrs;, %ofilter primitive attributes;.

Example feTurbulence shows the effects of various parameter settings for feTurbulence.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 20000802/ / EN"
"http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="450px" hei ght =" 325px" vi ewBox="0 0 450 325">
<title>Exanpl e feTurbul ence - Exanpl es of feTurbul ence operations</title>
<desc>Si x rectangul ar areas showi ng the effects of
various paraneter settings for feTurbul ence. </ desc>
<g style="font-famly:Verdana; text-anchor:nmniddle; font-size:10">
<def s>
<filter id="Turbl" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% hei ght="100% >

</

<r

<r
<t
<t
<t

<r
<t
<t
<t

<r
<t
<t
<t

<r
<t
<t
<t

<r
<t
<t
<t

<r
<t

<t

<t

</ g>
</ svg>

<f eTur bul ence type="t urbul ence" baseFrequency="0.05" nunlctaves="2"/>
</[filter>
<filter id="Turb2" filterUnits="objectBoundi ngBox"
x="0% y="0% wi dth="100% hei ght="100% >
<f eTur bul ence type="t urbul ence" baseFrequency="0.1" nunCctaves="2"/>
</filter>
<filter id="Turb3" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% hei ght="100% >
<f eTur bul ence type="t urbul ence" baseFrequency="0.05" nuntctaves="8"/>
</filter>
<filter id="Turb4" filterUnits="objectBoundi ngBox"
x="0% y="0% wi dth="100% hei ght="100% >
<f eTurbul ence type="fractal Noi se" baseFrequency="0.1" nunCctaves="4"/>
</[filter>
<filter id="Turb5" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% hei ght="100% >
<f eTur bul ence type="fractal Noi se" baseFrequency="0.4" nunCctaves="4"/>
</filter>
<filter id="Turb6" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% hei ght="100% >
<f eTur bul ence type="fractal Noi se" baseFrequency="0.1" nunCctaves="1"/>
</filter>
def s>

ect x="1" y="1" wi dth="448" hei ght="323"
style="fill:none; stroke:blue; stroke-wi dth:1" />

ect x="25" y="25" wi dth="100" height="75" style="filter:url (#Turbl)" />
ext x="75" y="117">type=turbul ence</text>

ext x="75" y="129">baseFrequency=0. 05</t ext >

ext x="75" y="141">nunlCct aves=2</t ext >

ect x="175" y="25" wi dth="100" hei ght="75" style="filter:url (#Turb2)" />
ext x="225" y="117">type=turbul ence</text >

ext x="225" y="129">baseFrequency=0. 1</t ext>

ext x="225" y="141">nunxt aves=2</t ext >

ect x="325" y="25" w dth="100" height="75" style="filter:url (#Turb3)" />
ext x="375" y="117">type=turbul ence</text>

ext x="375" y="129">baseFrequency=0. 05</t ext >

ext x="375" y="141">numlOct aves=8</t ext >

ect x="25" y="180" w dth="100" height="75" style="filter:url (#Turb4)" />
ext x="75" y="272">type=fractal Noi se</text>

ext x="75" y="284">baseFrequency=0. 1</t ext >

ext x="75" y="296">numlct aves=4</t ext>

ect x="175" y="180" w dt h="100" hei ght="75" style="filter:url (#Turb5)" />
ext x="225" y="272">type=fractal Noi se</text>
ext x="225" y="284">baseFrequency=0. 4</text>
ext x="225" y="296">nunxt aves=4</t ext >

ect x="325" y="180" wi dth="100" hei ght="75" style="filter:url (#Turb6)" />
ext x="375" y="272">type=fractal Noi se</text>
ext x="375" y="284">baseFrequency=0. 1</t ext>
ext x="375" y="296">nunxtaves=1</t ext >

— ‘- "q ' r“..."r*:
B A Sy LN,
S ' s 14 i-l !
.' l‘+ "-. F-
5 -4 2 A

types= turbulence
baseFrequency=0.05
numctaves=2

type=turbulence
baseFrequency=0.1
numicctaves=2

ol 3)

[i v

b it =T b rol el Lo
type=fractalMoise

baseFrequency=0.4
numoctaves=4

type=FfractalMoise
baseFrequency=0.1
numoctaves=4

el g‘h
i gV

Rt B
types= turbulence

baseFrequency=0.05
numdctaves=8

type=FfractalMoise
baseFrequency=0.1
numoOctaves=1

Example feTurbulence

View this example as SVG (SV G-enabled browsers only)

15.25 DOM interfaces

The following interfaces are defined below: SV GFilterElement, SV GFilterPrimitiveStandardAttributes, SV GFEBIendElement,

SV GFEColorMatrixElement, SVGFEComponentTransferElement, SV GComponentT ransferFunctionElement, SV GFEFuncRElement,

SV GFEFuncGElement, SV GFEFuncBElement, SV GFEFuncAElement, SV GFECompositeElement, SV GFEConvolveM atrixElement,

SV GFEDiffuseLightingElement, SV GFEDistantLightElement, SV GFEPointLightElement, SV GFESpotLightElement,

SV GFED:i splacementM apElement, SV GFEFI oodElement, SV GFEGaussianBlurElement, SV GFEImageElement, SV GFEM ergeElement,

SV GFEM ergeNodeElement, SV GFEM orphologyElement, SV GFEOffsetElement, SV GFESpecul arLightingElement, SVGFETIleElement,

SV GFETurbulenceElement.

Interface SVGFilterElement

The SV GFilterElement interface corresponds to the filter' element.

IDL Definition

interface SVGFilterEl enent
SVGEl enent ,
SVGURI Ref er ence,
SVGE.angSpace,

SVGEXt er nal Resour cesRequi red,

SVGSt yl abl e,
SVGUni t Types {

readonly attribute SVGAni mat edEnunmeration filterUnits;

readonly attribute SVGAni mat edEnunerati on
readonly attribute SVGAnI
readonly attribute SVGAni
readonly attribute SVGAni
readonly attribute SVGAni
readonly attribute SVGAni
readonly attribute SVGAni

mat edLengt h
mat edLengt h
mat edLengt h
mat edLengt h
mat edl nt eger
mat edl nt eger

prinmtiveUnits;
X3

2

wi dt h;

hei ght ;
filterResX;
filterResY,;

file:///D|/Public/CR-SVG-20000802/images/filters/feTurbulence.svg

void setFilterRes (in unsigned long filterResX, in unsigned long filterResY);

h

Attributes
readonly SV GAnimatedEnumeration filterUnits
Corresponds to attribute filterUnits on the given 'filter' element. Takes one of the constants defined in SVGUnitTypes.
readonly SV GAnimatedEnumeration primitiveUnits

Corresponds to attribute primitiveUnits on the given filter' element. Takes one of the constants defined in SVGUnitTypes.

readonly SV GAnimatedL ength x

Corresponds to attribute x on the given filter' element.
readonly SVGAnimatedLength y

Corresponds to attribute y on the given filter' element.
readonly SV GAnimatedL ength width

Corresponds to attribute width on the given filter' element.
readonly SV GAnimatedL ength height

Corresponds to attribute height on the given ‘filter' element.
readonly SV GAnimatedinteger filterResX

Corresponds to attribute filterRes on the given filter' element. Contains the X component of attribute filterRes.
readonly SV GAnimatedinteger filterResY

Corresponds to attribute filterRes on the given filter' element. Containsthe Y component (possibly computed automatically) of

attribute filterRes.

Methods
setFilterRes
Setsthe values for attribute filterRes.
Parameters

in unsigned long filterResX The X component of attribute filterRes.
inunsigned long filterResY The'Y component of attribute filterRes.
No Return Value
No Exceptions

Interface SVGFilterPrimitiveStandardAttributes
This interface defines the set of DOM attributes that are common across the filter interfaces.

IDL Definition

interface SVGFilterPrimtiveStandardAttributes {

readonly attribute SVGAni nmat edLengt h x;
readonly attribute SVGAni natedLength vy;
readonly attribute SVGAni nat edLengt h wi dt h;
readonly attribute SVGAni mat edLengt h hei ght;
readonly attribute SVGAni natedString result;

I

Attributes

readonly SV GAnimatedL ength x

Corresponds to attribute x on the given element.
readonly SVGAnimatedLength y

Corresponds to attribute y on the given element.
readonly SV GAnimatedL ength width

Corresponds to attribute width on the given element.
readonly SV GAnimatedL ength height

Corresponds to attribute height on the given element.

readonly SV GAnimatedString result
Corresponds to attribute result on the given element.

Interface SVGFEBIlendElement

The SV GFEBIendElement interface corresponds to the 'feBlend' element.
IDL Definition

i nterface SVGFEBI endEl enent
SVGEIl enent ,
SVGFilterPrimtiveStandardAttributes {

/1 Blend Mdde Types

const unsigned short SVG FEBLEND MODE_UNKNOWN
const unsigned short SVG FEBLEND MODE NORMAL
const unsigned short SVG FEBLEND MODE MULTI PLY
const unsigned short SVG FEBLEND MODE_SCREEN
const unsigned short SVG FEBLEND MODE_DARKEN
const unsigned short SVG FEBLEND MODE LI GHTEN

ORWNRO

readonly attribute SVGAni matedString inil;
readonly attribute SVGAni mat edString in2;
readonly attribute SVGAni nmat edEnuner ati on node;

I

Definition group Blend Mode Types
Defined constants
SVG_FEBLEND_MODE_UNKNOWN Thetypeisnot one of predefined types. It isinvalid to attempt to define a new value of this
type or to attempt to switch an existing value to this type.
SVG_FEBLEND_MODE_NORMAL Corresponds to value normal.
SVG_FEBLEND_MODE_MULTIPLY Corresponds to value multiply.
SVG_FEBLEND_MODE_SCREEN Corresponds to value screen.
SVG_FEBLEND_MODE_DARKEN Corresponds to value darken.
SVG_FEBLEND_MODE_LIGHTEN Corresponds to value lighten.
Attributes
readonly SVGAnimatedString inl
Corresponds to attribute in on the given 'feBlend' element.
readonly SV GAnimatedString in2
Corresponds to attribute in2 on the given 'feBlend' element.
readonly SV GA nimatedEnumeration mode
Corresponds to attribute mode on the given ‘feBlend' element. Takes one of the Blend Mode Types.

Interface SVGFEColorMatrixElement

The SV GFEColorMatrixElement interface corresponds to the 'feColorMatrix' element.
IDL Definition

i nterface SVGFECol or Mat ri xEl enent
SVGEl enent ,
SVGFilterPrimtiveStandardAttributes {

/1 Color Matrix Types

const unsigned short SVG FECOLORMATRI X_TYPE_UNKNOMN

const unsigned short SVG FECOLORMATRI X _TYPE_MATRI X

const unsigned short SVG FECOLORVATRI X_TYPE_SATURATE

const unsigned short SVG FECOLORVATRI X_TYPE_HUEROTATE

const unsigned short SVG FECOLORVATRI X_TYPE_LUM NANCETQALPHA

nnonon
rONRO

readonly attribute SVGAni matedString inil;
readonly attribute SVGAni mat edEnunerati on type;

h

Definition group Color Matrix Types

Defined constants

SVG_FECOLORMATRIX_TYPE_UNKNOWN

SVG_FECOLORMATRIX_TYPE_MATRIX
SVG_FECOLORMATRIX_TYPE_SATURATE
SVG_FECOLORMATRIX_TYPE_HUEROTATE
SVG_FECOLORMATRIX_TYPE_LUMINANCETOALPHA Corresponds to value luminanceToAlpha.

Attributes

readonly SVGAnimatedString inl

readonly attribute SVGAni mat edNunberLi st val ues;

Corresponds to attribute in on the given 'feColorMatrix' element.
readonly SV GA nimatedEnumeration type

Corresponds to attribute type on the given 'feColorMatrix' element. Takes one of the Color Matrix Types.

readonly SVGAnimatedNumberList values
Corresponds to attribute values on the given 'feColorMatrix' element.

Provides access to the contents of the values attribute.

Interface SVGFEComponentTransferElement

The SV GFEComponentTransferElement interface corresponds to the 'feComponentTransfer' element.

IDL Definition

i nterface SVG-EConponent Tr ansf er El ermrent

h

Attributes

readonly SV GAnimatedString inl

SVCGEl enent ,
SVGFilterPrimtiveStandardAttributes {

readonly attribute SVGAni matedString inil;

Corresponds to attribute in on the given 'feBlend' element.

Interface SVGComponentTransferFunctionElement

This interface defines a base interface used by the component transfer function interfaces.

IDL Definition

i nterface SVGConponent Tr ansf er Functi onEl enent

/1 Component Transfer Types

const
const
const
const
const
const

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short
short
short
short
short
short

SVG_FECOVPONENTTRANFER TYPE_UNKNOAN
SVG_FECOVPONENTTRANFER_TYPE_| DENTI TY
SVG_FECOVPONENTTRANFER_TYPE_TABLE
SVG_FECOVPONENTTRANFER_TYPE_DI SCRETE
SVG_FECOVPONENTTRANFER TYPE_LI NEAR
SVG_FECOVPONENTTRANFER_TYPE_GAMVA

readonly attribute SVGAni mat edEnunerati on type;
readonly attribute SVGAni mat edNunberLi st tabl eVal ues;

SVCGEl enent {

N =

The typeis not one of predefined types. Itisinvalid to attempt to
define anew value of thistype or to attempt to switch an existing
valueto thistype.

Corresponds to value matrix.
Corresponds to value saturate.
Corresponds to value hueRotate.

readonly attribute SVGAni mat edNunber sl ope;

readonly attribute SVGAni mat edNunber i ntercept;
readonly attribute SVGAni mat edNurber anpl it ude;
readonly attribute SVGAni mat edNunber exponent ;
readonly attribute SVGAni mat edNurber of f set;

I

Definition group Component Transfer Types
Defined constants

SVG_FECOMPONENTTRANFER_TYPE_UNKNOWN Thetypeis not one of predefined types. It isinvalid to attempt to define a
new value of thistype or to attempt to switch an existing value to this type.
SVG_FECOMPONENTTRANFER_TYPE_IDENTITY Corresponds to value identity.
SVG_FECOMPONENTTRANFER_TYPE_TABLE Correspondsto value table.
SVG_FECOMPONENTTRANFER_TYPE_DISCRETE Corresponds to value discrete.
SVG_FECOMPONENTTRANFER_TYPE_LINEAR Corresponds to value linear.
SVG_FECOMPONENTTRANFER_TYPE_GAMMA Corresponds to value gamma.

Attributes

readonly SV GAnimatedEnumeration type

Corresponds to attribute type on the given element. Takes one of the Component Transfer Types.
readonly SV GAnimatedNumberL.ist tableValues

Corresponds to attribute tableValues on the given element.
readonly SV GAnimatedNumber slope

Corresponds to attribute slope on the given element.
readonly SV GAnimatedNumber intercept

Corresponds to attribute intercept on the given element.
readonly SV GAnimatedNumber amplitude

Corresponds to attribute amplitude on the given element.
readonly SV GAnimatedNumber exponent

Corresponds to attribute exponent on the given element.
readonly SV GAnimatedNumber offset

Corresponds to attribute offset on the given element.

Interface SVGFEFuncRElement

The SV GFEFuncRElement interface corresponds to the 'feFuncR' element.
IDL Definition

i nterface SVGFEFuncREl ement : SVGConponent Tr ansf er Functi onEl ement {};

Interface SVGFEFuncGElement

The SV GFEFuncGElement interface corresponds to the 'feFuncG' el ement.
IDL Definition

i nterface SVGFEFuncCEl ement : SVGConponent Tr ansf er Functi onEl ement {};

Interface SVGFEFuncBElement

The SV GFEFuncBElement interface corresponds to the 'feFuncB' element.
IDL Definition

i nterface SVGFEFuncBEl emrent : SVGConponent Tr ansf er Functi onEl ement {};

Interface SVGFEFuncAElement

The SV GFEFuncAElement interface corresponds to the 'feFuncA' element.
IDL Definition

i nterface SVGFEFuncAEl ement : SVGConponent Tr ansfer Functi onEl ement {};

Interface SVGFECompositeElement

The SV GFECompositeElement interface corresponds to the 'feComposite' element.
IDL Definition

i nterface SVGFEConposi t eEl enent
SVGEIl enent ,
SVGFilterPrimtiveStandardAttributes {

/1 Composite COperators

const unsigned short SVG FECOWVPOSI TE_OPERATOR UNKNOWN
const unsi gned short SVG FECOWPOSI TE_OPERATOR_OVER

const unsigned short SVG FECOVPOSI TE_OPERATOR I N

const unsigned short SVG FECOVPCSI TE_OPERATOR _OUT

const unsi gned short SVG FECOWPOSI TE_OPERATOR_ATCOP

const unsigned short SVG FECOWPOSI TE_OPERATOR_XOR

const unsigned short SVG FECOWVPCSI TE_OPERATOR_ARI THVETI C

T TER TR TR TR TR
QONRWNRO

readonly attribute SVGAni mat edString ini;
readonly attribute SVGAni matedStri ng in2;
readonly attribute SVGAni mat edEnunerati on operator;
readonly attribute SVGAni mat edNunber k1;
readonly attribute SVGAni mat edNunber k2;
readonly attribute SVGAni mat edNurber k3;
readonly attribute SVGAni mat edNunber k4;

I

Definition group Composite Operators
Defined constants

SVG_FECOMPOSITE_OPERATOR_UNKNOWN Thetypeisnot one of predefined types. It isinvalid to attempt to define a new
value of thistype or to attempt to switch an existing value to this type.

SVG_FECOMPOSITE OPERATOR_OVER Corresponds to value over.
SVG_FECOMPOSITE OPERATOR_IN Correspondsto valuein.
SVG_FECOMPOSITE_ OPERATOR_OUT Corresponds to value out.
SVG_FECOMPOSITE OPERATOR_ATOP Corresponds to value atop.
SVG_FECOMPOSITE_OPERATOR_XOR Corresponds to value xor.

SVG_FECOMPOSITE_OPERATOR_ARITHMETIC Corresponds to value arithmetic.
Attributes
readonly SVGAnimatedString inl
Corresponds to attribute in on the given 'feComposite’ element.

readonly SV GAnimatedString in2

Corresponds to attribute in2 on the given 'feComposite' element.
readonly SV GAnimatedEnumeration operator

Corresponds to attribute operator on the given ‘feComposite’ element. Takes one of the Composite Operators.
readonly SV GAnimatedNumber k1

Corresponds to attribute k1 on the given ‘feComposite’ element.
readonly SV GAnimatedNumber k2

Corresponds to attribute k2 on the given ‘feComposite’ element.
readonly SV GAnimatedNumber k3

Corresponds to attribute k3 on the given ‘feComposite’ element.
readonly SV GAnimatedNumber k4

Corresponds to attribute k4 on the given ‘feComposite’ element.

Interface SVGFEConvolveMatrixElement
The SVGFEConvolveMatrixElement interface corresponds to the 'feConvolveMatrix' element.
IDL Definition

i nterface SVGFEConvol veMat ri xEl enent
SVGEl enent ,
SVGFilterPrimtiveStandardAttributes {

/1l Edge Mode Val ues

const unsigned short SVG EDGEMODE_UNKNOM = O;

const unsigned short SVG EDGEMODE _DUPLI CATE = 1;

const unsigned short SVG_EDGEMODE_WRAP = 2;

const unsigned short SVG_EDGEMODE_NONE = 3;

readonly attribute SVGAni nat edl nt eger order X;

readonly attribute SVGAni mat edl nt eger orderY;

readonly attribute SVGAni mat edNunber Li st kernel Matri x;
readonly attribute SVGAni mat edNunber di vi sor;

readonly attribute SVGAni mat edNunber bi as;

readonly attribute SVGAni mat edl nt eger targetX;

readonly attribute SVGAni mat edl nt eger targety;

readonly attribute SVGAni mat edEnunerati on edgehbde;

readonly attribute SVGAni mat edLengt h ker nel Uni t Lengt hX;
readonly attribute SVGAni mat edLengt h ker nel Uni t Lengt hY;
readonly attribute SVGAni mat edBool ean preserveAl pha;

Definition group Edge Mode Values
Defined constants

SVG_EDGEMODE_UNKNOWN Thetypeis not one of predefined types. It isinvalid to attempt to define anew value of thistype
or to attempt to switch an existing value to this type.

SVG_EDGEMODE_DUPLICATE Corresponds to value duplicate.
SVG_EDGEMODE_WRAP Corresponds to value wrap.
SVG_EDGEMODE_NONE Corresponds to value none.
Attributes
readonly SV GAnimatedinteger orderX
Corresponds to attribute order on the given 'feConvolveMatrix' element.
readonly SV GAnimatedlnteger orderY
Corresponds to attribute order on the given 'feConvolveMatrix' element.
readonly SVGAnimatedNumberList kernelMatrix
Corresponds to attribute kernelMatrix on the given element.
readonly SV GAnimatedNumber divisor
Corresponds to attribute divisor on the given 'feConvolveMatrix' element.

readonly SV GAnimatedNumber bias

Corresponds to attribute bias on the given 'feConvolveMatrix' element.
readonly SV GAnimatedinteger targetX

Corresponds to attribute targetX on the given 'feConvolveMatrix' element.
readonly SV GAnimatedinteger targetY

Corresponds to attribute targetY on the given ‘feConvolveMatrix' element.
readonly SV GAnimatedEnumeration edgeM ode

Corresponds to attribute edgeM ode on the given ‘feConvolveMatrix' element. Takes one of the Edge Mode Types.
readonly SV GAnimatedL ength kernel UnitL engthX

Corresponds to attribute kernel UnitL ength on the given ‘feConvolveMatrix' el ement.
readonly SV GAnimatedL ength kernel UnitL engthY

Corresponds to attribute kernelUnitLength on the given ‘feConvolveMatrix' element.
readonly SV GAnimatedBoolean preserveAlpha

Corresponds to attribute preserveAlpha on the given 'feConvolveMatrix' element.

Interface SVGFEDiffuseLightingElement

The SVGFEDiffuseLightingElement interface corresponds to the ‘feDiffuseLighting' el ement.

IDL Definition

i nterface SVGFED ffuselLi ghti ngEl enent
SVGEl enent ,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAni matedString inil;
readonly attribute SVGAni mat edNunber surfaceScal e;
readonly attribute SVGAni mat edNunber di f f useConst ant;

h

Attributes
readonly SV GAnimatedString inl
Corresponds to attribute in on the given 'feDiffuseLighting' element.
readonly SV GAnimatedNumber surfaceScale
Corresponds to attribute surfaceScale on the given 'feDiffuseLighting' element.
readonly SV GAnimatedNumber diffuseConstant
Corresponds to attribute diffuseConstant on the given 'feDiffuseLighting' element.

Interface SVGFEDistantLightElement

The SVGFEDistantLightElement interface corresponds to the 'feDistantLight' element.

IDL Definition

i nterface SVGFED st ant Li ght El enent : SVCGEl enent {
readonly attribute SVGAni mat edNunber azi nut h;
readonly attribute SVGAni mat edNunmber el evati on;

H

Attributes
readonly SV GAnimatedNumber azimuth
Corresponds to attribute azimuth on the given 'feDistantLight' element.
readonly SVGAnimatedNumber elevation
Corresponds to attribute elevation on the given 'feDistantLight' element.

Interface SVGFEPointLightElement

The SV GFEPointLightElement interface corresponds to the 'fePointLight' element.
IDL Definition

i nterface SVGFEPoi ntLi ght El ement : SVGEl ement {
readonly attribute SVGAni mat edNunber x;
readonly attribute SVGAni mat edNunber vy;
readonly attribute SVGAni mat edNunber z;

b

Attributes
readonly SV GAnimatedNumber x
Corresponds to attribute x on the given 'fePointLight' el ement.
readonly SV GAnimatedNumber y
Corresponds to attribute y on the given 'fePointLight' element.
readonly SV GAnimatedNumber z
Corresponds to attribute z on the given ‘fePointLight' element.

Interface SVGFESpotLightElement

The SV GFESpotL ightElement interface corresponds to the 'feSpotLight' element.
IDL Definition

i nterface SVGFESpot Li ght El ement : SVCEl ement {
readonly attribute SVGAni mat edNunber Xx;
readonly attribute SVGAni mat edNunber vy;
readonly attribute SVGAni mat edNunber z;
readonly attribute SVGAni mat edNumber poi nt sAt X;
readonly attribute SVGAni mat edNunber poi ntsAtY;
readonly attribute SVGAni mat edNunmber poi nt sAt Z;
readonly attribute SVGAni mat edNunber specul ar Exponent ;
readonly attribute SVGAni mat edNunber |im ti ngConeAngl g;

I

Attributes

readonly SV GAnimatedNumber x

Corresponds to attribute x on the given 'feSpotLight' element.
readonly SV GAnimatedNumber y

Corresponds to attribute y on the given ‘feSpotLight' element.
readonly SV GAnimatedNumber z

Corresponds to attribute z on the given 'feSpotLight' element.
readonly SV GAnimatedNumber pointsAtX

Corresponds to attribute pointsAtX on the given 'feSpotLight' element.
readonly SV GAnimatedNumber pointsAtY

Corresponds to attribute pointsAtY on the given 'feSpotLight' element.
readonly SV GAnimatedNumber pointsAtZ

Corresponds to attribute pointsAtZ on the given 'feSpotLight' element.
readonly SV GAnimatedNumber specularExponent

Corresponds to attribute specularExponent on the given 'feSpotLight' element.
readonly SV GAnimatedNumber limitingConeAngle

Corresponds to attribute limitingConeAngle on the given 'feSpotLight' element.

Interface SVGFEDisplacementMapElement

The SV GFEDi splacementM apElement interface corresponds to the 'feDisplacementMap' element.
IDL Definition

i nterface SVGFED spl acenent MapEl enent
SVGEIl enent ,
SVGFilterPrimtiveStandardAttributes {

/] Channel Selectors

const unsigned short SVG _CHANNEL_UNKNOWN = O;
const unsigned short SVG CHANNEL_R = 1;
const unsigned short SVG CHANNEL_G = 2;
const unsigned short SVG CHANNEL_B = 3;
const unsigned short SVG CHANNEL_A = 4;
readonly attribute SVGAni matedString inil;
readonly attribute SVGAni mat edString in2;
readonly attribute SVGAni mat edNurber scal e;

readonly attribute SVGAni mat edEnunerati on xChannel Sel ector;
readonly attribute SVGAni mat edEnunerati on yChannel Sel ect or;

I

Definition group Channel Selectors
Defined constants

SVG_CHANNEL_UNKNOWN Thetypeis not one of predefined types. It isinvalid to attempt to define a new value of thistype or
to attempt to switch an existing value to this type.

SVG_CHANNEL_R Correspondsto value R.
SVG_CHANNEL_G Correspondsto value G.
SVG_CHANNEL_B Correspondsto value B.
SVG_CHANNEL_A Correspondsto value A.

Attributes
readonly SVGAnimatedString inl
Corresponds to attribute in on the given 'feDisplacementMap' el ement.
readonly SV GAnimatedString in2
Corresponds to attribute in2 on the given 'feDisplacementMap' element.
readonly SV GAnimatedNumber scale
Corresponds to attribute scale on the given 'feDisplacementMap' element.
readonly SV GA nimatedEnumeration xChannel Selector
Corresponds to attribute xChannel Selector on the given 'feDisplacementMap' element. Takes one of the Channel Selectors.
readonly SV GA nimatedEnumeration yChannel Selector
Corresponds to attribute yChannel Selector on the given ‘feDisplacementMap' element. Takes one of the Channel Selectors.

Interface SVGFEFloodElement

The SV GFEFloodElement interface corresponds to the 'feFlood' element.
IDL Definition

i nterface SVGFEFI oodEl enent
SVGEIl enent ,
SVGSt yl abl e,
SVGFilterPrimtiveStandardAttributes {

readonly attribute SVGAni mat edString inl;
b

Attributes
readonly SVGAnimatedString inl
Corresponds to attribute in on the given 'feBlend' element.

Interface SVGFEGaussianBlurElement

The SVGFEGaussianBlurElement interface corresponds to the 'feGaussianBlur' element.
IDL Definition

i nterface SVGFEGaussi anBl ur El enent
SVGEIl enent ,
SVGFilterPrimtiveStandardAttributes {

readonly attribute SVGAni matedString inl;
readonly attribute SVGAni mat edNunmber st dDevi ati onX;
readonly attribute SVGAni mat edNunmber st dDevi ati onY;

void setStdDeviation (in float stdDeviationX, in float stdDeviationY);
I

Attributes
readonly SVGAnimatedString inl
Corresponds to attribute in on the given 'feGaussianBlur' element.
readonly SV GAnimatedNumber stdDeviationX
Corresponds to attribute stdDeviation on the given ‘feGaussianBlur' element. Contains the X component of attribute stdDeviation.
readonly SVGAnimatedNumber stdDeviationY

Corresponds to attribute stdDeviation on the given ‘feGaussianBlur' element. Containsthe Y component (possibly computed
automatically) of attribute stdDeviation.

Methods
setStdDeviation
Sets the values for attribute stdDeviation.
Parameters

in float stdDeviationX The X component of attribute stdDeviation.
in float stdDeviationY The'Y component of attribute stdDeviation.

No Return Value
No Exceptions

Interface SVGFEImageElement

The SV GFEImageElement interface corresponds to the 'felmage' element.
IDL Definition

i nterface SVGFElI nageEl enent
SVGEl enent ,
SVGURI Ref er ence,
SVGE.angSpace,
SVGEXxt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTIr ansf or mabl e,
SVGFilterPrimtiveStandardAttributes {};

Interface SVGFEMergeElement

The SVGFEMergeElement interface corresponds to the 'feMerge' element.
IDL Definition

i nterface SVGFEMer geEl enent
SVGEl enent ,
SVGFilterPrimtiveStandardAttributes {};

Interface SVGFEMergeNodeElement
The SVGFEMergeNodeElement interface corresponds to the 'feMergeNode' element.

IDL Definition

i nterface SVGFEMer geNodeEl enent : SVCEl enent {
readonly attribute SVGAni matedString inl;
H

Attributes
readonly SVGAnimatedString inl
Corresponds to attribute in on the given 'SV GFEMergeNodeElement' element.

Interface SVGFEMorphologyElement

The SV GFEMorphol ogyElement interface corresponds to the 'feMorphology' element.
IDL Definition

i nterface SVGFEMor phol ogyEl enment
SVCGE! enent ,
SVGFilterPrimtiveStandardAttributes {

/'l Norphol ogy Operators

const unsigned short SVG MORPHOLOGY_OPERATOR_UNKNOWN
const unsigned short SVG MORPHOLOGY_OPERATOR ERCDE
const unsigned short SVG MORPHOLOGY_OPERATOR DI LATE

I n
NP O

readonly attribute SVGAni mat edString ini;

readonly attribute SVGAni mat edEnunerati on operator;

readonly attribute SVGAni mat edLength radi usX;

readonly attribute SVGAni mat edLengt h radi usY,;
b

Definition group Morphology Operators
Defined constants
SVG_MORPHOLOGY_OPERATOR_UNKNOWN Thetypeisnot one of predefined types. It isinvalid to attempt to define a new
value of thistype or to attempt to switch an existing value to this type.
SVG_MORPHOLOGY_OPERATOR_ERODE Corresponds to value erode.
SVG_MORPHOLOGY_OPERATOR_DILATE Correspondsto value dilate.
Attributes
readonly SVGAnimatedString inl
Corresponds to attribute in on the given ‘feMorphology' element.
readonly SV GAnimatedEnumeration operator
Corresponds to attribute operator on the given 'feMorphology' element. Takes one of the Morphology Operators.
readonly SV GAnimatedL ength radiusX

Corresponds to attribute radius on the given ‘feMorphology' element.

readonly SV GAnimatedL ength radiusY
Corresponds to attribute radius on the given ‘feMorphology' element.

Interface SVGFEOffsetElement

The SV GFEOffsetElement interface corresponds to the 'feOffset' element.

IDL Definition

interface SVGFEX f set El enent
SVGEIl enent,
SVGFilterPrimtiveStandardAttributes {

readonly attribute SVGAni matedString inl;
readonly attribute SVGAni mat edLengt h dx;
readonly attribute SVGAni mat edLengt h dy;

H

Attributes
readonly SV GAnimatedString inl
Corresponds to attribute in on the given 'feOffset’ element.
readonly SV GAnimatedL ength dx
Corresponds to attribute dx on the given 'feOffset' element.
readonly SV GAnimatedL ength dy
Corresponds to attribute dy on the given 'feOffset’ element.

Interface SVGFESpecularLightingElement

The SV GFESpecularLightingElement interface corresponds to the 'feSpecularLighting' element.

IDL Definition

i nterface SVGFESpecul ar Li ghti ngEl enent
SVCGE! enent ,
SVGFilterPrimtiveStandardAttributes {

readonly attribute SVGAni matedString inl;

readonly attribute SVGAni mat edNunber surfaceScal e;
readonly attribute SVGAni mat edNunber specul ar Const ant ;
readonly attribute SVGAni mat edNunber specul ar Exponent ;

I

Attributes
readonly SV GAnimatedString inl
Corresponds to attribute in on the given 'feSpecularLighting' element.
readonly SV GAnimatedNumber surfaceScale
Corresponds to attribute surfaceScal e on the given 'feSpecularLighting' element.
readonly SV GAnimatedNumber specularConstant
Corresponds to attribute specularConstant on the given 'feSpecularLighting' el ement.
readonly SV GAnimatedNumber specularExponent
Corresponds to attribute specularExponent on the given 'feSpecularLighting' e ement.

Interface SVGFETileElement
The SVGFETIleElement interface corresponds to the 'feTile' element.

IDL Definition

i nterface SVGFETI | eEl ement
SVGEl enent ,
SVGFilterPrimtiveStandardAttributes {

readonly attribute SVGAni matedString inil;
}

Attributes
readonly SVGAnimatedString inl
Corresponds to attribute in on the given 'feTile' element.

Interface SVGFETurbulenceElement
The SVGFETurbulenceElement interface corresponds to the ‘feTurbulence' element.

IDL Definition

i nterface SVGFETur bul enceEl enent
SVGEl enent
SVGFilterPrimtiveStandardAttributes {

/1 Turbul ence Types
const unsigned short SVG TURBULENCE TYPE_UNKNOMN
const unsigned short SVG TURBULENCE_TYPE_ FRACTALNO SE
const unsigned short SVG TURBULENCE_TYPE_TURBULENCE
/1 Stitch Options

const unsigned short SVG STI TCHTYPE_UNKNOMN
const unsigned short SVG _STI TCHTYPE_STI TCH
const unsigned short SVG STI TCHTYPE_NOSTI TCH

I |
A=Y

readonly attribute SVGAni mat edNurber baseFr equencyX;
readonly attribute SVGAni mat edNunber baseFr equencyY;
readonly attribute SVGAni nat edl nt eger nunmCct aves;
readonly attribute SVGAni mat edNurber seed;

readonly attribute SVGAni mat edEnuneration stitchTil es;
readonly attribute SVGAni mat edEnunerati on type;

I

Definition group Turbulence Types
Defined constants
SVG_TURBULENCE_TYPE_UNKNOWN The typeis not one of predefined types. It isinvalid to attempt to define a new
value of thistype or to attempt to switch an existing value to this type.
SVG_TURBULENCE_TYPE_FRACTALNOISE Correspondsto value fractalNoise.
SVG_TURBULENCE_TYPE_TURBULENCE Corresponds to value turbulence.
Definition group Stitch Options
Defined constants
SVG_STITCHTYPE_UNKNOWN The typeis not one of predefined types. It isinvalid to attempt to define a new value of thistype
or to attempt to switch an existing value to this type.
SVG_STITCHTYPE_STITCH Correspondsto value stitch.
SVG_STITCHTYPE_NOSTITCH Correspondsto value noStitch.
Attributes
readonly SV GAnimatedNumber baseFrequencyX
Corresponds to attribute baseFrequency X on the given 'feTurbulence' element.
readonly SV GAnimatedNumber baseFrequencyY

Corresponds to attribute baseFrequencyY on the given ‘feTurbulence' element.
readonly SV GAnimatednteger numOctaves
Corresponds to attribute numOctaves on the given 'feTurbulence' element.
readonly SV GAnimatedNumber seed
Corresponds to attribute seed on the given 'feTurbulence' element.
readonly SV GAnimatedEnumeration stitchTiles
Corresponds to attribute stitchTiles on the given 'feTurbulence' element. Takes one of the Stitching Options.
readonly SV GA nimatedEnumeration type
Corresponds to attribute type on the given 'feTurbulence' element. Takes one of the Turbulence Types.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

16 Interactivity

Contents

16.1 Introduction

16.2 Complete list of supported events

16.3 User interface events

16.4 Pointer events

16.5 Processing order for user interface events

16.6 The 'pointer-events' property

16.7 Magnification, zooming and panning

16.8 Cursors

o 16.8.1 Introduction to cursors

o 16.8.2 The 'cursor' property

o 16.8.3 The'cursor' element
16.9 DOM interfaces

16.1 Introduction

SV G content can be interactive (i.e., responsive to user-initiated events) by utilizing the following featuresin

the SV G language:

User-initiated actions such as button presses on the pointing device (e.g., amouse) or keyboard events

can cause animations or scripts to execute.

The user can initiate hyperlinks to new Web pages (see Links out of SV G content: the 'a element) by
actions such as mouse clicks when the pointing device is positioned over particular graphics el ements.

In many cases, depending on the value of the zoomAndPan attribute on the 'svg' element and on the
characteristics of the user agent, users are able to zoom into and pan around SV G content.

User movements of the pointing device can cause changes to the cursor that shows the current position

of the pointing device.

This chapter describes:

information about events, including under which circumstances events are triggered

file:///D|/Public/CR-SVG-20000802/indexlist.html

« how to indicate whether a given document can be zoomed and panned

« how to specify which cursorsto use

Related information can be found in other chapters:
« hyperlinks are discussed in Links

« scripting and event attributes are discussed in Scripting
o SVG'srelationship to DOM?2 eventsis discussed in Relationship with DOM 2 event model

e animation is discussed in Animation

16.2 Complete list of supported events

The following aspects of SV G are affected by events:

« Using SVG's Document Object Model (DOM), a script can register DOM 2 event listeners so that script
can be invoked when a given event occurs.

« SVGincludes event attributes on selected elements which define script that can be executed when a
given event occurs in association with the given element.

« SVG's animation elements can be defined to begin or end based on events.

The following table lists all of the events which are recognized and supported in SVG. The Event namein the
first column is the name to use within SV G's animation el ements to define the events which can start or end

animations. The DOM2 name in the third column is the name to use when defining DOM 2 event listeners. The
Event attribute name in the fifth column contains the corresponding name of the event attributes that can be
attached to elementsin the SV G language.

Event name Description DOM2 name [DOM2 category| Event attribute
name
focusin Occurs when an DOMFocusin |UIEvent onfocusin

element receives
focus, such as when
a 'text' becomes

sel ected.

focusout Occurs when an DOM FocusOut|U| Event onfocusout
element loses focus,
such as when a 'text’

becomes unsel ected.

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-Registration-interfaces
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-Registration-interfaces
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-UIEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-UIEvent

activate

Occurs when an
element is activated,
for instance, thru a
mouse click or a
keypress. A
numerical argument
is provided to give
an indication of the
type of activation
that occurs. 1 for a
simple activation
(e.g. asmpleclick
or Enter), 2 for
hyperactivation (for
instance a double
click or Shift Enter).

DOMACctivate

UlEvent

onactivate

click

Occurs when the
pointing device
button is clicked
over an e ement. A
click isdefined asa
mousedown and
mouseup over the
same screen
location. The
sequence of these
eventsis:
nmousedown,
nmouseup, cl i ck.
If multiple clicks
occur at the same
screen location, the
sequence repeats
with thedet ai |
attribute
incrementing with
each repetition.

(same)

[MouseEvent

onclick

mousedown

Occurs when the
pointing device

button is pressed
over an element.

(same)

M ouseEvent

onmousedown

mouseup

Occurs when the
pointing device
button is released
over an € ement.

(same)

[MouseEvent

onmouseup

mouseover

Occurs when the
pointing deviceis
moved onto an

element.

(same)

[MouseEvent

ONMOUSEQVEr

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-UIEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MouseEvent

mousemove

Occurs when the
pointing deviceis
moved whileitis
over an € ement.

(same)

[MouseEvent

onmousemove

mouseout

Occurs when the
pointing deviceis
moved away from
an element.

(same)

[MouseEvent

onmouseout

DOM SubtreeM odified

Thisisagenera
event for
notification of all
changesto the
document. It can be
used instead of the
more specific events
listed below. (The
normative definition
of thisevent isthe
description in the
DOM?2

specification.)

(same)

[MutationEvent

none

DOMNodel nserted

Fired when a node
has been added as a
child of another
node. (The
normative definition
of thisevent isthe
description in the
DOM2

specification.)

(same)

[MutationEvent

none

DOMNodeRemoved

Fired when anode is
being removed from
another node. (The
normative definition
of thisevent isthe
description in the
DOM2

specification.)

(same)

[MutationEvent

none

DOMNodeRemovedFromDocument

Fired when anodeis
being removed from
a document, either
through direct
removal of the Node
or removal of a
subtreein whichitis
contained. (The
normative definition
of thisevent isthe
description in the
DOM2

specification.)

(same)

M utationEvent

none

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent

DOM Nodel nsertedl ntoDocument

Fired when anode is
being inserted into a
document, either
through direct
insertion of the
Node or insertion of
asubtree in which it
iscontained. (The
normative definition
of thisevent isthe
description in the
DOM2

specification.)

(same)

MutationEvent

none

DOMACttrModified

Fired after an
attribute has been
modified on a node.
(The normative
definition of this
event isthe
description in the
DOM2

specification.)

(same)

M utationEvent

none

DOM CharacterDataM odified

Fired after
CharacterData
within a node has
been modified but
the node itself has
not been inserted or
deleted. (The
normative definition
of thisevent isthe
description in the
DOM2

specification.)

(same)

M utationEvent

none

SV GLoad

Theeventis
triggered at the point
at which the user
agent has fully
parsed the element
and its descendants
and is ready to act
appropriately upon
that element, such as
being ready to
render the element
to the target device.
Referenced external

resources that are

required must be
|loaded, parsed and

(same)

none

onload

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-MutationEvent

ready to render
before the event is
triggered. Optional
external resources
are not required to
be ready for the
event to be
triggered.

SV GUnload

Only applicable to
outermost 'svg'

elements. The
unload event occurs
when the DOM
implementation
removes a document
from awindow or
frame.

(same)

none

onunload

SV GAbort

The abort event
occurs when page
loading is stopped
before an element
has been allowed to
load compl etely.

(same)

none

onabort

SV GError

The error event
occurs when an
element does not
load properly or
when an error occurs
during script
execution.

(same)

none

onerror

SV GResize

The resize event
occurs when a
document view is
resized.

(same)

none

onresize

SV GScroll

The scroll event
occurs when a
document view is
scrolled or panned.

(same)

none

onscroll

SVGZoom

Occurs when the
document changes
its zoom level based
on user interaction.
(Only applicable to
outermost 'svg'

elements.)

none

none

onzoom

beginEvent Occurs when an none none onbegin
animation element
begins. For details,
see the description
of Interface
TimeEvent in the
SMIL Animation

specification.

endEvent Occurs when an none none onend
animation element
ends. For details, see
the description of
Interface TimeEvent

inthe SMIL
Animation
specification.
repeatEvent Occurs when an none none onrepeat

animation e ement
repeats. It israised
each time the
element repeats,
after the first
iteration. For details,
see the description
of Interface
TimeEvent in the
SMIL Animation

specification.

Asin DOM2 Key events, the SV G specification does not provide akey event set. An event set designed for use
with keyboard input devices will beincluded in alater version of the DOM and SV G specifications.

A load event is dispatched only to the element to which the event applies; it is not dispatched to its ancestors.
For example, if an 'image’ element and its parent 'g’ element both have event listeners for load events, when the

'image’ element has been loaded, only its event listener will beinvoked. (The'g' element's event listener will
indeed get invoked, but the invocation will happen when the 'q' itself has been loaded.)

Details on the parameters passed to event listeners for the event types from DOM2 can be found in the DOM 2
specification. For other event types, the parameters passed to event listeners are described elsewhere in this
specification.

16.3 User interface events

On user agents which support interactivity, it is common for authors to define SVG document such that they are
responsive to user interface events. Among the set of possible user events are pointer events, keyboard events,

and document events.

In response to user interface (Ul) events, the author might start an animation, perform a hyperlink to another
Web page, highlight part of the document (e.g., change the color of the graphics elements which are under the

http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-eventgroupings-keyevents

pointer), initiate a "roll-over" (e.g., cause some previousy hidden graphics elements to appear near the pointer)
or launch a script which communicates with a remote database.

For all Ul event-related features defined as part of the SV G language via event attributes or animation, the event
model corresponds to the event bubbling model described in DOM2 [DOM2-EVBUBBLE]. The event capture
model from DOM2 [DOM2-EV CAPTURE] can only be established from DOM method calls.

16.4 Pointer events

User interface events that occur because of user actions performed on a pointer device are called pointer events.

Many systems support pointer devices such as amouse or trackball. On systems which use a mouse, pointer
events consist of actions such as mouse movements and mouse clicks. On systems with a different pointer
device, the pointing device often emulates the behavior of the mouse by providing a mechanism for equivalent
user actions, such as a button to press which is equivalent to a mouse click.

For each pointer event, the SV G user agent determines the target element of a given pointer event. The target
element is the topmost graphics element whose relevant graphical content is under the pointer at the time of the
event. (See property 'pointer-events for a description of how to determine whether an element's relevant
graphical content is under the pointer, and thus in which circumstances that graphic element can be the target
element for a pointer event.) When an element is not displayed (i.e., when the 'display’ property on that element
or one of its ancestors has a value of none), that element cannot be the target of pointer events.

The event is either initially dispatched to the target element, to one of the target element’s ancestors, or not
dispatched, depending on the following:

« If there are no graphics elements whose relevant graphics content is under the pointer (i.e., thereisno
target element), the event is not dispatched.

« Otherwise, thereisatarget element. If there is an ancestor of the target element which has specified an
event handler with event capturing [DOM2-EV CAPTURE] for the given event, then the event is

dispatched to that ancestor element.

« Otherwise, if the target element has an appropriate event handler for the given event, the event is
dispatched to the target element.

« Otherwise, each ancestor of the target element (starting with itsimmediate parent) is checked to see if it
has an appropriate event handler. If an ancestor is found with an appropriate event handler, the event is
dispatched to that ancestor element.

o Otherwise, the event is discarded.

When event bubbling [DOM2-EVBUBBLE] is active, bubbling occurs up to all direct ancestors of the target
element. Descendant elements receive events before their ancestors. Thus, if a'path’ element isachild of a'g'
element and they both have event listenersfor click events, then the event will be dispatched to the 'path’
element before the 'q' element.

When event capturing [DOM2-EV CAPTURE] is active, ancestor el ements receive events before their
descendants.

After an event isinitially dispatched to a particular element, unless an appropriate action has been taken to
prevent further processing (e.g., by invoking the preventCapture() or preventBubble() DOM method call), the
event will be passed to the appropriate event handlers (if any) for that element's ancestors (in the case of event

bubbling) or that element's descendants (in the case of event capture) for further processing.

16.5 Processing order for user interface events

The processing order for user interface eventsis as follows:

« Event handlers assigned to the topmost graphics element under the pointer (and the various ancestors of
that graphics element via potential event bubbling [DOM2-EVBUBBLE]) receive the event first. If none
of the activation event handlers take an explicit action to prevent further processing of the given event
(e.g., by invoking the preventDefault() DOM method), then the event is passed on for:

« Processing of any relevant dynamic pseudo-classes (i.e., :hover, :active and :focus)
[CSS2-DYNPSEUDQ], after which the event is passed on for:

« (For those user interface events which invoke hyperlinks, such as mouse clicks in some user agents)
Link processing. If ahyperlink isinvoked in response to a user interface event, the hyperlink typically

will disable further activation event processing (e.g., often, the link will define a hyperlink to another
Web page). If link processing does not disable further processing of the given event, then the event is
passed on for:

« (For those user interface events which can select text, such as mouse clicks and drags on 'text' elements)
Text selection processing. When atext selection operation occurs, typicaly it will disable further
processing of the given event; otherwise, the event is passed on for:

« Document-wide event processing, such as user agent facilities to allow zooming and panning of an SVG
document fragment.

16.6 The 'pointer-events' property

In different circumstances, authors may want to control under what circumstances particular graphic elements
can become the target of pointer events. For example, the author might want a given element to receive pointer
events only when the pointer is over the stroked perimeter of a given shape. In other cases, the author might
want a given element to ignore pointer events under all circumstances so that graphical elements underneath the
given element will become the target of pointer events.

For example, suppose acircle with a'stroke' of red (i.e., the outline is solid red) and a fill' of none (i.e., the
interior is not painted) is rendered directly on top of arectangle with a 'fill' of blue. The author might want the

circleto to be the target of pointer events only when the pointer is over the perimeter of the circle. When the
pointer is over theinterior of the circle, the author might want the underlying rectangle to be the target element
of pointer events.

The 'pointer-events' property specifies under what circumstances a given graphics element can be the target
element for a pointer event. It affects the circumstances under which the following are processed:

« user interface events such as mouse clicks

« dynamic pseudo-classes (i.e., :hover, :active and :focus) [CSS2-DY NPSEUDO]

« hyperlinks (see Links out of SV G content: the 'a’ element)

'pointer-events

Value: visiblePainted | visibleFill | visibleStroke | visibleFillStroke | visible |
painted | fill | stroke | fillstroke | @l | none | inherit

Initial: visiblePainted
Appliesto: container elements and graphics elements
Inherited: yes
Percentages. N/A
Media: visual
Animatable: yes
visiblePainted

The given element can be the target element for pointer events when the 'visibility' property is set to

visible and when the pointer is over a"painted” area. The pointer is over apainted areaif it is over the
interior (i.e., fill) of the element and the 'fill' property is set to a value other than 'non€' or it is over the

perimeter (i.e., stroke) of the element and the 'stroke' property is set to a value other than 'none'.
visibleFill
The given element can be the target element for pointer events when the 'visibility' property is set to

visible and when the pointer is over the interior (i.e., fill) of the element. The value of the 'fill' property
does not effect event processing.

visibleStroke
The given element can be the target element for pointer events when the 'visibility' property is set to
visible and when the pointer is over the perimeter (i.e., stroke) of the element. The value of the 'stroke'
property does not effect event processing.

visible
The given element can be the target element for pointer events when the 'visibility' property is set to

visible . and the pointer is over either the interior (i.e., fill) or the perimeter (i.e., stroke) of the element.
The values of the 'fill' and 'stroke' do not effect event processing.

painted
The given element can be the target element for pointer events when the pointer is over a"painted” area.
The pointer is over apainted areaif it isover the interior (i.e., fill) of the element and the fill' property is
set to avalue other than 'none' or it is over the perimeter (i.e., stroke) of the element and the 'stroke’
property is set to avalue other than 'none’. The value of the 'visibility' property does not effect event
processing.

fill
The given element can be the target element for pointer events when the pointer is over the interior (i.e.,
fill) of the element. The values of the fill' and 'visibility' properties do not effect event processing.

stroke

The given element can be the target element for pointer events when the pointer is over the perimeter
(i.e., stroke) of the element. The values of the 'stroke’ and 'visibility' properties do not effect event

processing.

al

The given element can be the target element for pointer events whenever the pointer is over either the
interior (i.e., fill) or the perimeter (i.e., stroke) of the element. The values of the 'fill’, 'stroke' and

'visibility' properties do not effect event processing.
none

The given element does not receive pointer events.

For text elements, hit detection is performed on a character cell basis. The values visiblePainted, visibleFill,
visibleStroke and visibleFill Stroke are al defined to be equivalent to the value visible, and the values painted,
fill, stroke and fill Stroke are all defined to be equivalent to the value all.

For raster elements, hit detection can be defined to be dependent on whether the pixel under the pointer isfully
transparent. For any of the values visiblePainted, visibleFill, visibleStroke and visibleFill Stroke, the raster
element receives the event if the 'visibility' property is set to visible and the pixel under the pointer is not fully
transparent. For avalue of visible, the raster element receives the event if the 'visibility' property is set to visible
even if the pixel under the pointer is fully transparent. For any of the values painted, fill, stroke and fillStroke,
the raster element receives the event if the pixel under the pointer is not fully transparent, no matter what the
valueisfor the'visibility' property. For avaue of al, the raster element receives the event even if the pixel

under the pointer isfully transparent, no matter what the value is for the 'visibility' property.

16.7 Magnification, zooming and panning

M agnification represents a complete, uniform transformation on an SV G document fragment, where the
magnify operation scales al graphical elements by the same amount. A magnify operation has the effect of a
supplemental scale and translate transformation placed at the outermost level on the SV G document fragment
(i.e., outside the outermost 'svg' element).

Zooming represents a (potentially non-uniform) scale transformation on an SVG document fragment in
response to a user interface action. All elements which are specified in user coordinates will scale uniformly,
but elements which use unit identifiers to define coordinates or lengths may be transformed differently. A zoom

operation has the effect of a supplemental scale and trand ate transformation inserted into the transformation
hierarchy between the outermost 'svg’ element and its children, asif an extra'g' element enclosed all of the

children and that 'g' element specified a transformation to achieve the desired zooming effect.

Panning represents atrandation (i.e., a shift) transformation on an SV G document fragment in responseto a
user interface action.

SV G user agents that operate in interaction-capable user environments are required to support the ability to
magnify, zoom and pan.

The outermost 'svg' element in an SV G document fragment has attribute zoomAndPan, which takes the possible
values of disable, magnify and zoom, with the default being magnify.

If disable, the user agent shall disable any zooming, magnification and panning controls and not allow the user
to magnify, zoom or pan on the given document fragment.

If magnify, in environments that support user interactivity, the user agent shall provide controls to alow the user
to perform a"magnify" operation on the document fragment.

If zoom, in environments that support user interactivity, the user agent shall provide controls to allow the user to
perform a'zoom" operation on the document fragment.

If azoomAndPan attribute is assigned to an inner 'svg' element, the zoomAndPan setting on the inner 'svg’
element will have no effect on the SV G user agent.

Animatable: no.

16.8 Cursors

16.8.1 Introduction to cursors

Some interactive display environments provide the ability to modify the appearance of the pointer, which isalso
known as the cursor. Three types of cursors are available:

« Standard built-in cursors
« Platform-specific custom cursors
« Platform-independent custom cursors

The 'cursor' property is used to specify which cursor to use. The 'cursor' property can be used to reference

standard built-in cursors by specifying a keyword such as crosshair or a custom cursor. Custom cursors are
referenced viaa <uri> and can point to either an external resource such as a platform-specific cursor file or to a
‘cursor' element, which can be used to define a platform-independent cursor.

16.8.2 The 'cursor' property

‘cursor'
Value: [[<uri> ,]* [auto | crosshair | default | pointer | move | e-resize | ne-resize | nw-resize |
n-resize | se-resize | sw-resize | s-resize | w-resize| text | wait | help]] | inherit
Initial: auto
Appliesto: container elements and graphics elements
Inherited: yes
Percentages. N/A
Media: visua, interactive

Animatable: yes

This property specifies the type of cursor to be displayed for the pointing device. Values have the following
meanings.

auto

The UA determines the cursor to display based on the current context.
crosshair

A simple crosshair (e.g., short line segments resembling a"+" sign).
default

The platform-dependent default cursor. Often rendered as an arrow.
pointer

The cursor is a pointer that indicates alink.
move

Indicates something is to be moved.
e-resize, ne-resize, nw-resize, n-resize, se-resize, Sw-resize, s-resize, w-resize

Indicate that some edge is to be moved. For example, the 'se-resize’ cursor is used when the movement
starts from the south-east corner of the box.

text

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Indicates text that can be selected. Often rendered as an |-bar.
wait

Indicates that the program is busy. Often rendered as awatch or hourglass.
help

Help isavailable for the object under the cursor. Often rendered as a question mark or a balloon.
<uri>

The user agent retrieves the cursor from the resource designated by the URI. If the user agent cannot
handle the first cursor of alist of cursors, it shall attempt to handle the second, etc. If the user agent
cannot handle any user-defined cursor, it must use the generic cursor at the end of the list.

P { cursor : url("nything.cur"), url("second.csr"), text; }

The 'cursor' property for SVG isidentical to the ‘cursor' property defined in the "Cascading Style Sheets (CSS)
level 2" specification [CSS2], with the exception that SV G user agents must support cursors defined by the

‘cursor' element.

16.8.3 The 'cursor' element

The 'cursor' element can be used to define a platform-independent custom cursor. A recommended approach for
defining a platform-independent custom cursor isto create a PNG [PNGO01] image and define a "cursor' element

that references the PNG image and identifies the exact position within the image which is the pointer position
(i.e., the hot spot).

<! ELEMENT cursor (%lescTitl eMetadata;) >
<l ATTLI ST cursor
st dAttrs;
%l i nkRef Attrs:;
xlink: href %JRI; #REQUI RED
Ot est Attrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
x % Coordi nate; #l MPLI ED
y % Coordi nate; #l MPLI ED >

Attribute definitions:

X = "<coordinate>"
The x-coordinate of the position in the cursor's coordinate system which represents the precise position
that is being pointed to.

If the attribute is not specified, the effect is asif avalue of "0" were specified.
Animatable: yes.

y = "<coordinate>"

The y-coordinate of the position in the cursor's coordinate system which represents the precise position
that is being pointed to.

If the attribute is not specified, the effect isas if avalue of "0" were specified.
Animatable: yes.

xlink:href = "<uri>"

A URI reference to the file or element which provides the image of the cursor.
Animatable: yes.

Attributes defined elsewhere:
%ostdAttrs;, YotestAttrs;, YoxlinkRef Attrs;, external ResourcesRequired.

SV G user agents are required to support PNG format images as targets of the xlink:href property.

16.9 DOM interfaces

The following interfaces are defined below: SV GCursorElement.

Interface SVGCursorElement

The SV GCursorElement interface corresponds to the 'cursor' element.
IDL Definition

i nt erface SVGCur sor El ement
SVCGEl enent
SVGEURI Ref er ence,
SVGTest s,
SVGEXt er nal Resour cesRequi red {

readonly attribute SVGAni mat edLength x;
readonly attribute SVGAni mat edLength v;

};

Attributes
readonly SV GAnimatedL ength x
Corresponds to attribute x on the given ‘cursor' element.
readonly SVGAnimatedLength y
Corresponds to attribute y on the given ‘cursor’ element.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

17 Linking

Contents

o 17.1Linksout of SVG content: the 'a element

o 17.2 Linking into SVG content: URI fragments and SV G views
o 17.2.1 Introduction: URI fragments and SV G views
o 17.2.2 SVG fragment identifiers
o 17.2.3 Predefined views: the 'view' element

o 17.3 DOM interfaces

17.1 Links out of SVG content: the 'a' element

SVG providesan 'a’ element, analogousto HTML's'a’ element, to indicate hyperlinks; those parts of the drawing
which when clicked on will cause the current browser frame to be replaced by the contents of the URL specified
in the href attribute.

Example link01 assigns a hyperlink to an ellipse.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'

“http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="5cnt hei ght="3cn >

<desc>Exanpl e [inkO1 - a hyperlink on an ellipse

</ desc>
<rect x=".0lcnt y=".0lcni w dth="4.98cni hei ght="2.98cnt
style="fill:none; stroke:blue"/>

<a xlink:href="http://ww.w3.o0rg">
<ellipse cx="2.5cm cy="1.5cm rx="2cm ry="1lcni
style="fill:red"/>
</ a>
</ svg>

file:///D|/Public/CR-SVG-20000802/indexlist.html

Example link01

View this example as SV G (SV G-enabled browsers only)

If the above SV G fileisviewed by a user agent that supports both SV G and HTML, then clicking on the ellipse
will cause the current window or frame to be replaced by the W3C home page.

<IENTITY % akExt "" >
<! ELEMENT a (#PCDATA| desc| ti tl e| met adat a| def s|

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| vi ew] swi tch| a| al t d yphDef |
script|style|synbol | marker| cli pPat h| mask|

| i near Gradi ent | radi al G adi ent |pattern|filter|cursor|font|
ani_ mat e| set | ani mat eMot i on| ani mat eCol or | ani nat eTr ansf or nj
color-profile|font-face

Y%ceExt; Y%aExt;)* >

<I ATTLI ST a
st dAttrs:

xm ns: xl i nk CDATA #FI XED "htt p://ww. w3. or g/ 1999/ xI| i nk"
xlink:type (sinple|extended|locator]|arc) #FIXED "sinple"
rol e CDATA #| MPLI ED

arcr ol e CDATA #l| MPLI ED

title CDATA #l MPLI ED

show (new repl ace) 'replace'
act uat e (onRequest | onLoad) #FI XED ' onRequest’

xlink:
xlink:
xl i nk:
xli nk:
xl i nk:
xlink:

href %JRl; #REQUI RED

% est Attrs:;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

cl ass % assLi st; #l MPLI ED
style %&tyl eSheet; #l MPLI ED
o%°r esent ati onAttri butes-All;

transf orm %r ansf ornlLi st ; #l MPLI ED

%gr aphi csEl enent Event s;

target 9%. nkTarget; #lMPLIED >

Attribute definitions:

file:///D|/Public/CR-SVG-20000802/images/linking/link01.svg

xmins [:prefix] = "resource-name"

Standard XML attribute for identifying an XML namespace. This attribute makes the XLink [XLink]
namespace available to the current element. Refer to the "Namespaces in XML" Recommendation

[XML-NS].
Animatable: no.

xlink:type = 'simplée’
Identifies the type of XLink being used. For hyperlinksin SVG, only simple links are available. Refer to
the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:role = '<uri>'

A URI reference that identifies some resource that describes the intended property. When no valueis

supplied, no particular role value isto be inferred. Refer to the "XML Linking Language (XLink)"
[XLink].
Animatable: no.

xlink:arcrole = '<uri>'

A URI reference that identifies some resource that describes the intended property. The arcrole attribute
corresponds to the [RDF] notion of a property, where the role can be interpreted as stating that

"starting-resource HAS arc-role ending-resource.” This contextual role can differ from the meaning of an
ending resource when taken outside the context of this particular arc. For example, aresource might
generically represent a"person,” but in the context of a particular arc it might have the role of "mother"
and in the context of adifferent arc it might have the role of "daughter.” When no value is supplied, no
particular role value isto be inferred. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:title = '<string>'
Human-readabl e text describing the link. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:show = 'new | replace’

Indicates whether, upon activation of the link, a new view is created for the target of the link or whether
the contents of the view are replaced by the target of the link. Refer to the "XML Linking Language

(XLink)" [XLink].
Animatable: no.

xlink:actuate = 'onRequest’

Indicates whether the contents of the referenced object are incorporated upon user action or automatically
(i.e., without user action). Refer to the "XML Linking Language (XLink)" [XLink].

Animatable: no.
xlink:href = "<uri>"

The location of the referenced object, expressed as a URI reference. Refer to the "XML Linking Language
(XLink)" [XLink].
Animatable: yes.

target = "<frame-target>"

This attribute has applicability when the current SV G document is used as part of an HTML [HTMLA4] or
XHTML [XHTML] parent document which defines multiple frames. This attribute specifies the name of
an HTML or XHTML frame into which a document is to be opened when the hyperlink is activated. For

more information, refer to the appropriate HTML or XHTML specifications.
Animatable: yes.

Attributes defined elsewhere:

%stdAttrs; %langSpaceAttrs;, class, transform, %graphicsElementEvents;, YetestAttrs;,
external ResourcesRequired style, %PresentationAttributes-All:.

17.2 Linking into SVG content: URI fragments and SVG
views

17.2.1 Introduction: URI fragments and SVG views

On the Internet, resources are identified using URIs (Uniform Resource [dentifiers) [URI]. For example, an SVG
file called MyDrawing.svg located at http://example.com might have the following URI:

htt p:// exanpl e. coml MyDr awi ng. svg

A URI can also address a particular element within an XML document by including a URI fragment identifier as
part of the URI. A URI which includes a URI fragment identifier consists of an optional base URI, followed by a
"#"' character, followed by the URI fragment identifier. For example, the following URI can be used to specify the
element whose ID is"Lamppost” within file MyDrawing.svg:

htt p:// exanpl e. coml MyDr awi ng. svg#Lanppost

Because SV G content often represents a picture or drawing of something, acommon need isto link into a
particular view of the document, where a view indicates the initial transformations so asto present a closeup of a
particular section of the document.

17.2.2 SVG fragment identifiers

To link into a particular view of an SV G document, the URI fragment identifier needs to be a correctly formed
SVG fragment identifier. An SV G fragment identifier defines the meaning of the "selector” or "fragment
identifier" portion of URIsthat locate resources of MIME mediatype "image/svg-xml".

An SV G fragment identifier can comein three forms:

« Shorthand bare name form of addressing (e.g., MyDrawing.svg#MyView). Thisform of addressing, which
allows addressing an SVG element by its 1D, is compatible with the fragment addressing mechanism for
older versions of HTML and the shorthand bare name formulation in "XML Pointer Language (X Pointer)"
[XPTR]. (The bare name form of addressing #MyElement is equiva ent to the X Pointer formulation

#xpointer(id'MyView")).)

« XPointer-compatible ID reference (e.g., MyDrawing.svg#xpointer(id('MyView")). This form of
addressing, which also allows addressing an SV G element by its 1D, is compatible with the syntax for
referencing IDsin "XML Pointer Language (XPointer)" [XPTR].

« SVG view specification (e.g., MyDrawing.svg#svgView(viewBox(0,200,1000,1000))). This form of
addressing specifies the desired view of the document (e.g., the region of the document to view, the initial
zoom level) completely within the SV G fragment specification. The contents of the SVG view
specification are the five parameter specifications, viewBox(...), preserveAspectRatio(...), transform(...),

zoomAndPan(...) and viewTarget(...), whose parameters have the same meaning as the corresponding
attributes on a'view' element.

An SV G fragment identifier is defined as follows:

SVGFragnent I dentifier ::= BareNane |

XPoi nt er | DRef |

SVGVi ewSpec
Bar eNane ::= XM._Nane
XPointerlI DRef ::= "xpointer(id('" XM._Nane '))'
SVGVi ewSpec ::= 'svgView(' SVGViewAttributes ')’
SVGVi ewAttributes ::= SVGViewAttribute |

SVGVi ewAttribute ';' SVGVi ewAttri butes

SVGVi ewAttri bute ::= viewBoxSpec |

preserveAspect Rati oSpec |

t ransf or nSpec |

enabl eZoomAndPanCont r ol sSpec |
vi ewTar get Spec

vi ewBoxSpec ::= "viewBox(' X','" Y '," Wdth '," Height ")’

X 1 Number

Y @ Nunber

Wdth ::= Nunber
Hei ght ::= Nunber

preserveAspect Rati oSpec = 'preserveAspectRati o(' AspectParans ')’

Aspect Parans ::= Aspect Val ue |
AspectValue ', MeetOrSlice
AspectValue ::= "none' | "xMnYMn' | "xMnYMd" | 'xMnYMax' |
"XMdYMn' | 'xMdyYMd" | 'xMdYMax' |
"xMaxYM n' | "xMaxYM d' | ' xMaxYMax'
MeetOrSlice ::= "nmeet' | 'slice'
Hei ght ::= Nunber

transfornSpec ::= "transform(' TransfornParans ')’

transfornSpec ::="'zoomAndPan(' TrueOrFalse ')’

TrueOrFalse ::= "true' | 'false’

vi ewTar get Spec ::= 'viewlarget(' XM._Nane ')’

where;
[]
[]

XML_Nameisan XML name (i.e., matches the name formulation rulesin XML 1.0).
Number isareal number.

The parameter values for viewBoxSpec corresponds to the parameter values for the viewBox attribute on
the 'svg' element. For example, viewBox(0,0,200,200).

The parameter values for preserveA spectRatioSpec corresponds to the parameter values for the
preserveAspectRatio attribute on the 'svg’ element. For example, preserveAspectRatio(xMidY Mid).

The parameter values for transformSpec corresponds to the parameter values for the transform attribute
that is available on many SV G elements. For example, transform(matrix(2 0 0 2 10 15)).

The parameter values for transformSpec corresponds to the parameter values for the transform attribute
that is available on many SV G elements. For example, transform(matrix(2 0 0 2 10 15)).

The parameter values for enableZoomAndPanControl sSpec corresponds to the parameter values for the
zoomAndPan attribute on the 'svg' element. For example, zoomAndPan(false).

The parameter values for viewTargetSpec corresponds to the parameter values for the viewTarget attribute
on the 'view' element. For example, viewTarget(MyElementID).

Spaces are not alowed in fragment specifications; thus, commas are used to separate numeric values within an
SVG view specification (e.g., #svgView(viewBox(0,0,200,200))) and semicolons are used to separate attributes
(e.g., #svgView(viewBox(0,0,200,200); preserveA spectRatio(none))).

When a source document performs a hyperlink into an SVG document viaan HTML [HTML4] anchor el ement
(i.e, <ahref=...> element in HTML) or an XLink specification [XLINK], then the SVG fragment identifier
specifiesthe initial view into the SVG document, as follows:

If no SVG fragment identifier is provided (e.g, the specified URI did not contain a"#" character, such as
MyDrawing.svg), then theinitial view into the SV G document is established using the view specification
attributes (i.e., viewBox, etc.) on the outermost 'svg' element.

If the SV G fragment identifier addresses a'view' element within an SVG document (e.g.,
MyDrawing.svg#MyView or MyDrawing.svg#xpointer(id('MyView'))) then the closest ancestor 'svg'
element is displayed in the viewport. Any view specification attributes included on the given 'view'
element override the corresponding view specification attributes on the closest ancestor 'svg' element.

If the SV G fragment identifier addresses any element other than a'view' element, then the document
defined by the closest ancestor 'svg' element is displayed in the viewport using the view specification
attributes on that 'svg' element.

17.2.3 Predefined views: the 'view' element

The'view' element is defined as follows:

<IENTITY % vi enExt "" >
<!l ELEMENT vi ew (%lescTi t| eMet adat a; Wi ewext;) >

<! ATTLI ST vi ew
YstdAtLtrs;
ext er nal Resour cesRequi r ed %Bool ean; #l VPLI ED
vi ewBox %W/ ewBoxSpec; #l MPLI ED
preserveAspect Rati o %°reserveAspect Rati oSpec; 'xM dYM d neet’
zoomAndPan (disable | magnify | zoom 'nmagnify’
vi ewTar get CDATA #l MPLI ED >

Attribute definitions:
viewTarget = "XML_Name [XML_NAME]*"

Indicates the target object associated with the view. If provided, then the target element(s) will be
highlighted.
Animatable: no.

Attributes defined elsawhere:
%stdAttrs;, viewBox, preserveAspectRatio, zoomAndPan external ResourcesRequired.

17.3 DOM interfaces

The following interfaces are defined below: SV GAElement, SVGViewElement.

Interface SVGAElement

The SVGAElement interface corresponds to the 'a’ element.
IDL Definition

i nterface SVGAEl enent :
SVCGEI enent
SVGAURI Ref er ence,
SVGTlest s,
SVG.angSpace,
SVCGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events: : Event Target {

readonly attribute SVGAni matedString target;
3

Attributes
readonly SV GAnimatedString target
Corresponds to attribute target on the given 'a element.

Interface SVGViewElement
The SVGViewElement interface corresponds to the 'view' element.

IDL Definition

i nterface SVGVi ewkl enent
SVGEl enent ,
SVCGEXt er nal Resour cesRequi r ed,
SVGFi t ToVi ewBox,
SV&ZoomAndPan {

attri bute SVCGEl enent vi ewTar get ;
/1l raises DOVException on setting

b

Attributes
SVGElement viewTarget
Corresponds to attribute viewTarget on the given 'view' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the nodeis
readonly.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

18 Scripting

Contents

o 18.1 Specifying the scripting language

o 18.1.1 Specifying the default scripting language

0 18.1.2 Loca declaration of a scripting lanqguage

o 18.2 The 'script' element
« 18.3 Event handling

« 18.4 Event attributes

« 18.5 DOM interfaces

18.1 Specifying the scripting language

18.1.1 Specifying the default scripting language

The contentScriptType attribute on the 'svg' element specifies the default scripting language for the given document
fragment.

. contentScriptType = "%ContentType;"

I dentifies the default scripting language for the given document. This attribute sets the scripting language
used to process the value strings in event attributes. The value %oContentType; specifies amediatype, per

[RFC2045]. The default value is "text/ecmascript”.
Animatable: no.

18.1.2 Local declaration of a scripting language

It is also possible to specify the scripting language for each individual 'script’ element by specifying atype attribute
on the 'script’ element.

18.2 The 'script' element

A 'script’ element is equivalent to the 'script’ element in HTML and thus is the place for scripts (e.g., ECMA Script).
Any functions defined within any 'script’ element have a "global" scope across the entire current document.

Example scriptOl1 definesafunctionci rcl e_cl i ck which is called by the onclick event attribute on the 'circle
element. The drawing below on the left isthe initial image. The drawing below on the right shows the result after

file:///D|/Public/CR-SVG-20000802/indexlist.html

clicking on the circle.

Note that this example demonstrates the use of the onclick event attribute for explanatory purposes. The example
presupposes the presence of an input device with the same behavioral characteristics as a mouse, which will not
always be the case. To support the widest range of users, the onactivate event attribute should be used instead of the
onclick event attribute.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
“http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTD/ svg- 20000802. dt d" >
<svg wi dt h="6cnt hei ght="5cm' vi ewBox="0 0 600 500">
<desc>Exanpl e script0Ol - invoke an ECMAScri pt function froman onclick event
</ desc>
<l-- ECMAScript to change the radius with each click -->
<script type="text/ecnascript"> <![CDATA
function circle_click(evt) {
var circle = evt.target;
var currentRadius = circle.getAttribute("r");
i f (currentRadius == 100)
circle.setAttribute("r", currentRadi us*2);
el se
circle.setAttribute("r", currentRadius*0.5);

11> </script>

<l-- Qutline the drawing area with a blue line -->

<rect x="1" y="1" w dt h="598" hei ght="498" style="fill:none; stroke:Dblue"/>

<l-- Act on each click event -->

<circle onclick="circle_click(evt)" cx="300" cy="225" r="100"
style="fill:red"/>

<t ext x="300" y="480"
style="font-fam |y: Verdana; font-size:35; text-anchor:mddle">
Click on circle to change its size
</text>
</ svg>

Click on circle to change its size Click on circle to change its size

Example script01

View this example as SV G (SV G-enabled browsers only)

<I ELEMENT scri pt (#PCDATA) >
<I ATTLI ST scri pt
st dAttrs;
Il i nkRef Attrs;
xlink: href %JRI; #| MPLI ED
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
type % Cont ent Type; #REQU RED >

Attribute definitions:
type = "%ContentType;"

Identifies the scripting language for the given 'script’ element. The value %ContentType; specifies amedia
type, per [RFC2045]. Animatable: no.

Attributes defined e sewhere:
YostdAttrs;, YoxlinkRefAttrs;, href, external ResourcesRequired.

18.3 Event handling

Events can cause scripts to execute when either of the following has occurred:

« Event attributes such as "onclick" or "onload" are assigned to particular elements, where the value of the
event attributes contains script which is executed when the given event occurs.

« Event listeners as described in [DOM2-EVENTS] are defined which are invoked when a given event
happens on a given object

Related sections of the spec:

« User interface events describes how an SV G user agent handles events such as pointer movements events
(e.g., mouse movement) and activation events (e.g., mouse click).

« Relationship with DOM2 events describes what parts of DOM are supported by SV G and how to register
event listeners

18.4 Event attributes

The following event attributes are available on many SV G elements.

The complete list of events that are part of the SV G language and SVG DOM and descriptions of those eventsis
provided in Complete list of supported events.

Event attributes on graphics and container elements

file:///D|/Public/CR-SVG-20000802/images/script/script01.svg

<IENTITY % gr aphi csEl enent Event s

"onfocusin %script; #l MPLI ED
onf ocusout %script; #l MPLIED
onactivate %script; #l MPLI ED
onclick %script; # MPLI ED
onnmousedown %Scri pt; #l MPLI ED
onnouseup %Scri pt; #l MPLI ED
onnmouseover %script; #l MPLI ED
onnousenove %scri pt; #l MPLI ED
onnouseout %script; #l MPLI ED
onl oad %scri pt; #l MPLIED" >

Document-level event attributes

<IENTITY % docunent Events

"onunl oad %script; #l MPLI ED
onabort %Scri pt; #l MPLI ED
onerror %script; #l MPLI ED
onresi ze %oscript; #l MPLI ED
onscrol | %script; #lMPLIED
onzoom %scri pt; #l MPLI ED' >

Animation event attributes

<IENTITY % ani mati onEvent s
"onbegin %bscript; #l MPLIED
onend %&cri pt; #l MPLI ED
onrepeat 9%script; #l WPLIED" >

Animatable: no.

18.5 DOM interfaces

The following interfaces are defined below: SV GScriptElement, SVGEvent, SVGZoomEvent.

Interface SVGScriptElement

The SV GScriptElement interface corresponds to the 'script’ element.
IDL Definition

interface SVGScri pt El enent
SVGE! enent
SVGURI Ref er ence,

SVCGEXt er nal Resour cesRequi red {

attribute DOVString type;
/'l rai ses DOVException on setting

}

Attributes
DOM String type
Corresponds to attribute type on the given 'script' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is
readonly.

Interface SVGEvent

The SVG event set contains alist of special event types which are availablein SVG.

A DOM consumer can use the hasFeature of the DOMImplementation interface to determine whether the SVG
event set has been implemented by a DOM implementation. The feature string for this event set is"SVGEvents'.
This string is also used with the createEvent method.

The SV G events use the base DOM Event interface to pass contextual information.

The different types of such events that can occur are:
SVGL oad
See SVGL oad event.

o Bubbles: No
o Cancelable: No
o Context Info: None
SVGUnload
See SV GUnload event.
o Bubbles: No
o Cancelable: No
o Context Info: None
SVGAbort
See SV GAbort event.
0 Bubbles: Yes
o Cancelable: No
o Context Info: None
SVGError
See SV GETrror event.

o Bubbles: Yes

o Cancelable: No
o Context Info: None
SVGResize
See SVGResize event.
o Bubbles: Yes
o Cancelable: No
o Context Info: None
SVGSceroll
See SVGScroll event.
0 Bubbles: Yes
0 Cancelable: No
o Context Info: None

IDL Definition

interface SVGEvent : events::Event {};

Interface SVGZoomEvent

A DOM consumer can use the hasFeature of the DOMImplementation interface to determine whether the SVG
zoom event set has been implemented by a DOM implementation. The feature string for thisevent set is
"SVGZoomEvents'. This string is also used with the createEvent method.

The zoom event handler occurs before the zoom event is processed. The remainder of the DOM represents the
previous state of the document. The document will be updated upon normal return from the event handler.

The Ul event type for azoom event is:

SVGZoom

The zoom event occurs when the user initiates an action which causes the current view of the SV G document
fragment to be rescaled. Event handlers are only recognized on 'svg' elements. See SV GZoom event.

o Bubbles: Yes
o Cancelable: No

o Context Info: zoomRectScreen, previousScale, previousTranslate, newScale, newTrand ate, screenX,
screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaK ey, relatedNode.
(screenX, screenY, clientX and clientY indicate the center of the zoom area, with clientX and clientY
in viewport coordinates for the corresponding 'svg' element. relatedNode is the corresponding 'svg'
element.)

IDL Definition

i nterface SV&ZoonEvent : events:: U Event {
attribute SVGRect zoonRect Screen;
/'l raises DOVException on setting

attribute float previousScal e;

/'l raises DOVException on setting
attri bute SVGPoi nt previousTransl at e;

/'l rai ses DOVException on setting
attribute float newScal e;

/1 raises DOVException on setting
attribute SVGPoi nt newlransl at e;

/'l raises DOVException on setting

H

Attributes
SV GRect zoomRectScreen
The specified zoom rectangle in screen units.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is
readonly.

float previousScale

The scale factor from previous zoom operations that was in place before the zoom operation
occurred.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is

readonly.
SV GPoint previousTrand ate
The tranglation values from previous zoom operations that were in place before the zoom operation
occurred.

Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is
readonly.

float newScale
The scale factor that will be in place after the zoom operation has been processed.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is
readonly.

SV GPoint newTranslate
The tranglation values that will be in place after the zoom operation has been processed.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the node is
readonly.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

19 Animation

Contents

« 19.1 Introduction

« 19.2 Animation elements
o 19.2.1 Overview
o 19.2.2 Relationship to SMIL Animation
o 19.2.3 Animation elements example

o 19.2.4 Attributes to identify the target element for an animation

o 19.2.5 Attributes to identify the target attribute or property for an animation

o 19.2.6 Attributes to control the timing of the animation

o 19.2.7 Attributes that define animation values over time

o 19.2.8 Attributes that control whether animations are additive

o 19.2.9 Inheritance

o 19.2.10 The 'animate’ element

o 19.2.11 The 'set' element

o 19.2.12 The 'animateMotion' element

o 19.2.13 The 'animateColor' element

0 19.2.14 The 'animateTransform' element

o 19.2.15 Elements, attributes and properties that can be animated
« 19.3 Animation using the SVG DOM
e 19.4 DOM interfaces

19.1 Introduction

Because the Web is a dynamic medium, SV G supports the ability to change vector graphics over time. SV G content can be animated in the following
ways:
« Using SVG's animation elements. SVG document fragments can describe time-based modifications to the document's elements. Using the
various animation elements, you can define motion paths, fade-in or fade-out effects, and objects that grow, shrink, spin or change color.

« Usingthe SYG DOM. The SVG DOM conforms to key aspects of the "Document Object Model (DOM) Level 1" [DOM 1] and "Document
Object Model (DOM) Level 2" [DOM 2] specifications. Every attribute and style sheet setting is accessible to scripting, and SV G offers a set of

additional DOM interfaces to support efficient animation via scripting. As aresult, virtually any kind of animation can be achieved. The timer
facilities in scripting languages such as ECM A Script can be used to start up and control the animations. (See example below.)

o SVG has been designed to allow future versions of SMIL [SMIL 1] to use animated or static SV G content as media components.

« Inthefuture, it is expected that future versions of SMIL will be modularized and that components of it could be used in conjunction with SVG
and other XML grammars to achieve animation effects.

19.2 Animation elements

19.2.1 Overview

SVG's animation elements were devel oped in collaboration with the W3C Synchronized Multimedia (SY MM) Working Group, developers of the
Synchronized Multimedia Integration Language (SMIL) 1.0 Specification [SMIL1].

The SYMM working group, in collaboration with the SV G working group, has authored the SMIL Animation specification [SMILANIM], which

file:///D|/Public/CR-SVG-20000802/indexlist.html

represents a general-purpose XML animation feature set. SV G incorporates the animation features defined in the SMIL Animation specification and
provides some SV G-specific extensions.

For an introduction to the approach and features available in any language that supports SMIL Animation, see SMIL Animation overview and SMIL
Animation animation model. For the list of animation features which go beyond SMIL Animation, see SVG extensions to SMIL Animation.

19.2.2 Relationship to SMIL Animation

SVG isahost language in terms of SMIL Animation and therefore introduces additional constraints and features as permitted by that specification.
Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for SV G's animation elements and attributesis the
SMIL Animation [SMILANIM] specification.

SV G supports the following four animation elements which are defined in the SMIL Animation specification:

‘animate’ allows scalar attributes and properties to be assigned different values over time

'set’ a convenient shorthand for 'animate’, which is useful for assigning animation values to non-numeric attributes and properties,
such as the 'visibility' property

‘animateM otion' moves an element along a motion path

‘animateColor' modifies the color value of particular attributes or properties over time

Additionally, SV G includes the following compatible extensionsto SMIL Animation:

'‘animateTransform' modifies one of SV G's transformation attributes over time, such as the transform attribute

path attribute SVG alows any feature from SV G's path data syntax to be specified in a path attribute to the 'animateMotion' element (SMIL
Animation only allows a subset of SVG's path data syntax within a path attribute)

'mpath’ element SVG alows an 'animateMotion' element to contain a child 'mpath’ element which references an SV G 'path’ element as the
definition of the motion path

keyPoints attribute SV G adds a keyPoints attribute to the 'animateMotion' to provide precise control of the velocity of motion path animations

rotate attribute SV G adds arotate attribute to the 'animateMotion' to control whether an object is automatically rotated so that its x-axis points
in the same direction (or opposite direction) as the directional tangent vector of the motion path

For compatibility with other aspects of the language, SV G uses URI references via an xlink:href attribute to identify the elements which are to be targets
of the animations.

SMIL Animation requires that the host language define the meaning for document begin and the document end. Since an 'svg' is sometimes the root of

the XML document tree and other times can be a component of a parent XML grammar, the document begin for agiven SVG document fragment is
defined to be the exact time at which the 'svg' element's onload event is triggered. The document end of an SVG document fragment is the point at which

the document fragment has been released and is no longer being processed by the user agent.
For SV G, the term presentation time indicates the position in the timeline relative to the document begin of a given document fragment.

SV G defines more constrained error processing than is defined in the SMIL Animation [SMILANIM] specification. SMIL Animation defines error
processing behavior where the document continues to run in certain error situations, whereas all animations within an SVG document fragment will stop
in the event of any error within the document (see Error processing).

19.2.3 Animation elements example

Example anim01 below demonstrates each of SVG's five animation elements.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN"

"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="8cnt hei ght="3cni viewBox="0 0 800 300">

<desc>Exanpl e ani nD1 - denonstrate ani mation el enment s</ desc>

<l-- The following illustrates the use of the 'aninmate' el enment
to animate a rectangles x, y, and width attri butes so that
the rectangle grows to ultimately fill the viewport. -->

<rect id="RectEl enment" x="300" y="100" wi dth="300" hei ght="100"
style="fill:rgb(255,255,0)" >
<ani mate attribut eNanme="x" attri buteType="XW"

begi n="0s" dur="9s" fill="freeze" from="300" to="0" />
<animate attributeNanme="y" attributeType="XW"
begi n="0s" dur="9s" fill="freeze" fron"100" to="0" />

<animate attributeNanme="w dth" attributeType="XW"
begi n="0s" dur="9s" fill="freeze" from="300" to="800" />

http://www.w3.org/TR/smil-animation/#AnimationFramework
http://www.w3.org/TR/smil-animation/#AnimationFramework
http://www.w3.org/TR/smil-animation/#AnimationFramework

<animate attributeNanme="height" attributeType="XW"
begi n="0s" dur="9s" fill="freeze" from="100" to="300" />
</rect>

<l-- Set up a new user coordinate system so that
the text string's originis at (0,0), allow ng
rotation and scale relative to the neworigin -->
<g transform="transl ate(100, 100)" >

<!-- The following illustrates the use of the 'set', 'animteMtion',
"ani mat eCol or' and 'ani mateTransfornm elenents. The 'text' el enent
bel ow starts off hidden (i.e., invisible). At 3 seconds, it:

* becones visible
* continuously noves diagonally across the viewort
* changes color fromblue to dark red
* rotates from-30 to zero degrees
* scales by a factor of three. -->
<text id="TextEl enent" x="0" y="0"
style="font-fanmily: Verdana; font-size:35.27; visibility:hidden" >

It's alive!

<set attributeNane="visibility" attributeType="CSS" to="visible"
begi n="3s" dur="6s" fill="freeze" />

<ani mat eMbtion path="MO0 O L 100 100"
begi n="3s" dur="6s" fill="freeze" />

<ani mat eCol or attributeName="fill" attributeType="CSS"
frome"rgb(0, 0, 255)" to="rgh(128,0,0)"
begi n="3s" dur="6s" fill="freeze" />

<ani mat eTransform attri but eNane="transforni attri buteType="XM"
type="rotate" from="-30" to="0"
begi n="3s" dur="6s" fill="freeze" />

<ani mat eTransform attri buteName="transforni attributeType="XM"
type="scal e" fronm="1" to="3" additive="sunt

begi n="3s" dur="6s" fill="freeze" />
</text>
</ g>
</ svg>
g
. ._-‘. a‘\.“'
At zero seconds At three seconds
e alive!
1t 5 -
It's alive!
At six seconds At nine seconds

Example anim01

View this example as SV G (SV G-enabled browsers only)

The sections below describe the various animation attributes and elements.

19.2.4 Attributes to identify the target element for an animation

The following attributes are common to all animation elements and identify the target element for the animation.

<IENTITY % ani nEl enent Attrs
"l i nkRef Attrs;
xlink:href %JRI; #|l MPLIED' >

Attribute definitions:

file:///D|/Public/CR-SVG-20000802/images/animate/anim01.svg

xlink:href = "<uri>"

A URI reference to the element which is the target of this animation and which therefore will be modified over time.

The target element must be part of the current SVG document fragment.

<uri> must point to exactly one target element which is capable of being the target of the given animation. If <uri> points to multiple target
elements, if the given target element is not capable of being atarget of the given animation, or if the given target element is not part of the
current SV G document fragment, then the document isin error (see Error processing).

If the xlink:href attribute is not provided, then the target element will be the immediate parent element of the current animation element.

Refer to the descriptions of the individual animation elements for any restrictions on what types of elements can be targets of particular types of
animations.

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: Specifying the animation target.

Attributes defined elsewhere:
%xlinkRefALttrs;.

19.2.5 Attributes to identify the target attribute or property for an animation

The following attributes identify the target attribute or property for the given target element whose value changes over time.

<IENTITY % ani mAttri buteAttrs
"attributeNane CDATA #REQUI RED
attributeType CDATA #l MPLIED' >

Attribute definitions:
attributeName = <attributeName>

Specifies the name of the target attribute. An XMLNS prefix may be used to indicate the XML namespace for the attribute. The prefix will be
interpreted in the scope of the target element.

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: Specifying the animation target.

attributeType="CSS | XML | auto"

Specifies the namespace in which the target attribute and its associated values are defined. The attribute value is one of the following (values are
case-sensitive):

"CSST

This specifies that the value of "attributeName" is the name of a CSS property defined as animatable in this specification.
"XML"

This specifies that the value of "attributeName" is the name of an XML attribute defined in the default XML namespace for the target
element. If thevaluefor at t ri but eNane has an XMLNS prefix, the implementation must use the associated namespace as defined in
the scope of the target element. The attribute must be defined as animatable in this specification.

"auto"
The implementation should match theat t r i but eNane to an attribute for the target element. The implementation must first search

through the list of CSS properties for a matching property name, and if none is found, search the default XML namespace for the
element.

The default value is "auto”.
Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: Specifying the animation target.

19.2.6 Attributes to control the timing of the animation

The following attributes are common to all animation elements and control the timing of the animation, including what causes the animation to start and
end, whether the animation runs repeatedly, and whether to retain the end state the animation once the animation ends.

http://www.w3.org/TR/smil-animation/#SpecifyingAnimationTarget
http://www.w3.org/TR/smil-animation/#SpecifyingAnimationTarget
http://www.w3.org/TR/smil-animation/#SpecifyingAnimationTarget

<IENTITY % ani nili m ngAttrs
"begi n CDATA #l MPLI ED
dur CDATA #| MPLI ED
end CDATA #| MPLI ED
m n CDATA #| MPLI ED
x CDATA #| MPLI ED
restart (always | never | whenNotActive) 'always'
r epeat Count CDATA #| MPLI ED
repeat Dur CDATA #l MPLI ED
fill (renmove | freeze) 'renove'" >

In the syntax specifications that follow, optional white space isindicated as"S", defined as follows:
S = (#x20 | #x9 | #xD | #xA*

Attribute definitions:

begin : begin-value-list

Defines when the element should begin (i.e. become active).
The attribute value is a semicolon separated list of values.

begin-vaue-list : begin-value (S";" S begin-value-list)?
A semicolon separated list of begin values. Theinterpretation of alist of begin timesis detailed below.

"indefinite"
The begin of the animation will be determined by a"beginElement()" method call or a hyperlink targeted to the element.
The animation DOM methods are described in DOM interfaces.

Hyperlink-based timing is described in SMIL Animation: Hyperlinks and timing.

begin-value : (offset-value | syncbase-value | syncToPrev-value | event-value | repeat-value | accessK ey-value | media-marker-value |
wallclock-sync-value | "indefinite")

Describes the element begin.

A value of "indefinite" specifies that the start of the animation will be determined by a "beginElement()" method call (the animation DOM
methods are described in DOM interfaces) or a hyperlink targeted to the element.

offset-value: ("+" | "-")? clock-value

For SMIL Animation, this describes the element begin as an offset from an implicit syncbase. For SV G, the implicit synchase beginis
defined to be relative to the document begin. Since the document end in SV G is always undetermined, a negative offset valuein SVGis
always an error.

synchase-value: (id-ref ".") ("begin" | "end") (S("+"|"-") Sclock-value)?
Describes a syncbase and an optional offset from that syncbase. The element begin is defined relative to the begin or active end of

another animation. A synchase consists of an ID reference to another animation element followed by either begi n or end to identify
whether to synchronize with the beginning or active end of the referenced animation element.

syncToPrev-value : ("prev.begin” | "prev.end”) (S("+" |"-") Sclock-value)?
Describes alogical synchase and an offset from that syncbase. The synchase element is the previous animation sibling element, as

reflected in the DOM (or the SV G document fragment if there is no previous sibling). The element begin is defined relative to the begin
or active end of the syncbase element. It is an error to specify pr ev. end when no previous sibling animation element exists.

event-value: (id-ref ".")? (event-ref) (("+" |"-") clock-value)?
Describes an event and an optional offset that determine the element begin. The animation begin is defined relative to the time that the

event israised. Thelist of event-symbols available for a given event-base element isthe list of event attributes available for the given
element as defined by the SVG DTD, with the one difference that the leading 'on’ is removed from the event name (i.e., the animation

event nameis 'click’, not ‘onclick’). A list of al events supported by SVG can be found in Complete list of supported events. Details of
event-based timing are described in SMIL Animation: Unifying Event-based and Scheduled Timing.

repeat-value : (id-ref ".")?"repeat(" integer ")" (("+" |"-") clock-value)?
Describes a qualified repeat event. The element begin is defined relative to the time that the repeat event is raised with the specified
iteration value.

accessKey-value : "accessKey(" character)"

Describes an accessK ey that determines the element begin. The element begin is defined relative to the time that the accessK ey character
isinput by the user.

media-marker-value : id-ref ".marker(" marker-name")"

http://www.w3.org/TR/smil-animation/#HyperlinkSemantics
http://www.w3.org/TR/smil-animation/#Unifying

Describes the element begin as a named marker time defined by a media element. This value is only useful when SV G isimplemented as
a component of other XML languages that supports media types with named markers, such as SMIL. If the marker cannot be found, then
the animation will never begin.

"wallclock-sync-value : wallclock(" wallclock-value ")"
Describes the element begin as areal-world clock time. The wallclock time syntax is based upon syntax defined in [ISO8601].

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'begin' attribute.

dur : clock-value | "media’ | "indefinite"

Specifies the simple duration.
The attribute value can be either of the following:

clock-value
Specifies the length of the simple duration in presentation time. Value must be greater than 0.
"media’

Specifies the smple duration as the intrinsic media duration. Thisis only valid for elements that define media.
(For SVG's animation elements, if "media’ is specified, the attribute will be ignored.)

"indefinite"
Specifies the simple duration asindefinite.

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute is the SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: ‘dur’ attribute.

end : end-value-list
Defines an end value for the animation that can constrain the active duration. The attribute value is a semicolon separated list of values.

end-value-list : end-value (S";" Send-vaue-list)?
A semicolon separated list of end values. The interpretation of alist of end timesis detailed below.

end-value : (offset-value | syncbase-value | syncToPrev-value | event-value | repeat-value | accessK ey-value | media-marker-value |
wallclock-sync-value | "indefinite")

Describes the active end of the animation.

A value of "indefinite" specifies that the end of the animation will be determined by a"endElement()" method call (the animation DOM methods
are described in DOM interfaces).

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see description of SMIL Animation: 'end' attribute.

min : clock-value | "media"

Specifies the minimum value of the active duration.
The attribute value can be either of the following:

clock-value

Specifies the length of the minimum value of the active duration, measured in local time.
Value must be greater than 0.

"media’
Specifies the minimum value of the active duration as the intrinsic media duration. Thisis only valid for elements that define media. (For
SVG's animation elements, if "media" is specified, the attribute will be ignored.)

The default value for minis"0". This does not constrain the active duration at all.
Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation

[SMILANIM] specification.
max : clock-value | "media’

Specifies the maximum value of the active duration.
The attribute value can be either of the following:

clock-value

Specifies the length of the maximum value of the active duration, measured in local time.
Value must be greater than 0.

"media’
Specifies the maximum value of the active duration as the intrinsic media duration. Thisis only valid for elements that define media. (For
SVG's animation elements, if "media’ is specified, the attribute will be ignored.)

Thereis no default value for max. This does not constrain the active duration at all.
Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation

http://www.w3.org/TR/smil-animation/#BeginAttribute
http://www.w3.org/TR/smil-animation/#DurAttribute

[SMILANIM] specification.
restart : "always' | "whenNotActive" | "never"
aways

The animation can be restarted at any time.
Thisis the default value.

whenNotActive

The animation can only be restarted when it is not active (i.e. after the active end). Attempts to restart the animation during its active
duration are ignored.

never

The element cannot be restarted for the remainder of the current simple duration of the parent time container. (In the case of SVG, since
the parent time container isthe SV G document fragment, then the animation cannot be restarted for the remainder of the document
duration.)

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'restart' attribute.

repeatCount : numeric value | "indefinite"
Specifies the number of iterations of the animation function. It can have the following attribute values:
numeric value

Thisis a(base 10) "floating point" numeric value that specifies the number of iterations. It can include partial iterations expressed as
fraction values. A fractional value describes a portion of the simple duration. Values must be greater than 0.

"indefinite"
The animation is defined to repeat indefinitely (i.e. until the document ends).

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'repeatCount’ attribute.

repeatDur : clock-value | "indefinite"

Specifies thetotal duration for repesat. It can have the following attribute val ues:
clock-value

Specifies the duration in presentation time to repeat the animation function f (t) .
"indefinite"

The animation is defined to repeat indefinitely (i.e. until the document ends).

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'repeatDur’ attribute.

fill : "freeze" | "remove"
This attribute can have the following values:
freeze

The animation effect F(t) is defined to freeze the effect value at the last value of the active duration. The animation effect is "frozen" for
the remainder of the document duration (or until the animation is restarted - see SMIL Animation: Restarting animation).

remove
The animation effect is removed (no longer applied) when the active duration of the animation is over. After the active end of the
animation, the animation no longer affects the target (unless the animation is restarted - see SMIL Animation: Restarting animation).
Thisisthe default value.

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute is the SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: ‘fill' attribute.

The SMIL Animation [SMILANIM] specification defines the detailed processing rules associated with the above attributes. Except for any
SV G-specific rules explicitly mentioned in this specification, the SMIL Animation [SMILANIM] specification is the normative definition of the
processing rules for the above attributes.

Clock values

Clock values have the same syntax asin SMIL Animation [SMILANIM], which is repeated here:

C ock- val = Full -cl ock-val | Parti al -cl ock-val
| Ti mecount -val
Ful I - cl ock-val = Hours ":" Mnutes ":" Seconds ("." Fraction)?
Parti al - cl ock-val = Mnutes ":" Seconds ("." Fraction)?
Ti mecount - val = Timecount ("." Fraction)? (Metric)?
Metric ="h" | "mn" | "s" | "ms"
Hour s = DIA@ T+; any positive nunmber

http://www.w3.org/TR/smil-animation/#RestartAttribute
http://www.w3.org/TR/smil-animation/#SpecifyingAnimationFunction
http://www.w3.org/TR/smil-animation/#RepeatCountAttribute
http://www.w3.org/TR/smil-animation/#RepeatDurAttribute
http://www.w3.org/TR/smil-animation/#AnimationModel
http://www.w3.org/TR/smil-animation/#Restart
http://www.w3.org/TR/smil-animation/#Restart
http://www.w3.org/TR/smil-animation/#FillAttribute

M nut es ::=2DIGAT,; range fromO00 to 59
Seconds ::=2DIGAT,; range fromO00 to 59
Fraction = DdAT+

Ti mecount o= DdAdT+

2DIA T =DATDAT

DGAT = [0-9]

For Timecount values, the default metric suffix is"s" (for seconds). No embedded white spaceis allowed in clock values, although leading and trailing
white space characters will be ignored.

Clock values describe presentation time.

The following are examples of legal clock values:

Full clock values:
02: 30: 03 = 2 hours, 30 minutes and 3 seconds
50: 00: 10. 25 =50 hours, 10 seconds and 250 milliseconds

Partial clock value:
02: 33 =2 minutes and 33 seconds
00: 10. 5 =10.5 seconds = 10 seconds and 500 milliseconds

« Timecount values:

3.2h = 3.2 hours = 3 hours and 12 minutes
45m n =45 minutes

30s = 30 seconds

5ns = 5 milliseconds

12. 467 =12 secondsand 467 milliseconds

Fractional values are just (base 10) floating point definitions of seconds. Thus:

00. 5s
00: 00

= 500 mlliseconds
.005 =5 mlliseconds

19.2.7 Attributes that define animation values over time

The following attributes are common to elements 'animate’, ‘animateMotion', 'animateColor' and 'animateTransform'. These attributes define the values
that are assigned to the target attribute or property over time. The attributes below provide control over the relative timing of keyframes and the
interpolation method between discrete val ues.

<IENTI TY % ani nVal ueAttrs
" cMbde (discrete | linear | paced | spline) 'linear'

cal

val ues CDATA #l MPLI ED
keyTi mes CDATA #l MPLI ED
keySpl i nes CDATA #l MPLI ED
from CDATA #l MPLI ED

to
by

CDATA #| MPLI ED
CDATA #| MPLI ED" >

Attribute definitions:
cal cMbde ="discrete| linear | paced | spline”

Specifies the interpolation mode for the animation. This can take any of the following values. The default modeis "linear”, however if the
attribute does not support linear interpolation (e.g. for strings), the cal cMode attribute isignored and discrete interpolation is used.

di screte
This specifies that the animation function will jump from one value to the next without any interpolation.

I'i near
Simple linear interpolation between valuesis used to calculate the animation function. Except for 'animateMotion', thisis the default
cal cMbde.

paced

Defines interpolation to produce an even pace of change across the animation. Thisis only supported for values that define alinear
numeric range, and for which some notion of "distance” between points can be calculated (e.g. position, width, height, etc.). If "paced"
is specified, any key Ti mes or keySpl i nes will beignored. For 'animateMotion', thisisthe default cal cMode.

spline
Interpolates from one value in the val ues list to the next according to atime function defined by a cubic Bezier spline. The points of

the spline are defined in the key Ti nes attribute, and the control points for each interval are defined in the key Spl i nes attribute.

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: ‘calcMode' attribute.

values = "<list>"

A semicolon-separated list of one or more values. Vector-valued attributes are supported using the vector syntax of theat t ri but eType
domain. Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute is the SMIL
Animation [SMILANIM] specification. In particular, see SMIL Animation: 'values attribute.

keyTi mes ="<list>"

A semicolon-separated list of time values used to control the pacing of the animation. Each timein thelist correspondsto avalueintheval ues
attribute list, and defines when the value is used in the animation function. Each time valuein the key Ti nes list is specified as a floating point
value between 0 and 1 (inclusive), representing a proportional offset into the simple duration of the animation element.

If alist of keyTi nes is specified, there must be exactly as many valuesinthekeyTi nes list asintheval ues list.

Each successive time value must be greater than or equal to the preceding time value.

ThekeyTi nmes list semantics depends upon the interpolation mode:

o For linear and spline animation, the first time value in the list must be 0, and the last time valuein the list must be 1. The key Ti e
associated with each value defines when the value is set; values are interpolated between the key Ti nes.

o For discrete animation, the first time value in the list must be 0. The time associated with each value defines when the value is set; the
animation function uses that value until the next time defined inkeyTi nes.

If the interpolation modeis "paced”, the keyTi nmes attribute isignored.

If there are any errorsin the keyTi nes specification (bad values, too many or too few values), the document fragment isin error (see error
processing).

If the simple duration isindefinite, any keyTi mes specification will be ignored.
Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'keyTimes attribute.

keySpl i nes ="<list>"

A set of Bezier control points associated with the key Ti nes list, defining a cubic Bezier function that controlsinterval pacing. The attribute
valueis a semicolon separated list of control point descriptions. Each control point description isaset of four values: x1 y1 x2 y2,
describing the Bezier control points for one time segment. The key Ti mes values that define the associated segment are the Bezier "anchor
points', and thekey Spl i nes values are the control points. Thus, there must be one fewer sets of control points than thereare keyTi nes.

The values must al bein therange O to 1.
This attribute isignored unlessthe cal cMbde isset to "spline”.

If there are any errorsin thekey Spl i nes specification (bad values, too many or too few values), the document fragment isin error (see error
processing).
Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'keySplines attribute.

from ="<value>"

Specifies the starting value of the animation.
Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'from' attribute.

to ="<value>"

Specifies the ending value of the animation.
Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'to' attribute.

by = "<value>"

Specifies arelative offset value for the animation.
Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'by" attribute.

The SMIL Animation [SMILANIM] specification defines the detailed processing rules associated with the above attributes. Except for any
SV G-specific rules explicitly mentioned in this specification, the SMIL Animation [SMILANIM] specification is the normative definition of the
processing rules for the above attributes.

The animation values specified in the animation element must be legal values for the specified attribute. Leading and trailing white space, and white

http://www.w3.org/TR/smil-animation/#CalcModeAttribute
http://www.w3.org/TR/smil-animation/#ValuesAttribute
http://www.w3.org/TR/smil-animation/#KeyTimesAttribute
http://www.w3.org/TR/smil-animation/#KeySplinesAttribute
http://www.w3.org/TR/smil-animation/#FromAttribute
http://www.w3.org/TR/smil-animation/#ToAttribute
http://www.w3.org/TR/smil-animation/#ByAttribute

space before and after semicolon separators, will be ignored.

All values specified must be legal values for the specified attribute (as defined in the associated namespace). If any values are not legal, the document

fragment isin error (see error processing).

If alist of valuesis used, the animation will apply the valuesin order over the course of the animation. If alist of valuesis specified, any from, to and by

attribute values are ignored.

The processing rules for the variants of from/by/to animations are described in Animation function values.

The following figure illustrates the interpretation of the key Spl i nes attribute. Each diagram illustrates the effect of key Spl i nes settingsfor a
singleinterval (i.e. between the associated pairs of valuesinthekeyTi mes and val ues lists.). The horizontal axis can be thought of as the input
value for the unit progress of interpolation within the interval - i.e. the pace with which interpolation proceeds along the given interval. The vertica axis
isthe resulting value for the unit progress, yielded by the key Spl i nes function. Another way of describing thisisthat the horizontal axisisthe input
unit time for the interval, and the vertical axisis the output unit time. See also the section Timing and real-world clock times.

o
RLER]

keySplines="00 1 1" (the default)

(0.0

{.5,1}

{.5,0)

(1,1}

keySplines=".50.5 1"

(0,0

(1,1}

(.25,.25)

(1,1}

il
'|1 =y

(0,0)

keySplines="0.75 .25 1"

keySplines="10 .25 .25"

Examples of keySplines

To illustrate the cal culations, consider the ssimple example:

<ani mat e dur="4s"

val ues="10; 20"
cal cMbde="spl i ne"

keyTi mes="0; 1"
keySplines={as in table} />

Using the keySplines values for each of the four cases above, the approximate interpolated val ues as the animation proceeds are:

keySplines values] Initial value | After 1s | After 25 | After 3s | Final value
0011 10.0 125 [150 [175 [200
5051 10.0 110 [150 [190 [200
0.75.251] 10.0 | 18.0 | 193 [198 [200
10.25.25] 10.0 | 10.1 | 10.6 | 16.9 | 20.0

For aformal definition of Bezier spline calculation, see [FOLEY-VANDAM].

http://www.w3.org/TR/smil-animation/#AnimFuncValues
http://www.w3.org/TR/smil-animation/#TimingAndRealWorldClockTime

19.2.8 Attributes that control whether animations are additive

It isfrequently useful to define animation as an offset or deltato an attribute's value, rather than as absolute values. A simple "grow" animation can
increase the width of an object by 10 pixels:

<rect w dth="20px" ...>
<ani mate attributeName="w dth" from="0px" to="10px" dur="10s"
addi ti ve="sunt'/>
</rect>

It isfrequently useful for repeated animations to build upon the previous results, accumulating with each interation. The following example causes the
rectangle to continue to grow with each repeat of the animation:

<rect w dth="20px" ...>
<animate attri buteName="wi dt h" from="0px" to="10px" dur="10s"
addi tive="sum' accumnul at e="sun' repeat Count="5"/>
</rect>

At the end of the first repetition, the rectangle has awidth of 30 pixels. At the end of the second repetition, the rectangle has awidth of 40 pixels. At the
end of the fifth repetition, the rectangle has awidth of 70 pixels.

For more information about additive animations, see SMIL Animation: Additive animation. For more information on cumulative animations, see SMIL
Animation: Controlling behavior of repeating animation - Cumulative animation.

The following attributes are common to elements 'animate’, 'animateMotion', 'animateColor' and 'animateTransform'.

<IENTITY % ani mAdditi onAttrs
"additive (replace | sum 'replace’
accunul ate (none | sun) 'none'" >

Attribute definitions:
additive = "replace | sum"
Controls whether or not the animation is additive.
sum
Specifies that the animation will add to the underlying value of the attribute and other lower priority animations.
replace

Specifies that the animation will override the underlying value of the attribute and other lower priority animations. Thisis the default,
however the behavior is aso affected by the animation value attributes by and t o, as described in SMIL Animation: How from, to and
by attributes affect additive behavior.

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: ‘additive' attribute.

accumulate = "none | sum"
Controls whether or not the animation is cumulative.
sum

Specifiesthat each repeat iteration after the first builds upon the last value of the previous iteration.
none
Specifies that repeat iterations are not cumulative. Thisisthe default.

This attribute isignored if the target attribute value does not support addition, or if the animation element does not repeat.
Cumulative animation is not defined for "to animation".
This attribute will beignored if the animation function is specified with only thet o attribute.

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this attribute isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'accumulate’ attribute.

http://www.w3.org/TR/smil-animation/#AdditiveAnim
http://www.w3.org/TR/smil-animation/#Accumulate
http://www.w3.org/TR/smil-animation/#Accumulate
http://www.w3.org/TR/smil-animation/#FromToByAndAdditive
http://www.w3.org/TR/smil-animation/#FromToByAndAdditive
http://www.w3.org/TR/smil-animation/#AdditiveAttribute
http://www.w3.org/TR/smil-animation/#AccumulateAttribute

19.2.9 Inheritance

SV G alows both attributes and properties to be animated. If a given attribute or property isinheritable by descendants, then animations on a parent
element such asa'g’ element has the effect of propagating the attribute or property animation values to descendant elements as the animation proceeds;
thus, descendant elements can inherit animated attributes and properties from their ancestors.

19.2.10 The 'animate' element

The 'animate’ element is used to animate a single attribute or property over time. For example, to make a rectangle repeatedly fade away over 5 seconds,
you can specify:

<rect >
<ani mate attributeType="CSS" attri but eNane="opacity"
from="1" to="0" dur="5s" repeat Count="indefinite" />
</rect>

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this element is the SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'animate’ element.

<IENTITY % ani mat eExt "" >
<! ELEMENT ani mate (%lescTi t| eMet adat a; %ani mat eExt;) >
<! ATTLI ST ani mate
st dAttrs;
YaestAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
%ani mat i onEvent s;
Yani nEl enment Attrs;
%ani MAttri buteAttrs;
Y@ani mli m ngAttrs;
%ani nvVal ueAttrs;
Y%ani mAddi ti onAttrs; >

Attributes defined elsewhere:

%stdAttrs;, %testAttrs;, external ResourcesRequired, %ani mationEvents;, %ani mElementAttrs;, %ani mAttributeAttrs;, %animTimingAttrs;,
%animV alueAttrs;, %animAdditionAttrs;.

For alist of attributes and properties that can be animated using the ‘animate’ element, see Elements, attributes and properties that can be animated.

19.2.11 The 'set' element

The 'set' element provides a simple means of just setting the value of an attribute for a specified duration. It supports al attribute types, including those
that cannot reasonably be interpolated, such as string and boolean values. The 'set' element is non-additive. The additive and accumulate attributes are
not allowed, and will beignored if specified.

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this element isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: 'set' element.

<IENTITY % set Ext "" >
<I ELEMENT set (%lescTitl eMetadata; %set Ext;) >
<I ATTLI ST set
st dAttrs;
YiestAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
%ani nat i onEvent s;
%ani nEl enent Attrs;
Yani MAttri buteAttrs;
%ani nTi m ngAttrs;
to CDATA #l MPLI ED >

Attribute definitions:

http://www.w3.org/TR/smil-animation/#animateElement
http://www.w3.org/TR/smil-animation/#setElement

to ="<vaue>"
Specifies the value for the attribute during the duration of the 'set' element. The argument value must match the attribute type.

Attributes defined elsewhere:
%stdAttrs;, %testAttrs;, external ResourcesRequired, %ani mationEvents;, %animElementAttrs;, %ani mAttributeAttrs;, %animTimingAttrs;.

For alist of attributes and properties that can be animated using the 'set' element, see Elements, attributes and properties that can be animated.

19.2.12 The 'animateMotion' element

The 'animateMotion' element causes a referenced element to move along a motion path.

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this element isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: ‘animateMotion' element.

<IENTITY % ani mat eMbti onExt "" >
<! ELEMENT ani nat eMotion (%lescTitl eMetadat a;, npat h? %ani mat eMbti onExt;) >

<! ATTLI ST ani nat eMoti on
Yst dALtrs;
% est Attrs;
ext ernal Resour cesRequi red %Bool ean; #l MPLI ED
%ani mat i onEvent s;
Y%ani nEl enent Attrs;
%ani nTi m ngAttrs;
cal cMbde (discrete | linear | paced | spline) 'paced
val ues CDATA #| MPLI ED
keyTi mes CDATA #l MPLI ED
keySpl i nes CDATA #l MPLI ED
from CDATA #| VPLI ED
to CDATA #l MPLI ED
by CDATA #l| MPLI ED
%ani mMAddi ti onAttrs;
pat h CDATA #l MPLI ED
keyPoi nt s CDATA #l MPLI ED
rot at e CDATA #I MPLI ED
origin CDATA #l MPLIED >

Attribute definitions:
cal cMode ="discrete| linear | paced | spline"

Specifies the interpol ation mode for the animation. Refer to general description of the calcM ode attribute above. The only difference isthat the
default value for the calcMode for "animateMotion' is paced. See SMIL Animation: ‘calcMode' attribute for 'animateMotion'.

path = "<path-data>"
The motion path, expressed in the same format and interpreted the same way as the d= attribute on the 'path’ element. The effect of a motion path
animation isto add a supplemental transformation matrix onto the CTM for the referenced object which causes atrand ation along the x- and
y-axis of the current user coordinate system by the computed X and Y values computed over time.

keyPoints = "<list-of-numbers>"
keyPoints takes a semicolon-separated list of floating point values between 0 and 1 and indicates how far along the motion path the object shall
move at the moment in time specified by corresponding keyTimes value. Distance cal culations use the user agent's distance along the path
algorithm. Each progress value in the list correspondsto avaluein the keyTi nmes attribute list.
If alist of keyPoi nt s is specified, there must be exactly as many valuesinthekeyPoi nt s listasinthekeyTi nes list.
If there are any errorsin the keyPoi nt s specification (bad values, too many or too few values), then the document isin error (see Error
processing).

rotate = "<angle> | auto | auto-reverse”
auto indicates that the object is rotated over time by the angle of the direction (i.e., directional tangent vector) of the motion path. auto-reverse
indicates that the object is rotated over time by the angle of the direction (i.e., directional tangent vector) of the motion path plus 180 degrees. An
actual angle value can aso be given, which represents an angle relative to the x-axis of current user coordinate system. The rotate attribute adds

a supplemental transformation matrix onto the CTM to apply arotation transformation about the origin of the current user coordinate system.
The rotation transformation is applied after the supplemental translation transformation that is computed due to the path attribute. The default

valueisO.

http://www.w3.org/TR/smil-animation/#animateMotionElement
http://www.w3.org/TR/smil-animation/#MotionCalcModeAttribute

origin = "default"
The origin attribute is defined in the SMIL Animation specification [SMILANIM-ATTR-ORIGIN]. It has no effect in SVG.

Attributes defined elsewhere:

YostdAttrs;, YotestAttrs;, external ResourcesRequired, %ani mationEvents;, %ani mElementAttrs;, YoanimTimingAttrs;, values, keyTimes,
keySplines, from, to, by, %animAdditionAttrs;.

<IENTI TY % npat hExt "" >
<! ELEMENT npath (%descTi t| eMet adat a; %rpat hExt;) >

<I' ATTLI ST npat h
st dAttrs;
Il inkRef Attrs;
xlink: href %JRI; #REQU RED
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED >

Attribute definitions:
xlink:href ="<uri>"

A URI reference to the 'path’ element which defines the motion path.
Animatable: no.

Attributes defined elsewhere:
%stdAttrs;,, %xlinkRefAttrs; external ResourcesRequired.

For 'animateMotion', the specified values for from, by, to and values consists of x, y coordinate pairs, with a single comma and/or white space
separating the x coordinate from the y coordinate. For example, from="33,15" specifies an x coordinate value of 33 and ay coordinate value of 15.

If provided, the values attribute must consists of alist of x, y coordinate pairs. Coordinate values are separated by at least one white space character or a

comma. Additional white space around the separator is allowed. For example, values="10,20;30,20;30,40" or
values="10mm,20mm;30mm,20mm;30mm,40mm". Each coordinate represents alength. Attributes from, by, to and values specify a shape on the

current canvas which represents the motion path.

Two options are available which allow definition of amotion path using any of SVG's path data commands:
« the path attribute defines a motion path directly on 'animateMotion' element using any of SVG's path data commands.
« the'mpath’ sub-element provides the ability to reference an external 'path’ element as the definition of the motion path.

Note that SVG's path data commands can only contain values in user space, whereas from, by, to and values can specify coordinates in user space or
using unit identifiers. See Processing rules when using absolute unit identifiers and percentages.

The various (x,y) points of the shape provide a supplemental transformation matrix onto the CTM for the referenced object which causes atranslation
along the x- and y-axis of the current user coordinate system by the (x,y) values of the shape computed over time. Thus, the referenced object is
translated over time by the offset of the motion path relative to the origin of the current user coordinate system. The supplemental transformation is
applied on top of any transformations due to the target element's transform attribute or any animations on that attribute due to 'animateT ransform'

elements on the target element.

The additive and accumulate attributes apply to ‘animateMotion' elements. Multiple 'animateMotion' elements all simultaneously referencing the same
target element can be additive with respect to each other; however, the transformations which result from the 'animateMotion' elements are always
supplemental to any transformations due to the target element's transform attribute or any 'animateTransform’ elements.

The default calculation mode (calcMode) for animateMotion is “paced”. Thiswill produce constant vel ocity motion along the specified path. Note that
while animateM otion elements can be additive, it isimportant to observe that the addition of two or more "paced" (constant velocity) animations might
not result in a combined motion animation with constant velocity.

When a path is combined with "discrete”, "linear" or "spline" calcMode settings, and if attribute keyPoints is not provided, the number of valuesis
defined to be the number of points defined by the path, unless there are "move to" commands within the path. A "move to" command within the path
(i.e. other than at the beginning of the path description) A "move to" command does not count as an additional point when dividing up the duration, or
when associating keyTi mes, key Spl i nes and keyPoi nt s values. When a path is combined with a"paced” calcMode setting, all "move to"
commands are considered to have 0 length (i.e. they always happen instantaneously), and is not considered in computing the pacing.

For more flexibility in controlling the vel ocity along the motion path, the keyPoints attribute provides the ability to specify the progress aong the
motion path for each of the keyTimes specified values. If specified, keyPoints causes keyTimes to apply to the valuesin keyPoints rather than the points
specified in the val ues attribute array or the points on the path attribute.

The override rules for 'animateMotion are as follows. Regarding the definition of the motion path, the 'mpath’ element overrides the the path attribute,
which overrides values, which overrides from/by/to. Regarding determining the points which correspond to the keyTimes attributes, the keyPoints

attribute overrides path, which overrides values, which overrides from/by/to.

At any time t within a motion path animation of duration dur, the computed coordinate (x,y) along the motion path is determined by finding the point
(x,y) which ist/dur distance along the motion path using the user agent's distance along the path algorithm.

The following example demonstrates the supplemental transformation matrices that are computed during a motion path animation.

Example animMotion01 shows atriangle moving along a motion path.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000802/ / EN'
"http://ww. w3. org/ TR/ 2000/ CR- SVG- 20000802/ DTD/ svg- 20000802. dt d" >
<svg w dt h="5cnf hei ght="3cnf' viewBox="0 0 500 300">
<desc>Exanpl e ani mvbti on01 - denonstrate notion ani mati on conputations</desc>

<l-- Draw the outline of the notion path in blue, along
with three small circles at the start, mddle and end. -->
<pat h d="ML0OO, 250 C 100, 50 400, 50 400, 250"
style="fill:none; stroke:blue; stroke-w dth:7.06" />
<circle cx="100" cy="250" r="17.64" style="fill:blue" />
<circle cx="250" cy="100" r="17.64" style="fill:blue" />
<circle cx="400" cy="250" r="17.64" style="fill:blue" />
<l-- Here is a triangle which will be noved about the notion path.
It is defined with an upright orientation with the base of
the triangle centered horizontally just above the origin. -->
<path d="M25,12.5 L25,12.5 L 0,87.5 z"
style="fill:yellow, stroke:red; stroke-w dth:7.06" >
<!-- Define the notion path animation -->

<ani mat eMbti on dur="6s" repeat Count="indefinite"
pat h="ML00, 250 C 100, 50 400, 50 400, 250" rotate="auto" />
</ pat h>
</ svg>

At zero seconds At three seconds At six seconds
Example animMotion0O1

View this example as SV G (SV G-enabled browsers only)

The following table shows the supplemental transformation matrices that are applied to achieve the effect of the motion path animation.
After Os After 3s After 6s

Supplemental transform
due to movement tranglate(100,250) [trandl ate(250,100) |transl ate(400,250)
aong motion path

Supplemental transform
dueto rotate(-90) rotate(0) rotate(90)
rotate="auto"

For alist of elements that can be animated using the 'animateMotion' element, see Elements, attributes and properties that can be animated.

19.2.13 The 'animateColor' element

The 'animateColor' element specifies a color transformation over time.

Except for any SV G-specific rules explicitly mentioned in this specification, the normative definition for this element isthe SMIL Animation
[SMILANIM] specification. In particular, see SMIL Animation: ‘animateColor' element.

file:///D|/Public/CR-SVG-20000802/images/animate/animMotion01.svg
http://www.w3.org/TR/smil-animation/#animateColorElement

<IENTITY % ani mat eCol or Ext "" >
<I ELEMENT ani mat eCol or (%descTitl| eMet adat a; %ani mat eCol or Ext;) >
<! ATTLI ST ani nat eCol or
st dAttrs;
YiestAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
%ani mat i onEvent s;
Y%ani nEl enent Attrs;
Yani mMAttri buteAttrs;
Y@ani mli m ngAttrs;
%ani nvVal ueAttrs;
Y%ani mMAddi ti onAttrs; >

Attributes defined elsewhere:

Y%ostdAttrs;, YotestAttrs;, external ResourcesRequired, %ani mationEvents;, %ani mElementAttrs;, YoanimAttributeAttrs;, %animTimingAttrs;,
YanimV alueAttrs;, %animAdditionAttrs;.

The from, by and to attributes take color values, where each color value is expressed using the following syntax (the same syntax asused in SVG's
properties that can take color values):

<col or> [icc-col or(<nane>, <i cccol orval ue>+)]

The values attribute for the 'animateColor' element consists of a semicolon-separated list of color values, with each color value expressed in the above
syntax.

Out of range color values can be provided, but user agent processing will be implementation dependent. User agents should clamp color valuesto allow
color range values as late as possible, but note that system differences might preclude consistent behavior across different systems.

The 'color-interpolation' property applies to color interpolations that result from ‘animateColor' animations.

For alist of attributes and properties that can be animated using the ‘animateColor' element, see Elements, attributes and properties that can be animated.

19.2.14 The 'animateTransform' element

The 'animateTransform' element animates a transformation attribute on atarget element, thereby allowing animations to control translation, scaling,
rotation and/or skewing.

<IENTITY % ani mat eTr ansf or nExt "" >
<! ELEMENT ani mat eTr ansf orm (%descTi t| eMet adat a; ¥%ani mat eTr ansf or nExt ;) >
<! ATTLI ST ani nat eTr ansf orm

st dAttrs;

YaestAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

%ani mat i onEvent s;

Yani nEl ement Attrs;

Y%ani MAttri buteAttrs;

Y@ani mli m ngAttrs;

%ani nVal ueAttrs;

Y%ani mAddi ti onAttrs;

type (translate | scale | rotate | skewX | skewy) "translate" >

Attribute definitions:
type = "trandate | scale | rotate | skewX | skewY"
Indicates the type of transformation which is to have its values change over time.

Attributes defined elsewhere:

Y%ostdAttrs;, YotestAttrs;, external ResourcesRequired, %ani mationEvents;, %ani mElementAttrs;, YoanimAttributeAttrs;, %animTimingAttrs;,
%animV alueAttrs;, %animAdditionAttrs;.

The from, by and to attributes take a value expressed using the same syntax that is avail able for the given transformation type:

« For atype="trandate", each individual valueis expressed as <tx> [,<ty>].

« Foratype="scale", eachindividual valueis expressed as <sx> [,<sy>].

« For atype="rotate", each individual value is expressed as <rotate-angle> [<cx> <cy>].

« For atype="skewX" and type="skewY", each individual value is expressed as <skew-angle>.
(See The transform attribute.)

The values attribute for the ‘animateTransform' element consists of a semicolon-separated list of values, where each individual valueis expressed as
described above for from, by and to.

If calcMode has the value paced, then atotal "distance” for each component of the transformation is calculated (e.g., for atranslate operation, a total

distanceis calculated for both tx and ty) consisting of the sum of the absolute values of the differences between each pair of values, and the animation
runs to produce a constant distance movement for each individual component.

When an animation is active, the effect of non-additive 'animateTransform' (i.e., additive="replace") is to replace the given attribute's value with the
transformation defined by the 'animateTransform'. The effect of additive (i.e., additive="sum") is to post-multiply the transformation matrix
corresponding to the transformation defined by this 'animateTransform'. To illustrate:

<circle ...>
<ani mat eTransform type="rotate" fron="0" to="90" dur="5s"/>
<ani mat eTransform type="scal e" from="1" to="2" dur="5s"/>
</circle>

In the code snippet above, at time 5 seconds, the visual result of the above animation would be equivalent to the following static circle:

<circle transforn="rotate(90); scale(2)" ... />

For alist of attributes and properties that can be animated using the 'animateTransform' element, see Elements, attributes and properties that can be
animated.

19.2.15 Elements, attributes and properties that can be animated

Thefollowing lists all of the elements which can be animated by an 'animateMotion' element:
« 'svg (‘animateMotion' has no effect on outermost 'svg' elements)
. g
o 'defs
o 'image
o ‘path’

. circle

o 'elipse

o line

« 'polyline

« 'polygon'

« 'clipPath'

e &

« 'foreignObject'

Each attribute or property within this specification indicates whether or not it can be animated by SV G's animation elements. Animatable attributes and
properties are designated as follows:

Animatable: yes.

whereas attributes and properties that cannot be animated are designated:

Animatable: no.

SVG has adefined set of basic data types for its various supported attributes and properties. For those attributes and properties that can be animated, the
following table indicates which animation elements can be used to animate each of the basic data types. If a given attribute or property can take values
of keywords (which are not additive) or numeric values (which are additive), then additive animations are possible if the subsequent animation uses a
numeric value even if the base animation uses a keyword value; however, if the subsequent animation uses a keyword value, additive animation is not
possible.

Basic data type Additive?|'animate’ |'set" 'acr:1c|)r|rc1)zralte T'r?rgc?rtri' Notes
<angle> yes yes lyes [no Ino |
[<color> yes yes lyes |yes Ino |Only RGB color values are additive.
[<coordinate> yes yes lves [no no
[<frequency> no no no [no no
<integer> yes yes lves [no no
|<length> yes yes yes |no no
[<list of xxx> no yes yes [no no
[<number> yes yes yes |no no
|<paint> yes yes yes |yes no Only RGB color values are additive.
[<percentage> yes yes yes |no no
<time> no no no |no no
siransformlist> yes no no no yes Qc?gi&ﬁtmmst?ﬁg égs;grgfa?rgﬂsif%rmamions.
|<uri> no yes yes [no no
|All other animatable attributes and properties|no yes yes [no no

Any deviation from the above table or other specia note about the animation capabilities of a particular attribute or property isincluded in the section of
the specification where the given attribute or property is defined.

19.3 Animation using the SVG DOM

The following exampl e shows a simple animation:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/ DTDY svg- 20000802. dt d" >
<svg w dt h="12cnt' hei ght="2cn{ vi ewBox="0 0 1200 200"
onl oad="Start Ani nati on(evt)" >

<script type="text/ecnmascript"><![CDATA

var tinevalue = 0;

var tinmer_increnent = 50;

var max_tinme = 5000;

var text_el enent;

function StartAni mation(evt) {
text _element = evt.target.owner Docunent. get El ement Byl d(" Text El enent") ;
ShowAndG owEl enent () ;

}
function ShowAndG owEl erment () {
timevalue = tinevalue + tiner_increnent;
if (timevalue > nmax_tine)
return;

/1 Scale the text string gradually until it is 20 tines |arger

scal efactor = (tinevalue * 20.) / max_tine;
text_element.setAttribute("transforni, "scale(" + scalefactor + ")");
/1 Make the string nore opaque

opaci tyfactor = timevalue / max_tine;
text_element.setAttribute("style", "opacity:" + opacityfactor);

/1 Call ShowAndG owEl ement again <timer_increment> nilliseconds |ater.
set Ti meout (" ShowAndG owEl enent ()", timer_increnent)

}
wi ndow. ShowAndGr owEl emrent = ShowAndG owEl enent
]1></script>

<g transform="transl ate(50, 150)" style="fill:red; font-size:7">
<text id="TextEl enent">SVG</text>
</ g>
</ svg>

View this example as SV G (SV G-enabled browsers only)

The above SV G file contains a single graphics element, a text string that says"SVG". The animation loops for 5 seconds. The text string starts out small
and transparent and grows to be large and opaque. Here is an explanation of how this example works:

« Theonl oad="Start Ani mat i on(evt)" attribute indicates that, once the document has been fully loaded and processed, invoke
ECMAScript function St ar t Ani nat i on.

o The'script' element defines the ECM A Script which makes the animation happen. The St ar t Ani nat i on() functionisonly called onceto
giveavalueto global variablet ext _el enent and to make theinitial call to ShowAndG owEl enent () . ShowAndGr owEl enent () is
called every 50 milliseconds and resetsthe t r ansf or mand st y| e attributes on the text element to new values each timeit is called. At the
end of ShowAndGr owEl enent , the function tells the ECMA Script engine to call itself again after 50 more milliseconds.

« The'g' element shifts the coordinate system so that the origin is shifted toward the lower-left of the viewing area. It also defines the fill color and
font-size to use when drawing the text string.

« The'text' element contains the text string and is the element whose attributes get changed during the animation.

If scripts are modifying the same attributes or properties that are being animated by SV G's animation elements, the scripts modify the base value for the
animation. If abase value is modified while an animation element is animating the corresponding attribute or property, the animations are required to
adjust dynamically to the new base value.

If ascript is modifying a property on the override style sheet at the same time that an animation element is animating that property, the result is
implementation-dependent; thus, it is recommended that this be avoided.

19.4 DOM interfaces

The following two interfaces are from SMIL Animation. They are included here for easy reference:

Interface ElementTimeControl

The ElementTimeControl interface, part of the org.w3c.dom.smil module and defined in SMIL Animation: Supported interfaces, defines common
methods for elements which define animation behaviors compatible with SMIL Animation.

Calling begi nEl enent () causesthe animation to begin in the same way that an animation with event-based begin timing begins. The effective begin
timeisthe current presentation time at the time of the DOM method call. Note that begi nEl enment () issubject tother est art attribute in the same
manner that event-based begin timing is. If an animation is specified to disallow restarting at a given point, begi nEl enent () methods calls must
fail. Refer also to the section Restarting animation.

Calling begi nEl enent At (seconds) hasthe same behavior asbegi nEl enent (), except that the effective begin timeis offset from the current
presentation time by an amount specified as a parameter. Passing a negative value for the offset causes the element to begin asfor begi nEl enent (),
but has the effect that the element begins at the specified offset into its active duration. The begi nEl enent At () method must also respect the
restart atribute. Therestart semanticsfor abegi nEl enent At () method call are evaluated at the time of the method call, and not at the effective
begin time specified by the offset parameter.

Calling endEl erment () causes an animation to end the active duration, just as end does. Depending upon the value of thef i | | attribute, the
animation effect may no longer be applied, or it may be frozen at the current effect. Refer also to the section Freezing animations. If an animation is not

currently active (i.e. if it has not yet begun or if it is frozen), the endEl ermrent () method will fail.

Calling endEl enment At () causes an animation to end the active duration, just asendEl enment () does, but alows the caller to specify a positive
offset, to cause the element to end at a point in the future. Other than delaying when the end actually happens, the semantics are identical to those for
endEl enent () . If endEl enent At () iscalled more than once while an element is active, the end time specified by the last method call will
determine the end behavior.

IDL Definition

i nterface El enent Ti mneControl {

bool ean begi nEl enent ()
rai ses(DOVException);

file:///D|/Public/CR-SVG-20000802/images/animate/dom01.svg
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/smil-animation/#DOMSupport
http://www.w3.org/TR/smil-animation/#Restart
http://www.w3.org/TR/smil-animation/#Fill

bool ean begi nEl ement At (in float offset)
rai ses(DOVException);
bool ean endEl enent ()
rai ses(DOVException);
bool ean endEl enent At (in float offset)
rai ses(DOVException);
b

Methods
beginElement

Causes this element to begin the local timeline (subject to restart constraints).
No Parameters
Return value

boolean t r ue if the method call was successful and the element was begun. f al se if the method call failed. Possible reasons
for failure include:

= Theelement isalready active and cannot be restarted when it is active. Ther est art attribute is set to
"whenNot Act i ve".

= The element is active or has been active and cannot be restarted. Ther est art attributeissetto" never .
Exceptions
DOMException SYNTAX_ERR: The element was not defined with the appropriate syntax to allow begi nEl enent calls.
beginElementAt
Causes this element to begin the local timeline (subject to restart constraints), at the passed offset from the current time when the method
iscalled. If the offset is >= 0, the semantics are equivalent to an event-base begin with the specified offset. If the offset is< 0, the

semantics are equivalent to beginElement(), but the element active duration is evaluated as though the element had begun at the passed
(negative) offset from the current time when the method is called.

Parameters
in float offset The offset in seconds at which to begin the element.
Return value

boolean t r ue if the method call was successful and the element was begun. f al se if the method call failed. Possible reasons
for failure include:

= The element isalready active and cannot be restarted when it isactive. Ther est art attributeis set to
"whenNot Acti ve".

= The element is active or has been active and cannot be restarted. Ther est art attributeisset to " never ".
Exceptions
DOMException SYNTAX_ERR: The element was not defined with the appropriate syntax to allow begi nEl enent At calls.
endElement
Causes this element to end the local timeline.
No Parameters
Return value

boolean t r ue if the method call was successful and the element was ended. f al se if method call failed. Possible reasons for
failure include:

= The element is not active.
Exceptions
DOMException SYNTAX_ERR: The element was not defined with the appropriate syntax to allow endEl enent cals.
endElementAt

Causes this element to end the local timeline at the specified offset from the current time when the method is called.
Parameters

in float offset The offset in seconds at which to end the element. Must be >= 0.
Return value

boolean t r ue if the method call was successful and the el ement was ended. f al se if the method call failed. Possible reasons
for failure include:

= The element is not active.
Exceptions

DOMException SYNTAX_ERR: The element was not defined with the appropriate syntax to allow endEl enent At calls.

The corresponding Java binding:

package org.w3c.dom svg;
i mport org.w3c. dom DOVExcepti on;

public interface El ement Ti neControl {

bool ean begi nEl emrent ()

t hr ons DOVExcepti on;
bool ean begi nEl enent At (float offset)

t hrows DOVExcepti on;
bool ean endEl ement ()

t hrows DOMEXxcepti on;
bool ean endEl enent At (float offset)

t hr ons DOMEXxcepti on;

Interface TimeEvent

The TimeEvent interface, defined in SMIL Animation: Supported interfaces defined in SMIL Animation: Supported interfaces, provides specific
contextual information associated with Time events.

The different types of events that can occur are:
beginEvent

This event is raised when the element local timeline beginsto play. It will be raised each time the element begins the active duration (i.e. when it
restarts, but not when it repeats). It may be raised both in the course of normal (i.e. scheduled or interactive) timeline play, aswell asin the case
that the element was begun with the begi nEl enent () or begi nEl emrent At () methods. Note that if an element is restarted whileit is
currently playing, the element will raise an end event and another begin event, as the element restarts.

o Bubbles: No

o Cancelable: No

o Context Info: None
endEvent

Thisevent israised at the active end of the element. Note that this event is not raised at the simple end of each repeat. This event may be raised
both in the course of normal (i.e. scheduled or interactive) timeline play, aswell asin the case that the element was ended with the

endEl enent () orendEl enent At () methods. Note that if an element is restarted while it is currently playing, the element will raise an end
event and another begin event, as the element restarts.

o Bubbles: No

o Cancelable: No

o Context Info: None
repeatEvent

Thisevent is raised when an element local timeline repeats. It will be raised each time the element repeats, after the first iteration.
The event provides a numerical indication of which repeat iteration is beginning. The value is a O-based integer, but the repeat event is not raised
for thefirst iteration and so the observed values of the detail attribute will be >= 1.

o Bubbles: No
o Cancelable: No
o Context Info: detail (current iteration)

IDL Definition

interface TineEvent : events::Event {
readonly attribute views:: AbstractView vi ew;

readonly attribute |ong detail;
void initTimeEvent (in DOVString typeArg, in views::AbstractView viewArg, in long detail Arg);
h
Attributes

readonly views::AbstractView view
Thevi ewattribute identifies the AbstractView [DOM2-VIEWS] from which the event was generated.

http://www.w3.org/TR/smil-animation/#DOMSupport
http://www.w3.org/TR/smil-animation/#DOMSupport

readonly long detail

Specifies some detail information about the Event, depending on the type of the event. For this event type, indicates the repeat number
for the animation.

Methods
initTimeEvent
TheinitTimeEvent method is used to initialize the value of a TimeEvent created through the DocumentEvent interface. This method may
only be called before the TimeEvent has been dispatched via the dispatchEvent method, though it may be called multiple times during
that phase if necessary. If called multiple times, the final invocation takes precedence.
Parameters
in DOMString typeArg Specifies the event type.
inviews::AbstractView viewArg Specifies the Event's AbstractView.
in long detailArg Specifies the Event's detail.
No Return Value
No Exceptions
The corresponding Java binding:

package org.w3c. dom svg;

import org.w3c.dom events. Event;
i mport org.w3c.dom vi ews. Abst ract Vi ew,

public interface Ti neEvent extends
Event {
public AbstractView getView);
public int getDetail ();

void initTineEvent (String typeArg, AbstractView viewArg, int detail Arg);
}

The following interfaces are defined below: SV GAnimationElement, SV GAnimateElement, SV GSetElement, SV GAnimateM otionElement,
SV GAnimateColorElement, SV GAnimateT ransformElement.

Interface SVGAnimationElement

The SV GAnimationElement interface is the base interface for all of the animation e ement interfaces: SV GAnimateElement, SV GSetElement,
SVGAnimateColorElement, SV GAnimateM otionElement and SV GAnimateT ransformEl ement.

Unlike other SVG DOM interfaces, the SVG DOM does not specify convenience DOM properties corresponding to the various language attributes on
SV G's animation elements. Specification of these convenience propertiesin away that will be compatible with future versions of SMIL Animation is
expected in a future version of SVG. The current method for accessing and modifying the attributes on the animation elements is to use the standard
getAttribute,setAttribute,getAttri buteNSandset Attri buteNSdefinedin DOM2.

IDL Definition

interface SVGAni nati onEl enent
SVCEl erent ,
SVGTest s,
SVGEXt er nal Resour cesRequi r ed,
sm | :: El enent Ti mneControl,
event s: : Event Target {

readonly attribute SVCEl enent targetEl enent;

float getStartTime ();
float getCurrentTinme ();
float getSinpleDuration ()
rai ses(DOVException);
b

Attributes
readonly SV GElement targetElement
The element which is being animated.

Methods
getStartTime

Returns the start time in seconds for this animation.
No Parameters
Return value
float The start time in seconds for this animation relative to the start time of the time container.

No Exceptions
getCurrentTime

Returns the current time in seconds relative to time zero for the given time container.
No Parameters
Return value
float The current time in seconds relative to time zero for the given time container.

No Exceptions
getSimpleDuration

Returns the number of seconds for the simple duration for this animation. If the simple duration is undefined (e.g., theend timeis
indefinite), then an exception is raised.

No Parameters
Return value
float The number of seconds for the simple duration for this animation.
Exceptions
DOMException NOT_SUPPORTED_ERR: The simple duration is not determined on the given element.

Interface SVGAnimateElement

The SV GAnimateElement interface corresponds to the ‘animate’ element.

Object-oriented access to the attributes of the 'animate’ element viathe SVG DOM is not available.
IDL Definition

interface SVGAni nat eEl ement : SVGAni nati onEl enent {};

Interface SVGSetElement

The SV GSetElement interface corresponds to the 'set' element.

Object-oriented access to the attributes of the 'set' element viathe SVG DOM is not available.
IDL Definition

interface SVGSet El ement : SVGAni nati onEl enent {};

Interface SVGAnimateMotionElement

The SV GAnimateM otionElement interface corresponds to the 'animateMotion’ element.

Object-oriented access to the attributes of the 'animateMotion’ element viathe SVG DOM is not available.
IDL Definition

i nterface SVGAni mat eMoti onEl ement : SVGAni mati onEl enent {};

Interface SVGAnimateColorElement

The SV GAnimateCol orElement interface corresponds to the 'animateColor' el ement.

Object-oriented access to the attributes of the 'animateColor' element viathe SVG DOM is not available.
IDL Definition

i nterface SVGAni nat eCol or El ement : SVGAni nati onEl enent {};

Interface SVGAnimateTransformElement

The SVGAnimateTransformElement interface corresponds to the ‘animateTransform' element.

Object-oriented access to the attributes of the 'animateTransform' element viathe SVG DOM is not available.
IDL Definition

i nterface SVGAni nat eTransfornEl ement : SVGAni mati onEl enent {};

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

20 Fonts

Contents

o 20.1 Introduction

o 20.2 Overview of SVG fonts

o 20.3 The'font' element

o 20.4 The'glyph' element

« 20.5 The 'missing-glyph' element

e 20.6 The'hkern' and 'vkern' elements

o 20.7 Describing afont

o 20.7.1 Overview of font descriptions

o 20.7.2 Alternative ways for providing a font description
o 20.7.3 The 'font-face' element
o 20.8 DOM interfaces

20.1 Introduction

Reliable delivery of fontsis considered a critical requirement for SVG. Designers require the ability to create SVG graphics with
whatever fonts they care to use and then have the same fonts appear in the end user's browser when viewing an SV G drawing, even
if the given end user hasn't purchased the fonts in question. This parallels the print world, where the designer uses a given font
when authoring a drawing for print, but when the end user views the same drawing within a magazine the text appears with the
correct font.

SVG utilizes the Web font facility defined in the "Cascading Style Sheets (CSS) level 2" specification [CSS2] as a key mechanism
for reliable delivery of font data to end users. A common scenario is that SV G authoring applications will generate compressed,
subsetted Web fonts for all text elements used by a given SVG document fragment. Typically, the Web fonts will be saved in a
location relative to the referencing document.

One disadvantage to the Webfont facility to date is that no particular font formats that were required to be supported. The result
was that different implementations supported different Web font formats, thereby making it difficult for Web site creators to post a
single Web site that is supported by alarge percentage of installed browsers.

To provide acommon font format that will exist in all conforming SV G user agents, SV G includes elements which alow for fonts
to be defined in SVG.

SV G fonts can improve the semantic richness of graphics that represent text. For example, many company logos consist of the
company name drawn artistically. In some cases, accessibility may be enhanced by expressing the logo as a series of glyphsin an

SVG font and then rendering the logo as a'text’ element which references this font.

file:///D|/Public/CR-SVG-20000802/indexlist.html

20.2 Overview of SVG fonts

An SVG font isafont defined using SVG's 'font' element.

The purpose of SVG fontsisto alow for delivery of glyph outlines in display-only environments. SV G fonts that accompany Web
pages must be supported only in browsing and viewing situations. Graphics editing applications or file trandation tools must not
attempt to convert SVG fonts into system fonts. The intent is that SV G files be interchangeabl e between two content creators, but
not the SV G fonts that might accompany these SV G files. Instead, each content creator will need to license the given font before
being able to successfully edit the SV G file. The font-face-name element indicates the name of licensed font to use for editing.

SV G fonts contain unhinted font outlines. Because of this, on many implementations there will be limitations regarding the quality
and legibility of text in small font sizes. For increased quality and legibility in small font sizes, content creators may want to use an
alternate font technology, such as fonts that ship with operating systems or an alternate Web font format.

Because SV G fonts are expressed using SV G elements and attributes, in some cases the SV G font will take up more space than if
the font were expressed in a different Web font format which was especialy designed for compact expression of font data. For the
fastest delivery of Web pages, content creators may want to use an alternate font technology.

A key value of SV G fontsis guaranteed availability in SV G user agents. In some situations, it might be appropriate for an SVG
font to be the first choice for rendering some text. In other situations, the SV G font might be an alternate, back-up font in case the
first choice font (perhaps a hinted system font) is not available to a given user.

The characteristics and attributes of SV G fonts correspond closely to the font characteristics and parameters described in the
"Cascading Style Sheets (CSS) level 2" specification [CSS2]. In this model, various font metrics, such as advance values and
baseline locations, and the glyph outlines themselves, are expressed in units that are relative to an abstract square whose height is
the intended distance between lines of type in the same type size. This squareis called the em square and it is the design grid on
which the glyph outlines are defined. The value of the units-per-em attribute on the 'font' element specifies how many units the em
square is divided into. Common values for other font types are, for example, 250 (Intellifont), 1000 (Type 1) and 2048 (TrueType,
TrueType GX and Open-Type). Unlike standard graphicsin SVG, where theinitial coordinate system has the y-axis pointing
downward (see The initia coordinate system), the design grid for SV G fonts, along with theinitial coordinate system for the
glyphs, has the y-axis pointing upward for consistency with accepted industry practice for many popular font formats.

SVG fonts and their associated glyphs do not specify bounding box information. Because the glyph outlines are expressed as SVG
graphics elements, the implementation has the option to render the glyphs either using standard graphics calls or by using
special-purpose font rendering technology, in which case any necessary maximum bounding box and overhang cal culations can be
performed from analysis of the graphics elements contained within the glyph outlines.

An SVG font can be either embedded within the same document that uses the font or saved as part of an external resource.

Here is an example of how you might embed an SV G font inside of an SVG document.

<?xm version="1.0" standal one="yes"?>
<svg w dt h="400px" hei ght ="300px"
xm ns = "http://ww. w3. org/ 2000/ svg' >
<def s>

<font-face font-fam | y="Super Sans" font-weight="bold" font-style="normal"
uni t s- per-em="1000" cap- hei ght ="600" x- hei ght="400"
ascent =" 700" descent ="300" hori z-adv-x="1000"
basel i ne="0" centerline="350"
mat hl i ne="350" i deographi c="400" hangi ng="500"
topl i ne="700">
<font-face-src>

</font-face-src>
</font-face>
<m ssi ng- gl yph><pat h d=" M), 0h200v200h- 200z"/ ></ m ssi ng- gl yph>

<gl yph uni code="!" hori z-adv-x="300"><!-- Qutline of exclam pt. glyph --></glyph>
<gl yph uni code="@><!-- Qutline of @glyph --></glyph>
<l-- nore glyphs -->

</ font>

<text style="font-famly: 'Super Sans', Helvetica, sans-serif;
font-weight: bold; font-style: normal">Text
usi ng enbedded font</text>
</ svg>

Here is an example of how you might use the CSS @font-face facility to reference an SV G font which is saved in an external file.
First referenced SV G font file:

<?xm version="1.0" standal one="yes"?>
<svg wi dt h="100% hei ght ="100%
xmns = "http://ww. w3. org/ 2000/ svg' >
<def s>

<font-face font-fam | y="Super Sans" font-weight="normal" font-style="italic"
uni ts-per-em="1000" cap- hei ght ="600" x-hei ght="400"
ascent =" 700" descent ="300" hori z-adv-x="1000"
basel i ne="0" centerline="350"
mat hl i ne="350" i deographi c="400" hangi ng="500"
topl i ne="700">
<font-face-src>

</font-face-src>
</font-face>
<m ssi ng- gl yph><pat h d=" M), 0h200v200h- 200z"/ ></ m ssi ng- gl yph>

<gl yph uni code="!" horiz-adv-x="300"><!-- Qutline of exclam pt. glyph --></glyph>
<gl yph uni code="@><!-- Qutline of @glyph --></glyph>
<l-- nore glyphs -->
</ font>
</ def s>
</ svg>

The SV G file which uses/references the above SV G font

<?xm version="1.0" standal one="yes" ?>
<svg wi dt h="400px" hei ght ="300px"
xmns = "http://ww.w3. org/ 2000/ svg' > <defs>
<style type="text/css">
<! [CDATA[
@ont-face {
font-famly: 'Super Sans';
font-wei ght: nornmal;
font-style: italic;
src: url ("nyfont.svg#Font2") format(svg)
}
11>
</style>
</ def s>
<text style="font-famly: 'Super Sans'; font-weight:nornmal;
font-style: italic">Text using enbedded font</text>
</ svg>

20.3 The 'font' element

The 'font' element defines an SV G font.

<IENTITY % fontExt "" >
<I ELEMENT font (%lescTitl eMetadata;, font-face,

m ssi ng- gl yph, (gl yph| hkern| vkern % ont Ext;)*) >

<! ATTLI ST font
Y%st dAttrs:;
ext er nal Resour cesRequi red %Bool ean; #l| MPLI ED
class % assLi st; #l MPLI ED
style %5tyl eSheet; #l MPLI ED
9YPresentati onAttri butes-All;
hori z-origi n-x %\unber; #l MPLI ED
hori z-origin-y %unber; #l MPLI ED
hori z- adv-x Y%unber; #REQUI RED
vert-origin-x Yunber; #l MPLI ED
vert-origin-y Y%unber; #l MPLI ED
vert-adv-y Y%\unber; #I| MPLIED >

Attribute definitions:
horiz-origin-x = "<number>"

The X-coordinate in the font coordinate system of the origin of a glyph to be used when drawing horizontally oriented text.
(Note that the origin appliesto al glyphsin the font.)

If the attribute is not specified, the effect isasif avalue of "0" were specified.

Animatable: no.

horiz-origin-y = "<number>"

The Y -coordinate in the font coordinate system of the origin of a glyph to be used when drawing horizontally oriented text.
(Note that the origin appliesto al glyphsin the font.)

If the attribute is not specified, the effect isasif avalue of "0" were specified.

Animatable: no.

horiz-adv-x = "<number>"

The default horizontal advance after rendering aglyph in horizontal orientation. Glyph widths are required to be
non-negative, even if the glyph istypically rendered right-to-left, asin Hebrew and Arabic scripts.
If the attribute is not specified, the effect is asif avalue equivaent of one em were specified (see units-per-em).

Animatable: no.
vert-origin-x = "<number>"

The X-coordinate in the font coordinate system of the origin of a glyph to be used when drawing vertically oriented text.
(Note that the origin appliesto al glyphsin the font.)
If the attribute is not specified, the effect is asif the attribute were set to half of the effective value of attribute horiz-adv-x.

Animatable: no.
vert-origin-y = "<number>"

The Y-coordinate in the font coordinate system of the origin of a glyph to be used when drawing vertically oriented text.
(Note that the origin appliesto al glyphsin the font.)
If the attribute is not specified, the effect is asif the attribute were set to the position specified by the font's ascent attribute.

Animatable: no.
vert-adv-y = "<number>"

The default vertical advance after rendering a glyph in vertica orientation.
If the attribute is not specified, the effect is asif the attribute were set to the sum of the values of attributes ascent and.

descent.
If the attribute is not specified, the effect is as if a value equivalent of one em were specified (see units-per-em).
Animatable: no.

Attributes defined elsewhere;
%ostdAttrs;, external ResourcesRequired, class, style, %oPresentationAttributes-All;.

Each 'font' element must have a 'font-face' child element which describes various characteristics of the font.

20.4 The 'glyph' element

The 'glyph' element defines the graphics for a given glyph. The coordinate system for the glyph is defined by the various attributes
in the font' element.

The graphics that make up the 'glyph’ can be either a single path data specification within the d attribute or arbitrary SVG as
content within the 'glyph'. These two alternatives are processed differently (see below).

<IENTITY % gl yphExt "" >

<! ELEMENT gl yph (desc|title|netadatal defs]
path|text|rect|circle|lellipse|line|polyline|polygon|
use| i mage| svg| g| view swi tch| a| al t A yphDef |
script]|styl e| synbol | marker| cli pPat h| mask]|
i near G adi ent | radi al G adi ent | pattern|filter|cursor|font|
ani mat e| set | ani mat eMot i on| ani mat eCol or | ani mat eTr ansf or
color-profile|font-face
%gl yphExt;)* >

<I ATTLI ST gl yph
9%stdAttrs;
class % assList; #l MPLI ED
style %5tyl eSheet; #l MPLI ED
9%Presentati onAttri butes-All;
uni code CDATA #| MPLI ED
gl yph- nane CDATA #l MPLI ED
d %Pat hDat a; #| MPLI ED
vert-text-orient CDATA #l MPLI ED
ar abi ¢ CDATA #l MPLI ED
han CDATA #l MPLI ED
hori z- adv- x Y%Nunber; #l MPLI ED
vert-adv-y 9%unber; #l MPLI ED >

Attribute definitions:
unicode = "<string>"

One or more Unicode characters indicating the sequence of Unicode characters which corresponds to this glyph. If a
character is provided, then this glyph corresponds to the given Unicode character. If multiple characters are provided, then
this glyph corresponds to the given sequence of Unicode characters. One use of sequence of charactersisfor ligatures. For
example, if unicode="ffl", then the given glyph will be used to render the sequence of characters"f", "f", and "I". (This
could alternatively have been expressed using character entities, using XML character references expressed in hexadecimal
notation: unicode="& #x66;& #x66;& #x6¢;", or XML character references expressed in decimal notation:
unicode="ffl".) When determining the glyph(s) to draw a given character sequence, the ‘font’ element is
searched from itsfirst 'glyph' element toitslast in logical order to see if the upcoming sequence of Unicode charactersto be
rendered match the sequence of Unicode characters specified in the unicode attribute for the given 'glyph’ element. The first
successful match isused. Thus, the "ffl" ligature need to be defined in the font before the "f* glyph; otherwise, the "ffl" will
never be selected.

Note that any occurrences of 'altGlyph' take precedence over the glyph selection rules within an SV G font.
If the unicode attribute is not provided, then the only way to use this glyph isviaan 'altGlyph' reference.
Animatable: no.

glyph-name = "<name> [, <name> |* "

A name for the glyph. It is recommended that glyph names be unique within afont. The glyph names can be used in
situations where Unicode character numbers do not provide sufficient information to access the correct glyph, such as when

there are multiple glyphs per Unicode character. The glyph names can be referenced in kerning definitions.
Animatable: no.
d = "path data"

The definition of the outline of a glyph, using the same syntax as for the d attribute on a'path’ element. See Path data.

See below for adiscussion of this attribute.
Animatable: no.

vert-text-orient = "default | h | v"

When drawing vertical text, indicates whether the given glyph is meant to be drawn with avertical or horizontal orientation.
The default value is vertOrient="default", which indicates that the Unicode character number determines the orientation of
this glyph.
Animatable: no.

arabic = "initial | medial | terminal | isolated"

For Arabic glyphs, indicates which of the four possible forms this glyph represents.
Animatable: no.

han ="ja| zht | zhs | kor"

For glyphs in the Han range, indicates which of the four possible forms this glyph represents.
Animatable: no.

horiz-adv-x = "<number>"

The horizontal advance after rendering a glyph in horizontal orientation. The default value is the value of the font's
horizAdvX attribute. Glyph widths are required to be non-negative, even if the glyph istypically rendered right-to-left, asin
Hebrew and Arabic scripts.
Animatable: no.

vert-adv-y = "<number>"

The vertical advance after rendering aglyph in vertical orientation.
If the attribute is not specified, the effect is asif the attribute were set to the value of the font's vertAdvY attribute.

Animatable: no.

Attributes defined el sewhere:
%nstdAttrs;, style, class, YoPresentationAttributes-All;.

The graphics for the 'glyph’ can be specified using either the d attribute or arbitrary SV G as content within the 'glyph'.

If the d attribute is specified, then the path data within this attribute is processed as follows:

« Any relative coordinates within the path data specification are converted into equivalent absolute coordinates

« Each of these absolute coordinates is transformed from the font coordinate system into the 'text’ element’s current coordinate
system such that the origin of the font coordinate system is properly positioned and rotated to align with the current text
position and orientation for the glyph, and scaled so that the correct 'font-size' is achieved.

« Theresulting, transformed path specification isrendered asif it were a'path’ element, using the styling properties that apply
to the characters which correspond to the given glyph, and ignoring any styling properties specified on the 'font' element or
the 'glyph’ element.

If the 'glyph' has child elements, then those child elements are rendered in a manner similar to how the 'use’ element renders a

referenced symbol. The rendering effect is asif the contents of the referenced 'glyph' element were deeply cloned into a separate
non-exposed DOM tree. Because the cloned DOM tree is non-exposed, the SVG DOM does not show the cloned instance.

For user agents that support Styling with CSS, the conceptua deep cloning of the referenced 'glyph’ element into a non-exposed
DOM tree aso copies any property values resulting from the CSS cascade [CSS2-CASCADE] on the referenced 'glyph’ and its
contents, and also applies any property values on the ‘font' element. CSS2 selectors can be applied to the origina (i.e., referenced)

elements because they are part of the formal document structure. CSS2 sel ectors cannot be applied to the (conceptually) cloned
DOM tree because its contents are not part of the formal document structure.

Property inheritance, however, works as if the referenced 'glyph' had been textually included as a deeply cloned child within the

document tree. The referenced 'glyph' inherits properties from the element that contains the characters that correspond to the
‘glyph’. The 'glyph' does not inherit properties from the 'font’ element's original parents.

In the generated content, for each instance of a given 'glyph’, a'd' is created which carries with it all property values resulting from
the CSS cascade [CSS2-CASCADE] on the 'font' element for the referenced 'glyph’. Within this'g' is another 'g’ which carries with
it al property values resulting from the CSS cascade [CSS2-CASCADE] on the 'glyph' element. The original contents of the 'glyph'
element are deep-cloned within the inner 'g’ element.

If the 'glyph' has both a d attribute and child elements, the d attribute is rendered first, and then the child elements.

In genera, the d attribute renders in the same manner as system fonts. For example, a dashed pattern will usually look the same if
applied to a system font or to an SV G font which definesits glyphs using the d attribute. Many implementations will be able to
render glyphs defined with the d attribute quickly and will be able to use afont cache for further performance gains.

Defining a glyph by including child elements within the 'glyph’ gives greater flexibility but more complexity. Different fill and
stroke techniques can be used on different parts of the glyphs. For example, the base of an"i" could be red, and the dot could be
blue. This approach has an inherent complexity with units. Any properties specified on atext el ements which represents alength,
such as the 'stroke-width' property, might produce surprising results since the length value will be processed in the coordinate

system of the glyph.

20.5 The 'missing-glyph' element

The 'missing-glyph’ element defines the graphicsto use if thereis an attempt to draw a glyph from a given font and the given glyph
has not been defined. The attributes on the 'missing-glyph' element have the same meaning as the corresponding attributes on the
‘aglyph’ element.

<IENTITY % mi ssi ng-gl yphExt "" >
<! ELEMENT mi ssing-glyph (desc|title|netadatal defs]|
path|text|rect|circle|lellipse|line|polyline|polygon|
use| i mage| svg| g| vi ew| swi t ch| a] al t A yphDef |
script|styl e| synbol | marker| cli pPat h| mask]|
i near G adi ent | radi al Gradi ent | pattern|filter]|cursor|font|
ani mat e| set | ani mat eMbt i on| ani nat eCol or | ani mat eTr ansf or m
color-profile|font-face
%m ssi ng- gl yphExt;)* >
<! ATTLI ST ni ssi ng-gl yph
Y%t dAttrs;
cl ass % assLi st; #l MPLI ED
style %5tyl eSheet; #l MPLI ED
%°r esentati onAttributes-All;
d %at hDat a; #l MPLI ED
hori z- adv- x %\unber; #l MPLI ED
vert-adv-y Y\unber; #l VPLIED >

Attributes defined elsewhere:
%stdAttrs;, class, style, %oPresentationAttributes-All;, d, horiz-adv-x, vert-adv-y.

20.6 The 'hkern' and 'vkern' elements

The 'hkern' and 'vkern' elements define kerning pairs for horizontally-oriented and vertically-oriented pairs of glyphs, respectively.

Kern pairsidentify pairs of glyphs within a single font whose inter-glyph spacing is adjusted when the pair of glyphs are rendered
next to each other. In addition to the requirement that the pair of glyphs are from the same font, SV G font kerning happens only
when the two glyphs correspond to characters which have the same values for properties 'font-family', 'font-size', 'font-style,

‘font-weight', 'font-variant', 'font-stretch’, 'font-size-adjust' and 'font'.

An example of akerning pair are the letters "Va', where the typographic result might look better if the letters"V" and the "a"' were
rendered slightly closer together.

Right-to-left and bidirectional text in SVG islaid out in atwo-step process, which is described in Relationship with
bidirectionality. If SV G fonts are used, before kerning is applied, characters are re-ordered into left-to-right (or top-to-bottom, for

vertical text) visual rendering order. Kerning from SV G fonts is then applied on pairs of glyphs which are rendered contiguously.
Thefirst glyph in the kerning pair is the left (or top) glyph in visual rendering order. The second glyph in the kerning pair is the
right (or bottom) glyph in the pair.

For convenience to font designers and to minimize file sizes, asingle 'hkern' and 'vkern' can define a single kerning adjustment
value between one set of glyphs (e.g., arange of Unicode characters) and another set of glyphs (e.g., another range of Unicode
characters).

The 'hkern' element defines kerning pairs and adjustment values in the horizontal advance value when drawing pairs of glyphs
which the two glyphs are contiguous and are both rendered horizontally (i.e., side-by-side). The spacing between charactersis
reduced by the kerning adjustment. (Negative kerning adjustments increase the spacing between characters.)

<! ELEMENT hkern EMPTY >
<! ATTLI ST hkern

Y%st dAttrs:;

ul CDATA #| MPLI ED

gl CDATA #l MPLI ED

u2 CDATA #| MPLI ED

g2 CDATA #| MPLI ED
k %\unber; #REQU RED >

Attribute definitions:
ul ="[<character> | <urange>] [, [<character> | <urange>]]* "

A sequence (comma-separated) of Unicode characters (refer to the description of the unicode attribute to the 'glyph’ element

for adescription of how to expressindividual Unicode characters) and/or unicode ranges (see description of unicode ranges
in [CSS2]) which identify a set of possible first glyphsin the kerning pair. If a given Unicode character within the set has

multiple corresponding 'glyph’ elements (i.e., there are multiple 'glyph' elements with the same unicode attribute value, but
different glyphName values), then al such glyphs are included in the set. Commais the separator character; thus, to kern a
comma, specify the comma as part of a Unicode range or as a glyph name using the gl attribute. The total set of possible
first glyphsin the kerning pair is the union of glyphs specified by the ul and g1 attributes.

Animatable: no.

gl ="<name> [, <name>]* "
A sequence (commarseparated) of glyph names (i.e., values that match glyphName attributes on 'glyph’ elements) which
identify a set of possiblefirst glyphsin the kerning pair. All glyphs with the given glyph name are included in the set. The
total set of possiblefirst glyphsin the kerning pair is the union of glyphs specified by the ul and g1 attributes.
Animatable: no.

u2 = "[<number> | <urange>] [, [<number> | <urange>] |* "
Same as the ul attribute, except that u2 specifies possible second glyphsin the kerning pair.
Animatable: no.

g2 ="<name> [, <name> |* "
Same as the g1 attribute, except that g2 specifies possible second glyphs in the kerning pair.
Animatable: no.

k ="<number>"

The amount to decrease the spacing between the two glyphs in the kerning pair. The valueisin the font coordinate system.
Animatable: no.

Attributes defined elsewhere:

oostdAttrs;.

At least one each of ul or g1 and at least one of u2 or g2 must be provided.

The 'vkern' element defines kerning pairs and adjustment values in the vertical advance value when drawing pairs of glyphs
together when stacked vertically. The spacing between charactersis reduced by the kerning adjustment.

<! ELEMENT vkern EMPTY >
<! ATTLI ST vkern

Yst dAttrs;

ul CDATA #l MPLI ED
CDATA #l| MPLI ED
u2 CDATA #| MPLI ED
CDATA #| MPLI ED
kK 9%\unber; #REQU RED >

Attributes defined el sewhere:
%stdAttrs;, ul, g1, u2, g2, k.

=)

R

20.7 Describing a font

20.7.1 Overview of font descriptions

A font description provides the bridge between an author's font specification and the font data, which is the data needed to format
text and to render the abstract glyphs to which the characters map - the actual scalable outlines or bitmaps. Fonts are referenced by
properties, such as the 'font-family' property.

Each specified font description is added to the font database and so that it can be used to select the relevant font data. The font
description contains descriptors such as the location of the font data on the Web, and characterizations of that font data. The font
descriptors are also needed to match the font properties to particular font data. The level of detail of afont description can vary
from just the name of the font up to alist of glyph widths.

For more about font descriptions, refer to the font chapter in the CSS2 specification [CSS2 Fonts].

20.7.2 Alternative ways for providing a font description

Font descriptions can be specified in either of the following ways:
» a'font-face element

« an @font-face rule within a CSS style sheet (only applicable for user agents which support using CSSto stylethe SVG
content)

20.7.3 The 'font-face' element

The 'font-face' element corresponds directly to the @font-face facility in CSS2. It can be used to describe the characteristics of any
font, SVG font or otherwise.

When used to describe the characteristics of an SV G font contained within the same document, it is recommended that the
‘font-face' element be a child of the 'font' element it is describing so that the font' element can be self-contained and

fully-described. In this case, any 'font-face-src' elements within the 'font-face' element are ignored asiit is assumed that the

http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions

‘font-face' element is describing the characteristics of its parent 'font' element.

<l ELEMENT font-face (%lescTitl eMetadata;,font-face-src?, definition-src?) >
<! ATTLI ST font-face

%st dAttrs;

font-fam |y CDATA #l MPLI ED

font-style CDATA #l MPLI ED

font-variant CDATA #l MPLI ED

f ont - wei ght CDATA #l MPLI ED

font-stretch CDATA #l MPLI ED

font-si ze CDATA #l MPLI ED

uni code-range CDATA #| MPLI ED

uni t s- per-em %unber ; #| MPLI ED

panose- 1 CDATA #l MPLI ED

stemv YNunber ; #| MPLI ED

stemh %Nunber; #|l MPLI ED

sl ope YNunber; #Il MPLI ED

cap- hei ght %\unber; #l MPLI ED

x- hei ght %Nunber; #| MPLI ED

accent - hei ght %\unber; #l MPLI ED

ascent YNunber: #l MPLI ED

descent %Nunber; #l MPLI ED

wi dt hs CDATA #| MPLI ED

bbox CDATA #| MPLI ED

i deogr aphi ¢ YNunber; #l MPLI ED

basel i ne Y%Nunber: #l MPLI ED

centerline %unber; #l MPLI ED

mat hl i ne Y%Nunber ; #l MPLI ED

hangi ng %Nunber ; #| MPLI ED

topline %unber; #l MPLI ED

underli ne-position %unber; #l MPLI ED

underli ne-thi ckness %\unber; #l MPLI ED

stri ket hrough-posi ti on %unber; #l MPLI ED

stri ket hrough-thi ckness %unber; #l MPLI ED

overline-position Yunber; #l MPLI ED

overline-thickness Y%unber; #l MPLIED >

Attribute definitions:

font-family = "<string>"
Same syntax and semantics as the 'font-family' descriptor within an @font-face rule.
Animatable: no.

font-style="al | [normal |italic | oblique] [, [normal | italic | oblique]]*"
Same syntax and semantics as the 'font-style' descriptor within an @font-face rule. The style of afont. Takes on the same
values as the 'font-styl€' property, except that a comma-separated list is permitted.

If the attribute is not specified, the effect isasif avalue of "al" were specified.
Animatable: no.

font-variant = "[normal | small-caps] [,[normal | small-caps]]**"
Same syntax and semantics as the 'font-variant' descriptor within an @font-face rule. Indication of whether thisfaceisthe

small-caps variant of afont. Takes on the same values as the 'font-variant' property, except that acomma-separated list is

permitted.
If the attribute is not specified, the effect isasif avalue of "normal” were specified.
Animatable: no.

http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-family
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-style
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-variant
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions

font-weight = "all | [normal | bold |100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900] [, [norma | bold |100 | 200 | 300 | 400 | 500 |
600 | 700 | 800 | 900]]*"
Same syntax and semantics as the 'font-weight' descriptor within an @font-face rule.
The weight of aface relative to othersin the same font family. Takes on the same values as the 'font-weight' property with
three exceptions:
o relative keywords (bolder, lighter) are not permitted
0 acomma-separated list of valuesis permitted, for fonts that contain multiple weights

o an additiona keyword, 'al', is permitted, which means that the font will match for al possible weights; either
because it contains multiple weights, or because that face only has a single weight.

If the attribute is not specified, the effect isasif avalue of "al" were specified.
Animatable: no.

font-stretch = "all | [normal | ultra-condensed | extra-condensed | condensed | semi-condensed | semi-expanded | expanded |
extra-expanded | ultra-expanded] [, [normal | ultra-condensed | extra-condensed | condensed | semi-condensed | semi-expanded |
expanded | extra-expanded | ultra-expanded]]*"
Same syntax and semantics as the 'font-stretch’ descriptor within an @font-face rule. Indication of the condensed or
expanded nature of the face relative to others in the same font family. Takes on the same values as the 'font-stretch’ property
except that:
o relative keywords (wider,narrower) are not permitted
0 acommaseparated list is permitted
o the keyword 'dl' is permitted

If the attribute is not specified, the effect isasif avalue of "normal” were specified.
Animatable: no.

font-size = "<string>"

Same syntax and semantics as the 'font-size' descriptor within an @font-face rule.
Animatable: no.

unicode-range = "<urange> [, <urange>]*"

Same syntax and semantics as the 'unicode-range’ descriptor within an @font-face rule. The range of 1SO 10646 characters
[UNICODE] possibly covered by the glyphsin the font. Except for any additional information provided in this
specification, the normative definition of the attribute isin [CSS2].

If the attribute is not specified, the effect isasif avalue of "U+0-10FFFF" were specified.
Animatable: no.

units-per-em = "<number>"

Same syntax and semantics as the 'units-per-em' descriptor within an @font-face rule. The number of coordinate units on
the em square, the size of the design grid on which glyphs are laid out.

Thisvalueis amost always necessary as nearly every other attribute requires the definition of adesign grid.

If the attribute is not specified, the effect isasif avaue of "1000" were specified.

Animatable: no.

panose-1 = "[<integer>]{ 10} "

Same syntax and semantics as the 'panose-1' descriptor within an @font-face rule. The Panose-1 number, consisting of ten

decimal integers, separated by whitespace. Except for any additional information provided in this specification, the
normative definition of the attributeisin [CSS2].

If the attribute is not specified, the effect isasif avalueof "000000 000 0" were specified.
Animatable: no.

stemv = "<number>"

Same syntax and semantics as the 'stemv' descriptor within an @font-face rule.
Animatable: no.

stemh = "<number>"

Same syntax and semantics as the 'stemh' descriptor within an @font-face rule.
Animatable: no.

http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-weight
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-stretch
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-size
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-unicode-range
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-units-per-em
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-panose-1
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-stemv
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-stemh
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions

slope = "<number>"

Same syntax and semantics as the 'slope’ descriptor within an @font-face rule. The vertical stroke angle of the font. Except
for any additional information provided in this specification, the normative definition of the attributeisin [CSS2].

If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: no.

cap-height = "<number>"
Same syntax and semantics as the 'cap-height' descriptor within an @font-face rule. The height of uppercase glyphsin the

font within the font coordinate system.
Animatable: no.

x-height = "<number>"

Same syntax and semantics as the 'x-height' descriptor within an @font-face rule. The height of lowercase glyphsin the font

within the font coordinate system.
Animatable: no.

accent-height = "<number>"

The distance from the baseline to the top of accent characters, measured by a distance within the font coordinate system.
If the attribute is not specified, the effect is asif the attribute were set to the value of the ascent attribute. If this descriptor is

used, the units-per-em attribute must also be specified.
Animatable: no.

ascent = "<number>"

Same syntax and semantics as the 'ascent’ descriptor within an @font-face rule. The maximum unaccented height of the font

within the font coordinate system.
Animatable: no.

descent = "<number>"

Same syntax and semantics as the 'descent’ descriptor within an @font-face rule. The maximum unaccented depth of the

font within the font coordinate system.
Animatable: no.

widths = "<string>"

Same syntax and semantics as the 'widths descriptor within an @font-face rule.
Animatable: no.

bbox = "<string>"

Same syntax and semantics as the 'bbox" descriptor within an @font-face rule.
Animatable: no.

ideographic = "<number>"

Comparable syntax and semantics as the 'baseline’ descriptor within an @font-face rule. Indicates the alignment coordinate
for glyphs which represent ideographic characters. If this descriptor is provided, the units-per-em attribute must also be
specified.

Animatable: no.

baseline = "<number>"

Same syntax and semantics as the 'baseling’ descriptor within an @font-face rule. The lower baseline of afont within the
font coordinate system.
Animatable: no.

centerline = "<number>"

Same syntax and semantics as the 'centerline’ descriptor within an @font-face rule. The central baseline of afont within the

font coordinate system.
Animatable: no.

mathline = "<number>"
Same syntax and semantics as the 'mathline' descriptor within an @font-face rule. The mathematical baseline of afont

http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-slope
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-cap-height
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-x-height
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-ascent
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-descent
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-widths
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-bbox
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-baseline
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-baseline
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-centerline
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-centerline
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions

within the font coordinate system.
Animatable: no.

hanging = "<number>"
Comparable syntax and semantics as the 'baseline’ descriptor within an @font-face rule. Indicates the alignment coordinate
for glyphs which represent ideographic characters. If this descriptor is provided, the units-per-em attribute must also be
specified.
Animatable: no.

topline = "<number>"

Same syntax and semantics as the 'topline’ descriptor within an @font-face rule. The top baseline of afont within the font

coordinate system.
Animatable: no.

underline-position = "<number>"

Theideal position of an underline within the font coordinate system. If this descriptor is provided, the units-per-em attribute
must also be specified. If this descriptor is provided, the units-per-em attribute must aso be specified.
Animatable: no.

underline-thickness = "<number>"

Theidea thickness of an underline, expressed as a length within the font coordinate system. If this descriptor is provided,
the units-per-em attribute must also be specified.
Animatable: no.

strikethrough-position = "<number>"

Theideal position of a strike-through within the font coordinate system. If this descriptor is provided, the units-per-em

attribute must also be specified.
Animatable: no.

strikethrough-thickness = "' <number>"

Theideal thickness of a strike-through, expressed as a length within the font coordinate system. If this descriptor is
provided, the units-per-em attribute must aso be specified.
Animatable: no.

overline-position = "<number>"

Theideal position of an overline within the font coordinate system. If this descriptor is provided, the units-per-em attribute

must also be specified.
Animatable: no.

overline-thickness = "<number>"

Theidea thickness of an overline, expressed as alength within the font coordinate system. If this descriptor is provided, the
units-per-em attribute must also be specified.
Animatable: no.

Attributes defined elsewhere:

Y%stdAttrs;.

The following elements and attributes correspond to the 'src’ descriptor within an @font-face rule.

<l ELEMENT font-face-src (font-face-uri|font-face-name)+ >
<I' ATTLI ST font-face-src
%t dAttrs; >

<!l ELEMENT font-face-uri (font-face-format*) >
<I ATTLI ST font-face-uri

st dAttrs;

Il inkRef Attrs;

xlink: href %Rl ; #REQUI RED >

http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-baseline
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-centerline
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-src
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions

<l ELEMENT font-face-format EMPTY >
<! ATTLI ST font-face-fornat
YstdAttrs;
string CDATA #l MPLI ED >

ELEMENT font-face-nane EMPTY >
ATTLI ST font -face-nane

Yt dAttrs:;

nane CDATA #| MPLI ED >

<
<

<
<

ELEMENT definition-src EMPTY >
ATTLI ST definition-src

%st dAttrs;

Ol i nkRef Attrs;

xlink:href %R ; #REQU RED >

Attributes defined el sewhere:
Y%ostdAttrs;, YoxlinkRef Attrs;, xlink:href.

20.8 DOM interfaces

The following interfaces are defined below: SV GFontElement, SV GGlyphElement, SV GMissingGlyphElement,
SVGHKernElement, SVGVKernElement, SV GFontFaceElement, SV GFontFaceSrcElement, SV GFontFaceUriElement,
SV GFontFaceFormatElement, SV GFontFaceNameElement, SV GDefinitionSrcElement.

Interface SVGFontElement

The SV GFontElement interface corresponds to the 'font' element.

Object-oriented access to the attributes of the 'font' element viathe SVG DOM is not available.
IDL Definition

i nterface SVGFont El enent
SVGEl enent ,
SVGEXxt er nal Resour cesRequi r ed,
SVGStyl able {};

Interface SVGGlyphElement
The SV GGlyphElement interface corresponds to the ‘glyph' element.
Object-oriented access to the attributes of the 'glyph' element viathe SVG DOM is not available.

IDL Definition

i nterface SVGA yphEl enent :
SVGEl enent ,
SVGStyl abl e {};

Interface SVGMissingGlyphElement

The SVGMissingGlyphElement interface corresponds to the 'missing-glyph’ element.
Object-oriented access to the attributes of the 'missing-glyph' element viathe SVG DOM is not available.

IDL Definition

i nterface SVGM ssi ngd yphEl enent
SVCEl enent
SVGStyl abl e {};

Interface SVGHKernElement

The SVGHKernElement interface corresponds to the 'hkern' element.

Object-oriented access to the attributes of the 'hkern' element viathe SV G DOM is not available.
IDL Definition

i nterface SVGHKer nEl enent : SVGEl ement {};

Interface SVGVKernElement

The SVGVKernElement interface corresponds to the 'vkern' element.

Obj ect-oriented access to the attributes of the 'vkern' element viathe SYG DOM is not available.
IDL Definition

i nterface SVGVKer nEl enent : SVGEl ement {};

Interface SVGFontFaceElement

The SV GFontFaceElement interface corresponds to the font-face' element.

Object-oriented access to the attributes of the 'font-face’ element viathe SVG DOM is not available.
IDL Definition

i nterface SVGFont FaceEl enent : SVCEl enent {};

Interface SVGFontFaceSrcElement

The SV GFontFaceSrcElement interface corresponds to the 'font-face-src' element.
IDL Definition

i nterface SVGFont FaceSr cEl ement : SVCEl enent {};

Interface SVGFontFaceUriElement

The SV GFontFaceUriElement interface corresponds to the ‘font-face-uri' element.

Object-oriented access to the attributes of the 'font-face-uri' element viathe SYG DOM is not available.
IDL Definition

i nterface SVGFont FaceUri El ement : SVCEl enent {};

Interface SVGFontFaceFormatElement

The SV GFontFaceFormatElement interface corresponds to the ‘font-face-format' element.

Obj ect-oriented access to the attributes of the 'font-face-format' element viathe SVG DOM is hot available.
IDL Definition

i nterface SVGFont FaceFor mat El ement : SVCEl enent {};

Interface SVGFontFaceNameElement

The SV GFontFaceNameElement interface corresponds to the 'font-face-name' element.

Object-oriented access to the attributes of the 'font-face-name’ element viathe SVG DOM is not available.
IDL Definition

i nterface SVGFont FaceNaneEl ement : SVCGEl ement {};

Interface SVGDefinitionSrcElement

The SV GDefinitionSrcElement interface corresponds to the 'definition-src' element.

Object-oriented access to the attributes of the 'definition-src’ element viathe SVG DOM is not available.

IDL Definition

interface SVCGDefinitionSrcEl enent : SVGEl ement {};

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

21 Metadata

Contents

o 21.1 Introduction

o 21.2 The'metadata element
o 21.3 Anexample

o 21.4DOM interfaces

21.1 Introduction

Metadata i s information about a document.

In the computing industry, there are ongoing standardization efforts towards metadata with the goal of promoting
industry interoperability and efficiency. Content creators should track these developments and include appropriate
metadata in their SV G content which conforms to these various metadata standards as they emerge.

The W3C Note "Metadata and SVG" [not yet published] discussesin detail various issues concerning metadata and
SVG. The document provides a current set of recommendations about appropriate uses of metadata in conjunction
with SVG.

The W3C has ongoing metadata activities which provide general metadata guidelines. One of the W3C's metadata
activities is the definition of Resource Description Framework (RDF), a W3C Recommendation for specifying
metadata. The specifications for RDF can be found at:

o Resource Description Framework Model and Syntax Specification

o Resource Description Framework (RDF) Schema Specification

Another activity relevant to most applications of metadatais the Dublin Core, which is a set of generally applicable
core metadata properties (e.g., Title, Creator/Author, Subject, Description, etc.).

Individual industries or individual content creators are free to define their own metadata schema but are encouraged to
follow existing metadata standards and use standard metadata schema wherever possible to promote interchange and
interoperability. If a particular standard metadata schema does not meet your needs, then it is usually better to define
an additional metadata schema in an existing framework such as RDF and to use custom metadata schemain
combination with standard metadata schema, rather than totally ignore the standard schema.

file:///D|/Public/CR-SVG-20000802/indexlist.html
http://www.w3.org/Metadata/Activity.html
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/rdf-schema/
http://purl.org/DC/

21.2 The 'metadata’ element

Metadata which is included with SV G content should be specified within 'metadata’ elements. The contents of the
'metadata’ should be elements from other XML namespaces, with these elements from these namespaces expressed in
amanner conforming with the "Namespacesin XML" Recommendation [XML-NS].

Authors should provide a 'metadata child element to the outermost 'svg' element within a stand-alone SV G document.
The 'metadata’ child element to an 'svg' element serves the purposes of identifying document-level metadata.

The DTD definitions of many of SVG's elements (particularly, container and text elements) place no restriction on the
placement or number of the 'metadata’ sub-elements. This flexibility is only present so that there will be a consistent
content model for container elements, because some container elementsin SV G allow for mixed content, and because
the mixed content rules for XML [XML-MIXED] do not permit the desired restrictions. Representations of future
versions of the SV G language might use more expressive representations than DTDs which alow for more restrictive
mixed content rules. It is strongly recommended that at most one 'metadata’ element appear as a child of any
particular element, and that this element appear before any other child elements (except possibly 'desc’ or 'title'
elements) or character data content. If metadata-processing user agents need to choose among multiple ‘'metadata
elements for processing (e.g., to decide which string to use for atooltip), the user agent shall choose the first one.

<IENTITY % net adat abExt "" >
<! ELEMENT net adat a (#PCDATA %ret adat aExt;)* >

<I ATTLI ST net adat a
Y%stdAttrs; >

Attribute definitions:
Attributes defined elsewhere:
%stdAttrs;.

21.3 An example

Here is an example of how metadata can be included in an SV G document. The example uses the Dublin Core version
1.1 schema:

<?xm version="1.0" standal one="yes" ?>
<svg wi dth="4in" height="3in"
xmns = "http://ww. w3. org/ 2000/ svg' >
<desc xm ns: nyfoo="http://exanple.org/ nyfoo">
<nyfoo:title>This is a financial report</nyfoo:title>
<nyfoo: descr>The gl obal description uses markup fromthe
<nyf oo: enph>nyf oo</ nyf oo: enph> nanespace. </ nyf oo: descr >
<nyf oo: scene><nyf 0o: what >wi dget $gr om h</ nyf oo: what >
<nyf oo: cont ai ns>$t hr ee $gr aph- bar </ nyf oo: cont ai ns>
<nyf 0o: when>1998 $t hr ough 2000</ nyf oo: when> </ nyf oo: scene>
</ desc>
<net adat a>
<r df : RDF
xmns:rdf = "http://ww. w3. or g/ TR/ REC-r df - synt ax/"
xmns:rdfs = "http://ww. w3. or g/ TR/ 2000/ CR- r df - schema- 20000327/ "
xmns:dc = "http://purl.org/dc/elements/1.1/" >

<rdf: Description about="http://exanple. org/ nyfoo"
dc:title="MyFoo Financial Report"
dc: descri ption="$three $bar $thousands $dollars $from 1998
$t hr ough 2000"
dc: publ i sher =" Exanpl e Organi zati on"
dc: dat e="2000- 04- 11"
dc: format ="i mage/ svg- xm "
dc: | anguage="en" >
<dc: creator>
<r df : Bag>
<rdf:li>lrving Bird</rdf:li>
<rdf:li>Mary Lanmbert</rdf:Ii>
</ rdf: Bag>
</ dc: creator>
</ rdf:Description>
</rdf: RDF>
</ met adat a>
</ svg>

21.4 DOM interfaces

The following interfaces are defined below: SV GM etadataElement.

Interface SVGMetadataElement

The SV GMetadataElement interface corresponds to the 'metadata’ element.
IDL Definition

i nterface SVGWwt adat aEl enment : SVGEl enent {};

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

22 Backwards Compatibility

A user agent (UA) might not have the ability to process and view SV G content. The following list outlines two
of the backwards compatibility scenarios associated with SV G content:

o For XML grammars with the ability to embed SV G content, it is assumed that some sort of aternate
representation capability such as the 'switch' element and some sort of feature-availability test facility
(such aswhat is described in the SMIL 1.0 specification [SMIL1]) will be available.

This 'switch' element and feature-availability test facility (or their equivalents) are the recommended
way for XML authors to provide an alternate representation to SV G content, such as an image or atext
string. The following example shows how to embed an SV G drawing within a SMIL 1.0 document such
that an alternate image will display in the event the user agent doesn't support SV G. Note that the MIME
typein the "type" attribute is an important means for the user agent to decide if it can decode the
referenced media.

In this example, the SV G content isincluded viaa URL reference. With some parent XML grammars it
will also be possible to include an SV G document fragment inline within the same file as its parent
grammar.

<?xm version="1.0" standal one="yes" ?>
<sm | >
<body>
<l-- Wth SML 1.0, the first child elenent of 'switch
which the SML 1.0 user agent is able to process
and which tests true will get processed and all other
child elements will have no visual effect. In this case,
if the SML 1.0 user agent can process "image/svg-xm",
then the SVG will appear; otherwi se, the alternate inmage
(the second child elenment) will appear. -->
<swi t ch>
<I-- Render the SVGif possible. -->
<ref type="inmage/svg-xm" src="draw ng.svg" />

<lI-- Else, render the alternate i mage. -->
<ing src="alternate_i mage.jpg" />
</ switch>
</ body>
</sm|>

o For HTML 4.0, SVG drawings can be embedded using the 'object’ element. An alternate representation
such as an image can be included as the content of the 'object’ element. In this case, the SV G content
usually will beincluded viaa URL reference. The following example shows how to use the 'object’
element to include an SV G drawing viaa URL reference with an image serving as the alternate
representation in the absence of an SV G user agent:

<ht m >

file:///D|/Public/CR-SVG-20000802/indexlist.html

<body>
<obj ect type="imge/ svg-xnm " data="draw ng.svg">
<l-- The contents of the <object> elenent (i.e., an alternate
i mge) are drawn in the event the user agent cannot process
the SVG drawi ng. -->
<ing src="alternate_imge.jpg" alt="short description" />
</ obj ect >
</ body>
</htm >

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

23 Extensibility

Contents

o 23.1 Foreign namespaces and private data

« 23.2 Embedding foreign object types

o 23.3 The'foreignObject' element

o 23.4 Anexample

o 23.5 Adding private el ements and attributes to the DTD
o 23.6 DOM interfaces

23.1 Foreign namespaces and private data

SVG dlowsinclusion of elements from foreign namespaces anywhere with the SV G content. In general, the SVG user agent will
include the unknown elements in the DOM but will otherwise ignore unknown elements. (The notable exception is described under
Embedding Foreign Object Types.)

Additionally, SVG alows inclusion of attributes from foreign namespaces on any SVG element. The SV G user agent will include
unknown attributes in the DOM but with otherwise ignore unknown attributes.

SVG's ability to include foreign namespaces can be used for the following purposes:

« Application-specific information so that authoring applications can include model-level datain the SV G content to serve their
"roundtripping" purposes (i.e., the ability to write, then read a file without loss of higher-level information).

« Supplemental datafor extensibility. For example, suppose you have an extrusion extension which takes any 2D graphics and
extrudes it in three dimensions. When applying the extrusion extension, you probably will need to set some parameters. The
parameters can be included in the SV G content by inserting elements from an extrusion extension namespace.

To illustrate, a business graphics authoring application might want to include some private data within an SVG document so that it
could properly reassemble the chart (a pie chart in this case) upon reading it back in:

<?xm version="1.0" standal one="yes" ?>
<svg w dt h="4in" hei ght="3in"
xmns = "http://ww. w3. org/ 2000/ svg' >
<def s>
<nmyapp: pi echart xm ns: myapp="http://exanpl e. org/ myapp"
title="Sal es by Region">
<nmyapp: pi eslice | abel ="Nort hern Regi on" val ue="1.23"/>
<nyapp: pi eslice | abel ="Eastern Regi on" val ue="2.53"/>
<nyapp: pi esli ce | abel =" Sout hern Regi on" val ue="3.89"/>
<myapp: pi eslice | abel ="Western Regi on" val ue="2.04"/>

<l-- O her private data goes here -->
</ myapp: pi echart >
</ def s>
<desc>Thi s chart includes private data in another nanespace
</ desc>
<!-- In here woul d be the actual SVG graphics el enments which

draw the pie chart -->
</ svg>

file:///D|/Public/CR-SVG-20000802/indexlist.html

23.2 Embedding foreign object types

One goal for SV G isto provide a mechanism by which other XML language processors can render into an areawithin an SVG
drawing, with those renderings subject to the various transformations and compositing parameters that are currently active at agiven
point within the SV G content tree. One particular example of thisisto provide aframe for XML content styled with CSS or XSL so
that dynamically reflowing text (subject to SV G transformations and compositing) could be inserted into the middle of some SVG
content. Another example isinserting aMathML [MATHML] expression into an SVG drawing.

The 'foreignObject' element allows for inclusion of aforeign namespace which has its graphical content drawn by a different user
agent. The included foreign graphical content is subject to SV G transformations and compositing.

The contents of foreignObject’ are assumed to be from a different namespace. Any SV G elements within a ‘foreignObject’ will not be
drawn, except in the situation where a properly defined SV G subdocument with a proper xmins (see "Namespacesin XML"
[XML-NS]) attribute specification is embedded recursively. One situation where this can occur is when an SV G document fragment is

embedded within another non-SV G document fragment, which in turn is embedded within an SVG document fragment (e.g., an SVG
document fragment contains an XHTML document fragment which in turn contains yet another SVG document fragment).

Usualy, a‘foreignObject’ will be used in conjunction with the 'switch' element and the requiredExtensions attribute to provide proper
checking for user agent support and provide an alternate rendering in case user agent support is not available.

23.3 The 'foreignObject' element

<IENTITY % forei gnQbj ect Ext "" >
<! ELEMENT f or ei gnQhj ect (#PCDATA %eExt; % orei gnQbj ect Ext;)* >
<! ATTLI ST forei gnObj ect
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class % assList; #l MPLIED
style %&tyl eSheet; #l MPLI ED
%Pr esentationAttributes-All;
transform %ransfornlist; #l MPLI ED
%gr aphi csEl enent Event s;
X % Coordi nat e; #l MPLI ED
y Y Coordi nate; #Il MPLI ED
wi dth %.ength; #REQUI RED
hei ght %.engt h; #REQUI RED
oGt ruct uredText; >

Attribute definitions:

X = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the graphics associated with the contents of the
‘foreignObject’ will be rendered.

If the attribute is not specified, the effect isasif avalue of "0" were specified.
Animatable: yes.

y = "<coordinate>"

The y-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect is asif avaue of "0" were specified.
Animatable: yes.

width = "<length>"

The width of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

height = "<length>"

The height of the rectangular region into which the referenced document is placed.
A negative valueis an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

Attributes defined el sewhere:

YostdAttrs;, YolangSpaceAttrs;, class, transform, %graphicsElementEvents;, YtestAttrs;, external ResourcesRequired, style,
%PresentationAttributes-All;.

23.4 An example

Hereisan example:

<?xm version="1.0" standal one="yes" ?>

<svg w dt h="4i n" hei ght="3i n"

xmns = "http://ww. w3. org/ 2000/ svg' >
<desc>Thi s exanpl e uses the switch elenment to provide a
fall back graphical representation of an equation, if
XMHTM. is not supported.

</ desc>

<l-- The <switch> elenent will process the first child el enent
whose testing attributes evaluate to true.-->

<swi tch>

<l-- Process the enmbedded HTM. if the requiredExtensions attribute
eval uates to true (i.e., the user agent supports XHTM
enbedded within SVG. -->
<f or ei gnCbj ect wi dt h="100" hei ght ="50"
requi redext ensi ons="htt p:// exanpl e. conl SVGExt ensi ons/ EnbeddedXHTM." >
<!-- XHTM. content goes here -->
</ forei gnhj ect >

<!-- Else, process the following alternate SVG
Note that there are no testing attributes on the <g> el enent.
If no testing attributes are provided, it is as if there
were testing attributes and they evaluated to true.-->

<g>
<!-- Draw a red rectangle with a text string on top. -->
<rect w dth="20" hei ght="20" style="fill: red"/>
<t ext >For mul a goes here</text>
</ g>
</ sw tch>
</ svg>

It is not required that SV G user agent support the ability to invoke other arbitrary user agents to handle embedded foreign object types;
however, all conforming SV G user agents would need to support the 'switch' element and must be able to render valid SVG elements
when they appear as one of the aternatives within a'switch' element.

Ultimately, it is expected that commercial Web browsers will support the ability for SV G to embed content from other XML
grammars which use CSS or XSL to format their content, with the resulting CSS- or X SL-formatted content subject to SVG
transformations and compositing. At this time, such a capability is not a requirement.

23.5 Adding private elements and attributes to the DTD

The SVG DTD alowsfor extending the SV G language within the internal DTD subset. Within the internal DTD subset, you have the
ability to add custom elements and attributes to most SVG elements.

The DTD defines an extension entity for most of SVG elements. For example, the 'view' element is defined in the DTD as follows:

<IENTITY % vi ewExt "" >
<! ELEMENT vi ew (%lescTit| eMet adat a; %vi ewext ;) >
<! ATTLI ST vi ew
%t dAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
Vi ewBox %/i ewBoxSpec; #l MPLI ED
preserveAspectRati 0 %r eserveAspect Rati oSpec; 'xM dYM d neet’
zoomAndPan (disable | magnify | zoom) 'magnify'
vi ewTar get CDATA #l MPLI ED >

The entity vi ewExt can be defined in the internal DTD subset to add custom sub-element or custom attributes to the 'view' element
within a given document. For example, the following extends the 'view' element with an additional child element
‘customN S:customElement' and an additiona attribute customNS:customAttr:

<?xm version="1.0" standal one="no" ?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000802/ / EN'
"http://ww.w3. org/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802. dt d"

[

<IENTITY % extView "| custonNS: custontl ement” >

<l ATTLI ST vi ew
xm ns: cust onNS CDATA #FI XED "http://ww. nyor g. or g/ cust om\S"
cust omNS: cust omAttr CDATA #l MPLI ED >

<! ELEMENT cust om\S: cust onEl enent EMPTY>
<! ATTLI ST cust omN\S: cust onrEl enent
xm ns: cust onNS CDATA #FI XED "http://ww. myor g. or g/ cust omNS"
i nf o CDATA #| MPLI ED>
1>
<svg W dt h="8cn' hei ght ="4cni' >
<desc>Extend the 'view elenent via the internal DTD subset </ desc>

<!-- Presunably, sonme great graphics would go here. -->
<vi ew vi ewBox="100 110 20 30" custonmNS: cust omAttr="123">
<cust omNS: cust ontl enent i nf o="abc"/>

</ vi ew>
</ svg>

23.6 DOM interfaces

The following interfaces are defined below: SV GForeignObjectElement.

Interface SVGForeignObjectElement

The SV GForeignObjectElement interface corresponds to the 'foreignObject’ element.

IDL Definition

i nterface SVGForei gnCbj ect El enent
SVCGEl enent ,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events: : Event Target {

readonly attribute SVGAni mat edLengt h x;
readonly attribute SVGAni mat edLength v;
readonly attribute SVGAni mat edLength wi dt h;
readonly attribute SVGAni mat edLengt h hei ght;

}s

Attributes

readonly SV GAnimatedL ength x

Corresponds to attribute x on the given 'foreignObject’ element.
readonly SV GAnimatedLength y

Corresponds to attribute y on the given 'foreignObject’ element.
readonly SV GAnimatedL ength width

Corresponds to attribute width on the given ‘foreignObject’ element.
readonly SV GAnimatedL ength height

Corresponds to attribute height on the given ‘foreignObject’ el ement.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

Appendix A: DTD

Contents

« ENTITY DEFINITIONS: Datatypes

« ENTITY DEFINITIONS: Collections of common attributes

« ENTITY DEFINITIONS: Collections of presentation attributes

o ENTITY DEFINITIONS: DTD extensions

« DEFINITIONS CORRESPONDING TO:

Document Structure

« DEFINITIONS CORRESPONDING TO:

Styling

« DEFINITIONS CORRESPONDING TO:

Paths

« DEFINITIONS CORRESPONDING TO:

Basic Shapes

« DEFINITIONS CORRESPONDING TO:

Text

« DEFINITIONS CORRESPONDING TO:

Painting: Filling, Stroking and Marker Symbols

« DEFINITIONS CORRESPONDING TO:

Color

« DEFINITIONS CORRESPONDING TO:

Gradients and Patterns

« DEFINITIONS CORRESPONDING TO:

Clipping, Masking and Compositing

« DEFINITIONS CORRESPONDING TO:

Filter Effects

« DEFINITIONS CORRESPONDING TO:

Interactivity

o DEFINITIONS CORRESPONDING TO:

Linking

« DEFINITIONS CORRESPONDING TO:

Scripting

« DEFINITIONS CORRESPONDING TO:

Animation

« DEFINITIONS CORRESPONDING TO:

Fonts

« DEFINITIONS CORRESPONDING TO:

M etadata

o DEFINITIONS CORRESPONDING TO:

Extensibility

Thisappendix is normative.

<l-- = =

This is the DID for SVG 1.0 (draft 20000802).

The specification for SVG that corresponds to this DID is avail able

htt p://ww. w3. or g/ TR/ 2000/ CR- SVG- 20000802/

Copyright (c) 2000 WBC (M T,
For this working draft:

Nanmespace:
http://ww. w3. or g/ 2000/ svg

Public identifier:

INRIA, Keio), All

Ri ghts Reserved.

PUBLI C "-//WBC// DTD SVG 20000802/ / EN'

URI for the DID:

at :

http://ww. w3. or g/ TR/ 2000/ CR- SVG 20000802/ DTDY svg- 20000802.

<l -- = = =

ENTI TY DEFI NI TI ONS: Data types

file:///D|/Public/CR-SVG-20000802/indexlist.html

<IENTI TY % Basel i neShi ft Val ue " CDATA">
<l-- "baseline-shift' property/attribute value (e.g., 'baseline', 'sub', etc.) -->

<IENTITY % Bool ean "(false | true)">
<l-- feature specification -->

<IENTITY % Cl assLi st " CDATA">
<l-- |list of classes -->

<IENTITY % Qi pVal ue " CDATA">
<l-- 'clip" property/attribute value (e.g., 'auto', rect(...)) -->

<IENTITY % O i pPat hval ue " CDATA" >
<l-- 'clip-path' property/attribute value (e.g., 'none', %Rl ;) -->

<IENTITY % CipFillRule "(evenodd | nonzero | inherit)">
<l-- 'clip-rule'" or fill-rule property/attribute value -->

<IENTI TY % Cont ent Type " CDATA">
<I-- media type, as per [RFC2045] -->

<! ENTI TY % Coor di nat e " CDATA" >
<l-- a <coordinate> -->

<! ENTI TY % Coor di nat es " CDATA">
<l-- alist of <coordinate>s -->

<IENTI TY % Col or " CDATA">
<l-- a <color> value, as per [CSS2-color] -->

<IENTI TY % Cur sor Val ue " CDATA">
<l-- 'cursor' property/attribute value (e.g., 'crosshair', %R ;) -->

<l ENTI TY % Enabl eBackgr oundVal ue " CDATA">
<l -- '"enabl e-background' property/attribute value (e.g., 'new, 'accunulate') -->

<l ENTI TY % Ext ensi onLi st " CDATA">
<l-- extension |list specification -->

<IENTI TY % Feat ureLi st " CDATA">
<l-- feature list specification -->

<IENTITY % Fi |l ter Val ue " CDATA" >
<l-- "filter' property/attribute value (e.g., '"none', %RI;) -->

<IENTI TY % Font Fam | yVal ue " CDATA">
<l-- "font-family' property/attribute value (i.e., list of fonts) -->

<IENTITY % Font Si zeVal ue " CDATA" >
<l-- 'font-size' property/attribute value -->

<IENTI TY % Font Si zeAdj ust Val ue " CDATA">
<I-- 'font-size-adjust' property/attribute value -->

<IENTITY % d yphOri ent ati onHori zont al Val ue " CDATA" >
<l-- "glyph-orientation-horizontal' property/attribute value (e.g., <angle>) -->

<IENTITY % d yphOri entati onVerti cal Val ue " CDATA" >
<l-- "glyph-orientation-vertical' property/attribute value (e.g., 'auto', <angle>) -->

<IENTITY % | nt eger " CDATA">
<lI-- a <integer> -->

<IENTI TY % LanguageCode " NMIOKEN'>
<I-- a | anguage code, as per [RFCl766] -->

<IENTI TY % LanguageCodes " CDATA">
<l-- comma-separated |ist of |anguage codes, as per [REC1766] -->

<IENTI TY % Lengt h " CDATA" >
<l-- a <length> -->

<! ENTI TY % Lengt hs " CDATA">
<I-- alist of <length>s -->

<IENTI TY % Li nkTar get " NMIOKEN' >
<l-- link to this target -->

<IENTI TY % Mar ker Val ue " CDATA">
<l-- "marker' property/attribute value (e.g., 'none', %Rl;) -->

<! ENTI TY % MaskVal ue " CDATA">
<l-- '"mask' property/attribute value (e.g., 'none', %WRI;) -->

<l ENTI TY % Medi aDesc " CDATA" >
<l-- comma-separated |list of nedia descriptors. -->

<IENTITY % Nunber " CDATA">
<l-- a <nunber> -->

<IENTI TY % Opaci tyVal ue " CDATA">
<l-- opacity value (e.g., <nunber>) -->

<IENTITY % Pai nt " CDATA"'>
<l-- a 'fill' or 'stroke' property/attribute value: <paint> -->

<IENTITY % Pat hDat a " CDATA" >
<l-- a path data specification -->

<IENTITY % Poi nts " CDATA">
<l-- alist of points -->

<IENTITY % PreserveAspect Rati oSpec " CDATA">
<I-- "preserveAspectRati o' attribute specification -->

<IENTITY % Scri pt " CDATA">
<I-- script expression -->

<IENTI TY % Spaci ngVal ue " CDATA">
<lI-- "letter-spacing' or 'word-spacing' property/attribute value (e.g., normal | <length>) -->

<IENTI TY % St rokeDashArrayVal ue " CDATA">
<l-- '"stroke-dasharray' property/attribute value (e.g., 'none', list of <nunber>s) -->

<IENTI TY % StrokeDashOf f set Val ue " CDATA" >
<I-- '"stroke-dashoffset' property/attribute value (e.g., 'none', <legnth>) -->

<IENTITY % StrokeM terLimntVal ue "CDATA">
<I-- "stroke-miterlimt' property/attribute value (e.g., <nunber>) -->

<IENTI TY % StrokeW dt hVal ue " CDATA" >
<l-- "stroke-width' property/attribute value (e.g., <length>) -->

<IENTITY % StructuredText
"cont ent CDATA #FI XED 'structured text'" >

<IENTI TY % Styl eSheet " CDATA">
<l-- style sheet data -->

<l ENTI TY % SVCCol or " CDATA'>
<l-- An SVG color value (RGB plus optional 1CC) -->

<IENTITY % Text " CDATA">
<l-- arbitrary text string -->

<I ENTI TY % Text Decor ati onVal ue " CDATA">

<l-- "text-decoration' property/attribute value (e.g., 'none'
<IENTITY % Tr ansf or nLi st " CDATA">

<I-- list of transforms -->
<IENTITY % URI " CDATA">

<l-- a Uniform Resource Identifier, see [URI] -->
<IENTI TY % Vi ewBoxSpec " CDATA">

<I-- "viewBox' attribute specification -->
<l-- = = = = =

ENTI TY DEFI NI TIONS: Col |l ections of conmon attributes

<l-- Al elenments have an ID. -->
<IENTITY % stdAttrs
"id I D #l MPLI ED" >
<l-- Common attributes for elenents that might contain character

<IENTI TY % | angSpaceAttrs
"xm : |l ang % anguageCode; #| MPLI ED
xm : space (defaul t|preserve) #l MPLIED' >

<l-- Common attributes to check for system capabilities.

<IENTITY %testAttrs

"requir edFeat ures %-eat urelList; #l MPLI ED
requi r edExt ensi ons %&xt ensi onLi st; #l MPLI ED
syst emLanguage %.anguageCodes; #l MPLI ED' >

<l-- For npbst uses of URI referencing:

standard XLink attributes other than xlink: href.

<IENTITY % x|l i nkRef Attrs

"xm ns: xl i nk CDATA #FI XED ' http://ww. w3. or g/ 1999/ xl i nk'

xlink:type (sinple|extended|locator|arc) 'sinple
xlink:role CDATA #l MPLI ED

xlink:arcrol e CDATA #l MPLI ED

xlink:title CDATA #l MPLI ED

xl i nk: show (enbed) 'enbed'

xlink:actuate (onRequest|onLoad) 'onLoad " >

<IENTITY % gr aphi csEl enent Event s
"onfocusin %script; #l MPLI ED
onf ocusout %scri pt; #l MPLI ED
onactivate %script; #l MPLIED
onclick %script; #l MPLI ED
onnousedown %scri pt; #l MPLI ED
onnouseup %scri pt; #l MPLI ED
onnouseover %script; #l MPLI ED
onnousenove %Script; #l MPLI ED
onnouseout %Scri pt; #l MPLI ED
onl oad %Script; #l MPLIED' >

<! ENTI TY % docunent Event s
“onunl oad %scri pt; # MPLI ED
onabort %Script; #l MPLI ED
onerror %script; #l MPLIED
onresi ze %script; #l MPLI ED
onscrol | %script; #l MPLI ED
onzoom %Scri pt; #l MPLIED' >

<IENTI TY % ani mati onEvents
"onbegin %script; #l MPLI ED
onend %Scri pt; #l MPLI ED
onrepeat %Script; #l MPLIED' >

>

-->

"underline')

data content.

>

-->

<l-- This entity allows for at npst one of desc,
supplied in any order -->
<IENTI TY % descTit| eMet adat a

title and netadat a,

"(((desc, ((title,netadata?)| (netadata,title?))?)]
(title, ((desc, netadata?)| (metadata, desc?))?)|
(et adata, ((desc,title?)|(title,desc?))?))?)" >

<l-- = = = = = ==
ENTI TY DEFI NI TIONS: Coll ections of presentation attributes
= = = = = == -->

<l-- The following presentation attributes apply to container elenents. -->
<IENTI TY % Present ati onAttri butes-Containers

"enabl e- background %Enabl eBackgr oundVal ue; #l MPLIED " >
<l-- The following presentation attributes apply to 'feFlood elenents. -->
<IENTITY % Presentati onAttri butes-feFl ood

"fl ood- col or %SVGCol or; #| MPLI ED

fl ood-opacity % pacityValue; # MPLIED " >
<l-- The following presentation attributes apply to filling and stroking operations
<IENTITY % Presentati onAttributes-Fill Stroke

"fill %Paint; # MPLIED

fill-opacity % pacityVal ue; # MPLI ED

fill-rule % ipFillRule; # MPLIED

stroke %Paint; #l MPLI ED

stroke-dasharray %strokeDashArrayVal ue; # MPLI ED

st roke- dashof f set %&tr okeDashOr f set Val ue; #l MPLI ED

stroke-linecap (butt | round | square | inherit) #l MPLIED

stroke-linejoin (mter | round | bevel | inherit) #l MPLIED

stroke-mterlimt %StrokeMterlLimtValue; #l MPLIED

stroke-opacity % pacityVal ue; #l MPLIED

stroke-w dth %St rokeW dt hval ue; #l MPLIED " >
<l-- The following presentation attributes have to do with selecting a font to use.

<IENTITY % Present ati onAttri but es- Font Sel ecti on

"font-fam |y %-ontFam | yVal ue; # MPLI ED
font-size %ontSizeVal ue; #l MPLI ED
font-size-adjust %ontSizeAdj ust Val ue; #l MPLI ED
font-stretch (normal | wider | narrower | ultra-condensed | extra-condensed
condensed | seni-condensed | seni -expanded | expanded
extra-expanded | ultra-expanded | inherit) #l MPLIED
font-style (normal | italic | oblique | inherit) #l MPLIED
font-variant (normal | small-caps | inherit) # MPLIED
font-weight (normal | bold | bolder | Iighter | 100 | 200 | 300
400 | 500 | 600 | 700 | 800 | 900 | inherit) # MPLIED " >
<l-- The following presentation attributes apply to gradient 'stop' elenments. -->
<IENTITY % PresentationAttri butes-G adi ents
"st op-col or %SVGCol or; #l MPLI ED
stop-opacity % pacityVal ue; #I MPLIED " >
<l-- The following presentation attributes apply to graphics el enents. -->
<IENTITY % Presentati onAttri butes-G aphics
"clip-path % i pPat hvVal ue; #l MPLI ED
clip-rule % ipFillRule; # MPLIED
col or %ol or; #l MPLI ED
color-interpolation (auto | sRG&B | linearRG& | inherit) # MPLIED

color-rendering (auto | optim zeSpeed

cursor 9% CursorVal ue; #l MPLI ED

display (inline | block | list-item|
table | inline-table |
tabl e-footer-group | table-row |
table-cell | table-caption |

filter %ilterVal ue; #l MPLI ED

i mage-rendering (auto | optim zeSpeed

mask %vaskVal ue; #| MPLI ED

opacity %OpacityVal ue; #l MPLI ED

run-in

none

optimzeQuality

t abl e- r ow gr oup
t abl e- col um- gr oup

optimzeQality

i nherit) #l MPLIED
| compact | marker

t abl e- header - group |

t abl e- col um

i nherit) # MPLI ED

i nherit) #l MPLIED

-->

-->

poi nter-events (visiblePainted | visibleFill | visibleStroke | visibleFillStroke | visible |

painted | fill | stroke | fillstroke | all | none | inherit) #l MPLIED
shape-rendering (auto | optim zeSpeed | crispEdges | geonetricPrecision | inherit) #l MPLIED
text-rendering (auto | optinizeSpeed | optimzelLegibility | geonetricPrecision | inherit)

#| MPLI ED
visibility (visible | hidden | inherit) # MPLIED " >

<I--The followi ng presentation attributes apply to 'febDiffuseLighting' and 'feSpecularlLighting

el enents. -->
<IENTITY % PresentationAttri butes-LightingEffects
"lighting-col or %8VCCol or; #|l MPLIED " >

<
<

-- The followi ng presentation attributes apply to marker operations. -->
ENTITY % Present ati onAttri butes- Markers
"mar ker-start %vharker Val ue; #l MPLI ED

mar ker - m d %var ker Val ue; #l MPLI ED

mar ker - end %var ker Val ue; #l MPLIED " >

<
<

-- The follow ng presentation attributes apply to text content elenents. -->
ENTITY % Presentati onAttri but es- Text Cont ent El ement s
"al i gnment - basel i ne (baseline | top | before-edge | text-top | text-before-edge |
mddle | bottom| after-edge | text-bottom| text-after-edge |
i deographic | lower | hanging | mathematical | inherit) #l MPLIED
basel i ne-shift 9%Basel i neShi ft Val ue; #l MPLI ED
direction (Itr | rtl | inherit) #l MPLIED
gl yph-orientation-horizontal %Jd yphOrientationHorizontal Val ue; # MPLI ED
gl yph-orientation-vertical %3 yphOrientationVertical Val ue; #l MPLI ED
| etter-spaci ng “Bpaci ngVal ue; #l MPLI ED
t ext - decorati on %lext Decor ati onVal ue; #l MPLI ED
uni code-bidi (normal | enbed | bidi-override | inherit) #l MPLIED
wor d- spaci ng %Bpaci ngVal ue; #l MPLIED " >

<
<

-- The followi ng presentation attributes apply to '"text' elenments. -->
ENTITY % Presentati onAttri butes- Text El enents
"dom nant - baseline (auto | autosense-script | no-change | reset|
i deographic | lower | hanging | mathematical | inherit) #l MPLIED
text-anchor (start | middle | end | inherit) #l MPLIED
witing-nmode (Ir-tb | rl-tb | tb-rl | Ir | rl | tb | inherit) # MPLIED " >

<!
<!

-- The follow ng presentation attributes apply to elenents that establish vieworts. -->
ENTI TY % Presentati onAttri butes-Viewports

"clip % ipVal ue; #l MPLI ED

overflow (visible | hidden | scroll | auto | inherit) # MPLIED " >

<
<!

--The followi ng represents the conplete |list of presentation attributes. -->
ENTITY % Presentati onAttri butes-All
"oFr esent ati onAttri but es- Cont ai ners;
%r esent ati onAttri but es-feFl ood,;
oPr esent ati onAttri butes-Fill Stroke;
o%°r esent ati onAttri but es-Font Sel ecti on;
o%resentati onAttri butes-G adi ents;
%°resentati onAttri butes-G aphics;
%°r esent ati onAttri butes-Li ghti ngEffects;
%r esent ati onAttri but es- Markers;
%r esent ati onAttri but es- Text Cont ent El enent s;
oPr esent ati onAttri but es- Text El enents;" >

<l-- = = = = = ==
ENTI TY DEFI NI TI ONS: DTD ext ensi ons

= = = = = == -->

<l-- Allow for extending the DID with internal subset for
contai ner and graphics el enents -->

<IENTITY % ceExt "" >

<IENTITY % geExt "" >

<l-- = = = = ==

DEFI NI TI ONS CORRESPONDI NG TO. Docunent Structure

= = = = = == -->

<IENTITY % svgExt "" >
<! ELEMENT svg (desc|title|netadataldefs|

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| vi e swi tch|al al t d yphDef |

script|styl e| synbol | marker | cli pPat h| mask|

|l i near Gradient|radi al G adient|pattern|filter]|cursor]|font|]
ani nat e| set | ani mat eMbt i on| ani mat eCol or | ani nat eTr ansf or nj
color-profile|font-face

%¢eExt; %svgExt;)* >

<l ATTLI ST svg

<
<

<

xm ns CDATA #FI XED "http://ww. w3. or g/ 2000/ svg"

st dAttrs;

% estAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

class % assLi st; #| MPLI ED

style ¥Styl eSheet; #l MPLI ED

%r esentationAttributes-All;

vi ewBox /i ewBoxSpec; #l MPLI ED

preserveAspect Rati 0 %reserveAspect Rati oSpec; 'xMdYM d neet'’
zoomAndPan (disable | magnify | zoom) 'magnify’

%r aphi csEl enent Event s;

%docunent Event s;

X % Coordi nate; #l MPLI ED

y YCoordi nate; #l MPLI ED

wi dt h %.engt h; #REQUI RED

hei ght %.engt h; #REQUI RED

cont ent Scri pt Type % Cont ent Type; "text/ecmascript”
content Styl eType % Cont ent Type; "text/css" >

ENTITY % gExt "" >
ELEMENT g (desc|title|netadata|defs]|

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| vi ew| swi tch| a| al t d yphDef |

script|styl e|] synbol | marker | cl i pPat h| nask]|

| i near Gradi ent | radi al Gradi ent | pattern|filter]|cursor|font|]
ani nat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face

%eExt; YgExt;)* >

ATTLI ST g

YstdAttrs;

% estAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #| MPLI ED

style ¥styl eSheet; #l MPLI ED
%resentationAttributes-All;

transform %ransforniist; #l MPLIED

%yr aphi csEl enent Events; >

<IENTITY % def sExt "" >
<! ELEMENT defs (desc|title|netadataldefs]

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| vi e swi tch|al altd yphDef |

script|styl e| synbol | marker | cli pPat h| nask|

linearGradi ent|radi al Gadient|pattern|filter]|cursor]|font]
ani nat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face

%¢eExt ; Ydef sExt;)* >

<! ATTLI ST defs

Y%t dAttrs;

% est Attrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

class % assLi st; #| MPLI ED

style %styl eSheet; #l MPLI ED

%Pr esentati onAttri butes-All;

transform % ransfornlist; #l MPLI ED

%r aphi csEl enent Events; >

<
<

ELEVENT desc (#PCDATA) >
ATTLI ST desc

st dAttrs;

% angSpaceAttrs;

class % asslList; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
o%t ruct uredText; >

<
<

ELEMENT title (#PCDATA) >
ATTLI ST title

Y%t dAttrs;

% angSpaceAttrs;

class % assLi st; #| MPLI ED
style %styl eSheet; #l MPLI ED
oSt ruct ur edText; >

<IENTITY % synbol Ext "" >
<! ELEMENT synbol (desc|title|netadataldefs|

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g] vi ew| swi tch| a| al t @ yphDef |

script|styl e| synbol | marker| cli pPat h| mask|

| i near Gradi ent | radi al Gradi ent | pattern|filter]|cursor|font|
ani nat e| set | ani nat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face

% eExt ; %synbol Ext;)* >

<

ATTLI ST synbol

Yt dAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

class % assLi st; #l MPLI ED

style ¥styl eSheet; #l MPLI ED

%resentationAttributes-All;

vi ewBox /i ewBoxSpec; #l MPLI ED

preserveAspect Rati o %°r eserveAspect Rati oSpec; 'xM dYM d neet’
%yr aphi csEl enent Events; >

<IENTITY % useExt "" >
<! ELEMENT use (%descTitl eMet adat a;, (ani mat e| set | ani mat eMot i on| ani mat eCol or | ani mat eTr ansf orm

%geExt ; Yusekxt;)*) >

<

ATTLI ST use

st dAttrs;

%l inkRef Attrs;

xlink:href %JRI; #REQU RED

% estAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #| MPLI ED

style %styl eSheet; #l MPLI ED
%resentationAttributes-All;
transform %l ransforniist; #l MPLIED

<!
<!

<

<!
<!

<

<

<
<

%gr aphi csEl enent Event s;
X YCoordi nat e; #l MPLI ED
y % Coordi nate; #l MPLI ED
wi dth %.ength; #l MPLIED
hei ght %.ength; # MPLI ED >

ENTITY % i mageExt "" >

ELEMENT inmage (%lescTitl eMetadat a;, (ani mat e| set | ani nat eMbt i on| ani mat eCol or | ani mat eTr ansf orm

%geExt ; % mageExt;)*) >
ATTLI ST i mage
Yt dAttrs;
%l i nkRef Attrs;
xlink:href %JRI; #REQU RED
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assList; #| MPLI ED
style ¥styl eSheet; #l MPLI ED
%r esent ati onAttri but es- Graphics;
%Pr esentati onAttri butes-Vi ewports;
transform %ransforniist; #l MPLIED
%yr aphi csEl enent Event s;
X YCoor di nat e; #l MPLI ED
y % Coordi nate; #l MPLI ED
wi dt h %.ength; #REQU RED
hei ght %.engt h; #REQUI RED >

ENTITY % switchExt "" >
ELEMENT switch (%descTitl eMet adat a;

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| swi t ch| a| f or ei gnQbj ect |

ani mat e| set | ani nat eMbt i on| ani nat eCol or | ani mat eTr ansf orm

%eExt; %sw tchExt;)*) >
ATTLI ST swi tch
Yst dAttrs;
% estAttrs:;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #l MPLI ED
style %styl eSheet; #l MPLI ED
%Pr esentati onAttri butes-All;
transform % ransformlist; #l MPLI ED
%r aphi csEl enent Events; >

DEFI NI TI ONS CORRESPONDI NG TO: Styling

= = = = = == -->

ELEVENT styl e (#PCDATA) >

ATTLI ST style

st dAttrs;

xm : space (preserve) #FIXED "preserve"
type % Cont ent Type; #REQUI RED

nedi a %vedi aDesc; #| MPLI ED

title %ext; #l MPLIED >

<l-- = = = = = ==

DEFI NI TI ONS CORRESPONDI NG TG Pat hs

= = = = = == -->

<IENTITY % pat hExt "" >

<! ELEMENT path (%dlescTitl eMet adat a;, (ani nat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
%geExt ; Ypat hExt;)*) >

<I ATTLI ST path
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%resentati onAttributes-Fill Stroke;
%Pr esentati onAttri but es- G aphics;
%resentati onAttributes-Mrkers;
transform %ransforniist; #l MPLIED
%@r aphi csEl enment Event s;
d %Pat hDat a; #REQUI RED
pat hLengt h 9%Nunber; #| MPLIED >

<l-- = = = = = ==
DEFI NI TI ONS CORRESPONDI NG TO: Basi c_Shapes

<IENTITY %rectExt "" >

<! ELEMENT rect (%lescTitl eMetadata;, (ani mate|set| ani mat eMoti on| ani mat eCol or | ani mat eTr ansf orm
%geExt; % ect Ext;)*) >

ATTLI ST rect

%t dAttrs;

% est Attrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #| MPLI ED

class % assLi st; #l| MPLI ED

style %styl eSheet; #l MPLI ED

%r esent ati onAttri butes-Fill Stroke;

9%Pr esent ati onAttri but es- G aphics;

transform %ransformist; #l MPLI ED

%r aphi csEl enent Event s;

X YCoor di nat e; #l MPLI ED

y % oordi nate; #l MPLI ED

wi dt h % ength; #REQU RED

hei ght %.ength; #REQUI RED

rx %.ength; #l MPLIED

ry %ength; #l MPLIED >

<

<IENTITY %circleExt "" >
<l ELEMENT circle (%lescTitl eMetadat a;, (ani mat e| set | ani mat eMot i on| ani mat eCol or | ani mat eTr ansf orm

%geExt; %ircleExt;)*) >
ATTLI ST circle
st dALtrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #| MPLI ED
style %styl eSheet; #l MPLI ED
%resentationAttributes-Fill Stroke;
%r esent ati onAttri but es- Graphics;
transform %ransforniist; #l MPLIED
%yr aphi csEl enent Event s;
cx %Coordi nate; #l MPLI ED
cy % Coordi nate; #l MPLI ED

r %ength; #REQUI RED >

<

<IENTITY %ellipseExt "" >

<! ELEMENT el |lipse (%lescTitleMetadata;, (ani nmate| set| ani mat eMbti on| ani mat eCol or | ani nat eTr ansf orm
%geExt; %el | i pseExt;)*) >
<I ATTLI ST el lipse
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%resentati onAttributes-Fill Stroke;
%Pr esentati onAttri but es- G aphics;
transform %ransfornliist; #l MPLIED
%gr aphi csEl enent Event s;
%Coor di nat e; #l MPLI ED
%Coor di nat e; #l MPLI ED
rx %.ength; #REQUI RED
ry %.ength; #REQU RED >

ER

<IENTITY %Il ineExt "" >

<! ELEMENT line (%lescTitl eMetadata;, (ani mate| set| ani mat eMoti on| ani mat eCol or | ani mat eTr ansf orm
%geExt; % i neExt;)*) >

<! ATTLI ST line

Y%t dAttrs;

% estAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % asslList; #l MPLI ED

style %styl eSheet; #l MPLI ED
%Presentati onAttributes-Fill Stroke;
%r esent ati onAttributes- G aphics;
%r esent ati onAttributes-Markers;
transform %ransforniist; #l MPLIED
%@r aphi csEl enent Event s;

x1 %Coordi nate; #l MPLI ED

%Coor di nat e; #l MPLI ED

X2 %Coor di nate; #l MPLI ED

y2 %Coordi nate; #l MPLI ED >

=

<IENTITY % pol yl i neExt "" >

<! ELEMENT pol yline (%lescTitl eMetadata;, (ani mate| set | ani mat eMbti on| ani mat eCol or | ani mat eTr ansf orm
%geExt ; %ol yli neExt;)*) >

<I ATTLI ST polyline

st dAttrs;

% estAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #l MPLI ED

style ¥styl eSheet; #l MPLI ED
%Presentati onAttributes-Fill Stroke;
%Pr esentati onAttri butes- G aphics;
%Pr esentati onAttri butes-Markers;
transform %l ransforniist; #l MPLIED
%r aphi csEl enment Event s;

poi nts %Poi nts; #REQU RED >

<IENTI TY % pol ygonExt "" >

<! ELEMENT pol ygon (%lescTitl eMet adat a;, (ani mat e| set | ani nat eMot i on| ani mat eCol or | ani mat eTr ansf orm
%geExt ; %ol ygonExt;)*) >

ATTLI ST pol ygon

Y%t dAttrs;

% est Attrs;

% angSpaceAttrs;

<

<!

<!
<!

<

<
<

<

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #| MPLI ED

style ¥styl eSheet; #l MPLI ED
%resentationAttributes-Fill Stroke;

%°r esent ati onAttri but es- Graphics;

%Pr esentati onAttributes-Markers;

transform %ransforniist; # MPLIED

%gr aphi csEl enent Event s;

poi nts %oi nts; #REQU RED >

DEFI NI TI ONS CORRESPONDI NG TGO Text

ENTITY % textExt "" >
ELEMENT text (#PCDATA| desc|title| netadatal

tspan|tref|textPath|altd yph|al ani mate| set |

ani mat elWbt i on| ani mat eCol or | ani mat eTr ansf orm

%geExt ; % ext Ext;)* >
ATTLI ST text
st dALtrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #| MPLI ED
style %styl eSheet; #l MPLI ED
%resentationAttributes-Fill Stroke;
%r esent ati onAttri but es- Font Sel ecti on;
%Pr esent ati onAttri but es- G aphics;
%Pr esent ati onAttri but es- Text Cont ent El enent s;
%r esent ati onAttri but es-Text El enents;
transform %ransforniist; #l MPLIED
%@r aphi csEl enent Event s;
X YCoor di nat e; #l MPLI ED
y % Coor di nat e; #l MPLI ED
textLength %.ength; #l MPLIED

| engt hAdj ust (spaci ng| spaci ngAndd yphs) #l MPLI ED >

ENTITY %t spanExt "" >

ELEMENT tspan (#PCDATA| desc|title| netadatal|tspan|tref|altd yph|alaninmate]|set|ani mteCol or

% spanExt;)* >
ATTLI ST tspan
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%Presentati onAttributes-Fill Stroke;
%Pr esent ati onAttri but es- Font Sel ecti on;
%r esent ati onAttri but es- G aphics;
%r esent ati onAttri but es- Text Cont ent El enent s;
%r aphi csEl enment Event s;
X % Coor di nat es; #l MPLI ED
y % Coordi nates; #l MPLI ED
dx %.engths; #l MPLI ED
dy %.engths; #l MPLI ED
rot at e CDATA #l| MPLI ED
textLength %.ength; #l MPLIED

| engt hAdj ust (spaci ng| spaci ngAndd yphs) #l MPLI ED >

<IENTITY %trefExt "" >
<I ELEMENT tref (desc|title|netadatalani mate|set|ani mateCol or
%refExt;)* >

<! ATTLI ST tref
st dAttrs;
Wl inkRef Attrs;
xlink:href %JRI; #REQU RED
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % asslList; #l MPLI ED
style %styl eSheet; #l MPLI ED
%Pr esentati onAttributes-Fill Stroke;
%r esent ati onAttri but es- Font Sel ecti on;
%Pr esentati onAttri butes- G aphics;
%Pr esent ati onAttri but es- Text Cont ent El enent s;
%yr aphi csEl enent Event s;
X 9%Coor di nat es; #l MPLI ED
y % Coordi nates; #l MPLI ED
dx %.engths; #l MPLI ED
dy %.engths; #l MPLI ED
rotate CDATA #l MPLI ED
textLength %.ength; #l MPLIED
| engt hAdj ust (spaci ng| spaci ngAndd yphs) #l MPLI ED >

<IENTITY % gl yphRunExt "" >
<! ELEMENT gl yphRun (#PCDATA| desc|title| netadatalaltd yph|al ani mate| set| ani mat eCol or

%yl yphRunExt ;) * >
ATTLI ST gl yphRun
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #l MPLI ED
style ¥styl eSheet; #l MPLIED
%r esentati onAttributes-Fill Stroke;
%Pr esent ati onAttri but es-Font Sel ecti on;
%Pr esent ati onAttri butes- G aphics;
%°r esent ati onAttri but es- Text Cont ent El enent s;
%@r aphi csEl enment Event s;
X % Coor di nat es; #l MPLI ED
y % Coordi nates; #l MPLI ED
dx %.engths; #l MPLI ED
dy %.engths; #l MPLI ED
rot at e CDATA #| MPLI ED
gl yphOr der CDATA #1 MPLI ED
textLength %.ength; #l MPLIED
| engt hAdj ust (spaci ng| spaci ngAndd yphs) #l MPLI ED >

<

<IENTITY % t ext Pat hExt "" >
<! ELEMENT text Path (#PCDATA| desc|title|netadataltspan|tref|altd yph|alaninate|set|ani nateCol or

% ext Pat hExt;)* >
ATTLI ST text Path
%t dAttrs;
%l i nkRef Attrs:;
xlink:href %JRI; #REQUI RED
% angSpaceAttrs;
% est Attrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class % assList; #l MPLIED
style %styl eSheet; #l MPLI ED
YPresentati onAttributes-Fill Stroke;

<

<
<

<

<!
<

<

<!

<

<
<

<!

<!
<!

<

%°r esent ati onAttri but es- Font Sel ecti on;

%Pr esentati onAttri butes- G aphics;

%Pr esent ati onAttri but es- Text Cont ent El enent s;

%yr aphi csEl enent Event s;

start O f set CDATA #l MPLI ED

textLength %.ength; #l MPLIED

| engt hAdj ust (spaci ng| spaci ngAndd yphs) #l MPLI ED
net hod (align|stretch) #l MPLIED

spaci ng (auto| exact) #l MPLIED >

ENTITY % altd yphExt "" >
ELEMENT al t d yph (#PCDATA %al t G yphExt;)* >

ATTLI ST altd yph

st dALtrs;

Wl i nkRef Attrs;

xlink: href %JRI; #REQU RED

% estAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED >

ENTITY % al t @ yphDef Ext "" >
ELEMENT al t d yphDef ((altd yphltemt|glyphRef+) %ltd yphDef Ext;) >

ATTLI ST al t d yphDef
%stdAttrs; >

ENTITY % altd yphltenExt "" >

I ELEMENT altd yphltem (gl yphRef+ %altd yphltenExt;) >
<!

ATTLI ST altd yphltem
Y%st dAttrs; >

ELEMENT gl yphRef EMPTY >

ATTLI ST gl yphRef

st dAttrs;

%l inkRef Attrs;

xlink: href %JRI; #REQU RED

class % assLi st; #| MPLI ED

style %styl eSheet; #l MPLI ED

%°r esent ati onAttri but es-Font Sel ecti on;
gl yphRef CDATA #REQUI RED

format CDATA #REQUI RED >

DEFI NI TI ONS CORRESPONDI NG TQ Painting: Filling, Stroking and Marker Synbols

= = = = = == -->

ENTI TY % mar ker Ext "" >
ELEMENT marker (desc|title|netadatal defs|

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| vi ew| swi tch| a] al t d yphDef |

script|styl e| synbol | marker | cl i pPat h| nask|

| i near Gradi ent | radi al Gradi ent | pattern|filter]|cursor|font|]
ani nat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face

% eExt ; %rar ker Ext;) * >

ATTLI ST nar ker

st dAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #| MPLI ED

style %styl eSheet; #l MPLI ED
%resentationAttributes-All;

Vi ewBox /i ewBoxSpec; #l MPLI ED

<!

<

<l

preserveAspect Rati o %reserveAspect Rati oSpec;
#| MPLI ED
#1 MPLI ED
markerUnits (strokewWdth |

ref X %Coor di nat e;
refY % oor di nat e;

user SpaceOnUse |

XM dYM d neet’

user Space) #l MPLI ED

nmar ker W dt h

%.engt h; # MPLI ED

mar ker Hei ght

%.engt h; # MPLI ED

ori ent CDATA #| VPLI ED >

DEFI NI TI ONS CORRESPONDI NG TG Col or

ELEMENT col or-profile (%lescTitl eMetadata;, color-profile-src) >

ATTLI ST color-profile
YstdAttrs;

nanme CDATA #REQUI RED
rendering-intent

"auto" >

(auto |

perceptual |

<! ELEMENT col or-profile-src EMPTY >

<! ATTLI ST color-profile-src

<

<

<l

<

<!
<!

<!

Y%st dAt trs;
%l i nkRef Attrs;
xlink: href %Rl ;

#REQUI RED >

relative-colorinetric |

DEFI NI TI ONS CORRESPONDI NG TO Gradients and Patterns

= == -->

ENTITY % | i near G adi ent Ext "" >
ELEMENT |inearGadient (%lescTitleMetadata;, (stop|animate|set|animateTransform

% inearGadientExt;)*) >

ATTLI ST linear G adi ent

Y%st dAttrs;
%l i nkRef Attrs;
xlink: href %JRI;

#1 MPLI ED
ext er nal Resour cesRequi r ed %Bool ean;

gradientUnits (user SpaceOnUse |
gr adi ent Tr ansf or m %r ansf or nli st ;

#| MPLI ED

x1 %Coor di nat e;
%Coor di nat e;
% Coor di nat e;
%Coor di nat e;

spreadMet hod (pad |

<
o RS |

#1 MPLI ED
#1 MPLI ED
#1 MPLI ED
#1 MPLI ED
reflect |

repeat)

ENTITY %radi al Gadi ent Ext "" >
ELEMENT radi al G adi ent (%descTit| eMet adat a;, (st op| ani mat e| set | ani mat eTr ansf orm

% adi al Gradi ent Ext;)*) >

ATTLI ST radi al G adi ent

Y%st dAt trs;
%l i nkRef Attrs:;

xlink: href %JRI; #l MPLIED
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
gradientUnits (user SpaceOnUse | userSpace | objectBoundi ngBox) #| MPLI ED

gr adi ent Tr ansf orm %r ansf ornii st ; #Il MPLI ED
cx Y Coordi nate; #l MPLI ED
cy % Coordi nate; #l MPLI ED

r %.ength; #l MPLIED
fx %Coor di nat e;
fy % oor di nat e;

#| MPLI ED
#| MPLI ED

user Space |

saturation |

absol ute-colorimetric)

#| MPLI ED
obj ect Boundi ngBox) #| MPLI ED

"pad" >

<
<

<

<!
<

<

<!

<!

<

<

spreadMet hod (pad | reflect | repeat) "pad" >

ENTITY % stopExt "" >
ELEMENT st op (ani mat e| set | ani mat eCol or

%t opExt;)* >

ATTLI ST stop

st dAttrs;

class % assLi st; #l MPLI ED

style ¥styl eSheet; #l MPLI ED

%Pr esentati onAttri butes-G adients;
of fset %.ength; #REQU RED >

ENTITY % patternkExt "" >

ELEMENT pattern (desc|title|netadatal defs|
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g] vi ew| swi tch| al al t @ yphDef |
script|styl e| synbol | marker| cli pPat h| mask|
|l inearGradi ent|radi al Gadient|pattern|filter|cursor|font|
ani mat e| set | ani nat eMbt i on| ani nat eCol or | ani nat eTr ansf or mj
color-profile|font-face
%ceExt; Ypatternkxt;)* >

ATTLI ST pattern

Yt dAttrs;

%l i nkRef Attrs;

xlink:href %JRI; #l MPLIED

% estAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

class % assLi st; #| MPLI ED

style %styl eSheet; #l MPLI ED

%°r esent ati onAttributes-All;

vi ewBox /i ewBoxSpec; #l MPLI ED

preserveAspect Rati o %reserveAspect Rati oSpec; 'xM dYM d neet'’
patternUnits (userSpaceOnUse | user Space | objectBoundi ngBox) #l MPLI ED
patternTransform %ransfornli st; #l MPLIED

X YCoordi nat e; #l MPLI ED

y YCoordi nate; #l MPLI ED

wi dth %.ength; #REQU RED

hei ght %.engt h; #REQU RED >

DEFI NI TI ONS CORRESPONDI NG TQ: O i ppi ng, Masking and Conpositing

— = = = = == -->

ENTITY % cli pPat hExt "" >
ELEMENT clipPath (%lescTitl eMet adat a; ,
(path|text|rect|circle|ellipse|line|polyline|polygon|

use| ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or m

%eExt; %l i pPat hExt;)*) >
ATTLI ST clipPath
st dAttrs;
% estAttrs;
% angSpaceAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #| MPLI ED
style ¥styl eSheet; #l MPLI ED
%Pr esent ati onAttri butes-Fill Stroke;
%Pr esent ati onAttri but es- Font Sel ecti on;
%r esent ati onAttri but es- G aphics;
%r esent ati onAttri but es- Text Cont ent El enent s;
%Pr esentati onAttri butes- Text El enents;

<!
<

<!

<

<!
<l

<

<

transform %ransforniist; #l MPLIED
clipPathUnits (userSpaceOnUse | userSpace | objectBoundi ngBox) # MPLIED >

ENTITY % maskExt "" >

ELEMENT mask (desc|title| netadata| defs|
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g|] view| swi tch| al al t @ yphDef |
script|styl e| synbol | marker | cli pPat h| mask|
|l i near Gradi ent | radi al G adi ent | pattern|filter]|cursor|font]
ani mat e| set | ani nat eMbt i on| ani nat eCol or | ani mat eTr ansf or nmj
color-profile|font-face
%ceExt ; %maskExt;)* >

ATTLI ST nmask

Yt dAttrs;

% estAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
class % asslList; #l MPLI ED

style %styl eSheet; #l MPLI ED

%resentati onAttributes-All;

transform %ransforniist; # MPLIED

maskUni ts (user SpaceOnUse | userSpace | object Boundi ngBox) #l MPLI ED
X YCoordi nat e; #l MPLI ED

y YCoordi nate; #l MPLI ED

wi dth %.ength; #l MPLIED

hei ght %.ength; #I MPLI ED >

DEFI NI TI ONS CORRESPONDI NG TO Filter Effects

= = = = = == -->

ENTITY %filterExt "" >
ELEMENT filter (%lescTitleMetadata;, (feBl end|feFl ood|

feCol or Mat ri x| f eConponent Tr ansf er |

f eConposi t e| f eConvol veMatri x| feDi ffuselLi ghting|feDi spl acenent Map|
f eGaussi anBl ur | f el mage| f eMer ge|

f eMor phol ogy| feOf f set | f eSpecul ar Li ghti ng|

feTile|feTurbul ence|

ani mat e| set_

%WilterExt;)*) >

ATTLI ST filter

Y%st dAttrs;

%l i nkRef Attrs:;

xlink:href %JRI; #l MPLIED

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

class % assList; #l MPLIED

style ¥styl eSheet; #l MPLI ED

%Pr esentati onAttri butes-All;

filterUnits (userSpaceOnUse | user Space | object Boundi ngBox) #l MPLI ED
primtiveUnits (userSpaceOnUse | userSpace | objectBoundi ngBox) # MPLI ED
X Y Coor di nat e; #| MPLI ED

y % Coordi nate; #l MPLI ED

wi dth %.ength; #l MPLIED

hei ght %.ength; #l MPLI ED

filterRes CDATA #l MPLI ED >

ENTITY % filter_primtive_attributes
"X YCoordinate; #l MPLI ED

y Y Coordi nate; #l MPLI ED
width %.ength; #l MPLIED

hei ght %.engt h; #l MPLI ED
result CDATA #l VPLI ED' >

<IENTITY % filter_prinmtive_attributes_ with_in
"Ofilter_primtive_attributes;
in CDATA #l MPLI ED" >

<
<

ELEMVENT feDi stantLight (animte|set)* >
ATTLI ST feDi stantLi ght

st dAttrs;

azi nuth %\unber; #I MPLI ED

el evati on %\unber; #| MPLI ED >

<
<

ELEMENT fePoi ntLi ght (ani mte|set)* >
ATTLI ST fePoi nt Li ght

Y%stdAttrs;

X YNunber; #| MPLI ED

y YNunber; #l MPLI ED

z Y™Nunber; #l MPLIED >

<
<

ELEMENT feSpot Li ght (aninmate|set)* >
ATTLI ST feSpot Li ght

st dALtrs;

X %\unber; #I MPLI ED

y Y\unber; #l MPLI ED

z YNunber; #l MPLI ED

poi nt sAt X %\unber ; #l MPLI ED

poi nt sAtY Y%Nunber; #l MPLI ED

poi nt SAt Z Y%Nunber ; #| MPLI ED

specul ar Exponent %N\unber; #l MPLI ED

limtingConeAngl e %unber; #|l MPLIED >

<
<

ELEMENT feBl end (ani mate|set)* >

ATTLI ST feBl end

%stdAttrs;

%ilter primtive attributes with_in;

in2 CDATA #REQUI RED

mode (normal | nultiply | screen | darken | lighten) "normal" >

<
<!

ELEVENT feCol orMatrix (animate|set)* >

ATTLI ST feCol or Matri x

st dAttrs;

%ilter primtive attributes with_ in;

type (matrix | saturate | hueRotate | |um nanceToAl pha) "matri x"
val ues CDATA #l| MPLI ED >

<
<

ELEMENT f eConponent Tr ansfer (feFuncR?,feFuncG?, f eFuncB?, f eFuncA?) >
ATTLI ST feConponent Tr ansf er

st dAttrs;

%Bilter primtive attributes with in; >

<IENTI TY % conponent _transfer_function_attributes
"type (identity | table | discrete | linear | ganma) #REQUI RED

t abl eVal ues CDATA #| MPLI ED

sl ope %Nunber; #l MPLI ED

i ntercept %\unber; #l MPLI ED

anplitude %\unber; #l MPLI ED

exponent %N\unber; #| MPLI ED

of f set Y%Nunber; #Il MPLIED' >

<! ELEMENT feFuncR (ani mate|set)* >
<I ATTLI ST feFuncR

st dALtrs;
%conponent _transfer function_ attributes; >

<
<

ELEMENT f eFuncG (ani mate|set)* >

ATTLI ST feFuncG

Y%stdAttrs;

%conponent _transfer function_ attributes; >

<!
<

ELEMENT f eFuncB (ani mate|set)* >

ATTLI ST feFuncB

Y%stdAttrs;

%conponent _transfer function_ attributes; >

<!
<

ELEMENT f eFuncA (ani mate|set)* >

ATTLI ST feFuncA

YstdAttrs;

%onponent _transfer_function_attributes; >

<
<

ELEMENT feConposite (aninmate|set)* >

ATTLI ST feConposite

YstdAttrs;

%ilter primtive attributes with_in;

in2 CDATA #REQUI RED

operator (over | in | out | atop | xor | arithmetic) "over"

k1 %\unber; #l MPLI ED

k2 YNunber; #l MPLI ED

k3 YNunber; #l MPLI ED

k4 9Nunber; #l MPLIED >
<! ELEMENT f eConvol veMatrix (animate|set)* >
<! ATTLI ST feConvol veMatri x

%ilter primtive attributes with in;
order CDATA #REQUI RED

kernel Mat ri x CDATA #REQUI RED

di vi sor Y%unber; #l MPLI ED

bi as YNunber; #l MPLI ED

target X % nt eger; #l MPLIED

targetY % nteger; #l MPLIED

edgeMbde (duplicate|wap|none) "duplicate"
kernel Uni t Lengt h CDATA #l MPLI ED

preserveAl pha %Bool ean; #l MPLI ED >

<

ELEMENT feDiffuselighting ((feDistantLight|fePointlLight]|feSpotlLight), (ani mate|set|ani mateCol or)*)

<I ATTLI ST feDi ffuselighting
st dAttrs;
class % assLi st; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%resentationAttributes-LightingEffects;
%ilter primtive attributes with_in;
surfaceScal e YNunber; #l MPLI ED
di f fuseConst ant %Nunber; #| MPLIED >

<
<

ELEVENT feDi spl acenent Map (ani mate| set)* >
ATTLI ST feDi spl acenent Map

Y%stdAttrs;

%ilter primtive attributes with in;

in2 CDATA #REQUI RED

scal e Y\unber; #l MPLIED
xChannel Sel ector (R| G| B
yChannel Sel ector (R| G| B

<! ELEMENT f eFl ood (ani mat e| set | ani mat eCol or)* >
<! ATTLI ST f eFl ood

Yst dAttrs;

class % asslList; #l MPLI ED

style ¥styl eSheet; #l MPLI ED

%Pr esentati onAttri butes-feFl ood;

%ilter primtive attributes with in; >

<
<

ELEMVENT f eGaussi anBl ur (ani mate|set)* >
ATTLI ST feGaussi anBl ur

st dAttrs;

%ilter primtive attributes with in;

st dDevi ati on CDATA #| MPLI ED >

<
<

ELEMVENT fel mage (animate|set|ani mateTransform* >
ATTLI ST fel mage

st dALtrs;

%l inkRef Attrs;

xlink:href %JRI; #REQU RED

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % assLi st; #| MPLI ED

style %styl eSheet; #l MPLI ED
%resentationAttributes-All;

transform %lransforniist; #l MPLIED

%ilter primtive attributes; >

<
<

ELEMENT feMerge (feMergeNode)* >
ATTLI ST feMerge

Y%stdAttrs;

%ilter primtive attributes; >

<
<

ELEMENT f eMer geNode (animate|set)* >
ATTLI ST feMer geNode

st dAttrs;

in CDATA #l MPLI ED >

<
<

ELEMENT feMor phol ogy (aninate|set)* >
ATTLI ST feMor phol ogy

st dAttrs;

%ilter primtive attributes with_ in;
operator (erode | dilate) "erode"

radi us %.ength; #l MPLIED >

<!
<

ELEMENT feOf fset (aninmte|set)* >
ATTLI ST feO f set

st dALtrs;

%ilter primtive attributes with_in;
dx %.ength; #l MPLI ED

dy %.ength; #l MPLIED >

<

ELEMENT f eSpecul arLighting ((feDi stantLight]|fePointlLight|feSpotLight), (animate|set|ani mateCol or)*)

<! ATTLI ST feSpecul arLi ghting
st dAttrs;
class % asslList; #l MPLI ED
style ¥styl eSheet; #l MPLI ED
%resentationAttributes-LightingEffects;
%ilter primtive attributes with_ in;
surfaceScal e Y%Nunber; #l MPLI ED
specul ar Const ant %Nunber; #l MPLI ED
specul ar Exponent %\unber; #l MPLIED >

<! ELEMENT feTile (aninate|set)* >
<IATTLI ST feTile
st dAttrs;
%Bilter primtive attributes with in; >

<
<

ELEMVENT f eTur bul ence (ani mate|set)* >

ATTLI ST feTurbul ence

st dAttrs;

%ilter primtive attributes;

baseFr equency CDATA #| MPLI ED

nunOct aves % nt eger; #l MPLI ED

seed YNunber; #l MPLI ED

stitchTiles (stitch | noStitch) "noStitch"

type (fractal Noi se | turbul ence) "turbul ence" >

<l-- = = = = = ==
DEFI NI TI ONS CORRESPONDI NG TO Interactivity

= = = = = == -->

<! ELEMENT cursor (%lescTitleMetadata;) >
<! ATTLI ST cursor
Yt dAttrs;
%l i nkRef Attrs;
xlink:href %JRI; #REQU RED
% estAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
X YCoordi nat e; #l MPLI ED
y % Coordi nate; #l MPLI ED >

<l-- = = = = = ==
DEFI NI TI ONS CORRESPONDI NG TG Li nki ng

= = - = = == -->

<IENTITY % aExt "" >

<l ELEMENT a (#PCDATA| desc| titl e| met adat a] def s|
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| vi ew| swi tch|a| al t d yphDef |
script|styl e| synbol | marker | cli pPat h| nask|
|l inearGradi ent|radial Gadient|pattern|filter|cursor]|font|
ani mat e| set | ani nmat eMbt i on| ani nat eCol or | ani mat eTr ansf or nj
color-profile|font-face
%eExt; YaExt;)* >

<

ATTLI ST a

st dAttrs;

xm ns: xli nk CDATA #FI XED "http://ww. w3. or g/ 1999/ x| i nk"
xlink:type (sinple|extended||ocator|arc) #FIXED "sinple"
xlink:role CDATA #l MPLI ED

xlink:arcrol e CDATA #|l MPLI ED

xlink:title CDATA #l MPLI ED

xlink: show (new repl ace) 'replace’

xlink:actuate (onRequest|onLoad) #FIXED ' onRequest'
xlink: href %JRI; #REQU RED

% estAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #| MPLI ED

class % asslList; #l MPLI ED

style %styl eSheet; #l MPLI ED
%resentationAttributes-All;

transform %ransfornlist; #l MPLIED

%r aphi csEl enent Event s;

target %. nkTarget; #l MPLIED >

<IENTITY % viewkxt "" >
<! ELEMENT vi ew (%dlescTi t| eMet adat a; %vi ewext;) >

<! ATTLI ST vi ew
st dAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
vi ewBox /i ewBoxSpec; #l MPLI ED
preserveAspect Rati o %°reserveAspect Rati oSpec; 'xM dYM d neet’
zoomAndPan (disable | magnify | zoom) 'magnify’
vi ewTar get CDATA #l MPLI ED >

<l-- = = = = =

DEFI NI TI ONS CORRESPONDI NG TQO Scri pti ng

<
<

ELEMENT scri pt (#PCDATA) >

ATTLI ST scri pt

Yt dAttrs;

%Il inkRef Attrs;

xlink:href %JRI; #l MPLIED

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
type % ont ent Type; #REQUI RED >

<l-- = = = = =
DEFI NI TI ONS CORRESPONDI NG TGO Ani mat i on

<

ENTITY % ani nEl enent Attrs
"Oxl i nkRef Attrs;
xlink:href %JRI; #l MPLI ED' >

ENTITY % ani mAttri buteAttrs
"attributeName CDATA #REQUI RED
attri buteType CDATA #l MPLIED' >

<

<IENTITY % ani nifarget Attrs

Wl inkRef Attrs;

xlink:href %JRI; #l MPLIED

attri buteName CDATA #REQUI RED

attributeType CDATA #l MPLIED' >

<

ENTI TY % ani nili m ngAttrs
"begi n CDATA #| MPLI ED
dur CDATA #l MPLI ED
end CDATA #l MPLI ED
i n CDATA #l MPLI ED
x CDATA #| MPLI ED
restart (always | never | whenNot Active) 'always'
r epeat Count CDATA #| MPLI ED
r epeat Dur CDATA #l MPLI ED
fill (renmove | freeze) 'renove'" >

3

3

<

ENTI TY % ani nVal ueAttrs

cal cMbde (discrete | linear | paced | spline) 'linear'
val ues CDATA #l| MPLI ED

keyTi mes CDATA #| MPLI ED

keySpl i nes CDATA #l MPLI ED

from CDATA #| MPLI ED

to CDATA #l MPLI ED

by CDATA #l MPLI ED' >

<IENTI TY % ani mAddi ti onAttrs
"additive (replace | sum 'replace’
accumul at e (none | sunm) 'none'" >

<IENTITY % ani mat eExt "" >
<l ELEMENT ani nat e (%lescTitl eMet adat a; %&ani mat eExt;) >

<I ATTLI ST ani nat e
Y%t dAttrs;
% estAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
%ani mat i onEvent s;
%ani nEl ement Attrs;
Y%ani mMAttributeAttrs;
%ani nMli m ngAttrs;
%ani mval ueAttrs;
%ani mAddi ti onAttrs; >

<IENTITY % setExt "" >
<l ELEMENT set (%lescTitl eMet adat a; %set Ext;) >

<I ATTLI ST set_
Y%t dAttrs;
% estAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
%ani mat i onEvent s;
%ani nEl ement Attrs;
Y%ani MAttributeAttrs;
%ani nli m ngAttrs;
to CDATA #l MPLI ED >

<IENTITY % ani nat eMoti onExt "" >
<! ELEMENT ani mat eMoti on (%descTitl eMet adat a; , npat h? %ani mat eMoti onExt;) >
<I ATTLI ST ani mat eMoti on
YstdAttrs;
% estAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
%ani mat i onEvent s;
%ani nEl enent Attrs;
%ani nTi m ngAttrs;
cal cMbde (discrete | linear | paced | spline) 'paced'
val ues CDATA #l| MPLI ED
keyTi nes CDATA #l MPLI ED
keySpl i nes CDATA #l MPLI ED
from CDATA #| MPLI ED
to CDATA #| WPLI ED
by CDATA #I MPLI ED
%ani mAddi ti onAttrs;
pat h CDATA #| MPLI ED
keyPoi nt s CDATA #l MPLI ED
rot at e CDATA #| MPLI ED
origin CDATA #l MPLI ED >

<IENTITY % npat hExt "" >
<! ELEMENT npath (%lescTitl eMet adat a; %mpat hExt;) >
<! ATTLI ST npath

Yst dAttrs;

%l i nkRef Attrs:;

xlink: href %JRI; #REQU RED

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED >

<IENTITY % ani mat eCol or Ext "" >
<! ELEMENT ani nat eCol or (%lescTitl eMet adat a; %ani mat eCol or Ext;) >

<I ATTLI ST ani mat eCol or
st dAttrs;
% estAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
%ani mat i onEvent s;
%ani nEl enent Attrs;
Y%ani mMAttributeAttrs;
%ani mli m ngAttrs;
%ani mval ueAttrs;
%ani mAddi ti onAttrs; >

<IENTITY % ani mat eTr ansf or nExt "" >
<! ELEMENT ani nat eTr ansf orm (%lescTi t | eMet adat a; %ani mat eTr ansf or mext ;) >

<I ATTLI ST ani mat eTr ansf orm
st dAttrs;
% estAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
%ani mat i onEvent s;
%ani nEl enent Attrs;
Y%ani MAttributeAttrs;
%ani nMli m ngAttrs;
%ani mval ueAttrs;
%ani mAddi ti onAttrs;
type (translate | scale | rotate | skewX | skewY) "translate" >

<l-- = = = = = ==
DEFI NI TI ONS CORRESPONDI NG TO: Font s

= = = = = == -->

<IENTITY % fontExt "" >
<! ELEMENT font (%lescTitleMetadata;,font-face,

m ssi ng- gl yph, (gl yph| hkern| vkern 9% ont Ext;)*) >

<

ATTLI ST font

st dAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
cl ass % assList; #l MPLI ED

style %5tyl eSheet; # MPLI ED

%r esentati onAttri butes-All;

hori z-origin-x %\unber; #| MPLI ED
hori z-origin-y Y%unber; #l MPLIED
hori z-adv-x 9%unber; #REQUI RED
vert-origin-x Yunber; #l MPLIED
vert-origin-y %unber; #l MPLI ED
vert-adv-y Y%\unber; #l MPLIED >

<
<

ENTI TY % gl yphExt "" >
ELEMENT gl yph (desc|title|netadata| defs]

path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| vi ew swi tch| al al t A yphDef |

script|styl e| synbol | marker| cli pPat h| mask|

| i near Gradi ent | radi al Gradi ent | pattern|filter]|cursor|font|]
ani nat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
color-profile|font-face

%l yphExt;)* >

<

ATTLI ST gl yph

st dAttrs;

class % asslList; #l MPLI ED
style %styl eSheet; #l MPLI ED
%resentationAttributes-All;
uni code CDATA #l| MPLI ED

gl yph- nane CDATA #| MPLI ED

d %Pat hDat a; #l MPLI ED
vert-text-orient CDATA #l MPLI ED
ar abi ¢ CDATA #| MPLI ED

han CDATA #l MPLI ED

hori z-adv-x 9%unber; #l MPLI ED
vert-adv-y %unber; #l MPLI ED >

FENTI TY % mi ssi ng-gl yphExt "" >

I ELEMENT mi ssing-glyph (desc|title|netadatal defs]
path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| view swi tch| a| al t G yphDef |
script]|style|synbol | marker | cli pPat h| mask|

| i near G adi ent | radi al G adi ent | pattern|filter|cursor|font|
ani nat e| set | ani mat eMbt i on| ani mat eCol or | ani nat eTr ansf or nj
color-profile|font-face

% ssi ng-gl yphExt;)* >

<

<
<

<
<

<
<

ATTLI ST mi ssing-gl yph

Y%t dAttrs;

class % assLi st; #| MPLI ED
style ¥styl eSheet; #l MPLI ED
%resentationAttributes-All;

d %Pat hDat a; #l MPLI ED

hori z-adv-x 9%\unber; #l MPLI ED
vert-adv-y %unber; #l MPLI ED >

ELEMENT hkern EMPTY >
ATTLI ST hkern

st dAttrs;

ul CDATA #l WPLI ED

gl CDATA #l MPLI ED

u2 CDATA #l MPLI ED

g2 CDATA #l MPLI ED

k %\unber; #REQUI RED >

ELEMENT vkern EMPTY >
ATTLI ST vkern

Y%t dAttrs;

ul CDATA #!| WPLI ED

gl CDATA #l MPLI ED

u2 CDATA #l| MPLI ED

g2 CDATA #I MPLI ED

k 9%Nunber; #REQUI RED >

ELEMENT font-face (%lescTitl eMetadata;,font-face-src?,definition-src?) >

ATTLI ST font-face

Y%t dAttrs;

font-fam |y CDATA #l MPLI ED
font-styl e CDATA #l MPLI ED
font-vari ant CDATA #l MPLI ED
font - wei ght CDATA #| MPLI ED
font-stretch CDATA #l MPLI ED
font-size CDATA #l MPLI ED

uni code-range CDATA #l MPLI ED
uni t s- per-em Y%N\unber; #l MPLI ED
panose-1 CDATA #| MPLI ED
stemv YNunber; #l MPLI ED
stemh %Nunber; #l MPLI ED

sl ope YNunber; #| MPLI ED

cap- hei ght %\unber; #l MPLI ED
x-hei ght %\unber; #I MPLI ED

<
<

<

<

<
<

<
<

<!

<

<!
<!

<

<

<
<

<

accent - hei ght Y%\unber; #l MPLI ED

ascent Y%\unber; #l MPLI ED

descent 9% N\unber; #l MPLI ED

wi dt hs CDATA #l| MPLI ED

bbox CDATA #l MPLI ED

i deogr aphi ¢ Yunber; #l MPLI ED

basel i ne Y\unber; #l MPLI ED

centerline Yunber; #l MPLIED

mat hl i ne %\unber; #l MPLI ED

hangi ng Y%Nunber ; #I MPLI ED

topline Y%unber; #l MPLI ED
underline-position Y%N\unber; #l MPLI ED
underl i ne-thi ckness %\unber; #l MPLI ED
stri ket hrough-position Yunber; #l MPLIED
stri ket hrough-thi ckness %\unber; #l MPLI ED
overline-position Yunber; #l MPLI ED
overline-thickness %\unber; #l MPLIED >

ELEMENT font-face-src (font-face-uri|font-face-nane)+
ATTLI ST font-face-src
Y%stdAttrs; >

ELEMENT font-face-uri (font-face-format*) >
ATTLI ST font-face-uri

st dAttrs;

%l inkRef Attrs;

xlink: href %JRI; #REQUI RED >

ELEMENT font-face-format EMPTY >
ATTLI ST font-face-formt
YstdAttrs;

string CDATA #l MPLI ED >

ELEMENT font -face-nane EMPTY >
ATTLI ST font-face-nane

st dAttrs;

name CDATA #l MPLI ED >

ELEMENT definition-src EMPTY >
ATTLI ST definition-src

Yt dAttrs;

%l i nkRef Attrs;

xlink:href %JRI; #REQUI RED >

DEFI NI TI ONS CORRESPONDI NG TG Met adat a

ENTI TY % net adat aExt "" >
ELEMENT net adat a (#PCDATA %ret adat aExt;)* >

ATTLI ST net adat a
Y%stdAttrs; >

DEFI NI TI ONS CORRESPONDI NG TO Extensibility

ENTI TY % forei gnQoj ect Ext "" >

ELEMENT f orei gnCbj ect (#PCDATA %eExt; % or ei gnoj ect Ext;)* >

ATTLI ST forei gnObj ect
st dAt trs;

% estAttrs;

% angSpaceAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
class % asslList; #l MPLI ED

style ¥styl eSheet; #l MPLI ED
%resentationAttributes-All;
transform %ransforniist; # MPLIED
%gr aphi csEl enent Event s;

X YCoor di nat e; #l MPLI ED

y % Coordi nate; #l MPLI ED

wi dth %.ength; #REQUI RED

hei ght %.engt h; #REQUI RED

oSt ruct ur edText; >

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

Appendix B: SVG's Document Object
Model (DOM)

Contents

« B.1SVGDOM Overview

« B.2 Naming Conventions

» B.3Interface SVGException

» B.4 Feature strings for the hasFeatur e method call

« B.5 Relationship with DOM2 events

» B.6 Relationship with DOM2 CSS object model (CSS OM)
o B.6.1 Introduction

o B.6.2 User agents that do not support styling with CSS

o B.6.3 User agents that support styling with CSS
0 B.6.4 Extended interfaces
e B.7Invalid values

This appendix isnormative.

B.1 SVG DOM Overview

This appendix provides an introduction to the SVG DOM and discusses the relationship of the SYG DOM with
the Document Object Model (DOM) Level 2 Specification [DOM2]. The specific SVG DOM interfaces that

correspond to particular sections of the SV G specification are defined at the end of corresponding chapter in
this specification, as follows:

« Basic DOM interfaces

¢ Styling interfaces

o Document Structure interfaces

o Coordinate Systems, Transformations and Units interfaces

¢ Pathsinterfaces

o Basic Shapesinterfaces

e Textinterfaces

file:///D|/Public/CR-SVG-20000802/indexlist.html

o Painting: Filling, Stroking and Marker Symbols interfaces

o Color interfaces

o Gradients and Patterns interfaces

o Clipping, Masking and Compositing interfaces

o Filter Effects interfaces

« Interactivity interfaces

o Linking interfaces

e Scripting interfaces

« Animation interfaces

o Fontsinterfaces
o Metadatainterfaces
o Extensibility interfaces

The SVG DOM is builds upon and is compatible with the Document Object Model (DOM) Level 2
Specification [DOM2]. In particular:

e The SVG DOM requires complete support for the DOM2 core [DOM 2-CORE]

« Wherever appropriate, the SVG DOM is modeled after and maintains consistency with the Document
Object Model HTML [DOM2-HTML].

o The SVG DOM requires complete support for the DOM2 views [DOM2-VIEWS]

« The SVG DOM requires support for relevant aspects of the DOM2 event model [DOM2-EVENTS].
(For the specific [DOM2-EVENTS] features that are required, see Relationship with DOM2 event
model.)

o Thetraversa [DOM2-TRAV] and range [DOM2-RANGE] features from DOM?2 are optional features
within the SVYG DOM.

« For implementations that support CSS, the SVG DOM requires complete support for the DOM?2 style
sheets [DOM2-SHEETS] and relevant aspects of the Document Object Model CSS [DOM2-CSS]. (For
the specific [DOM2-CSS] features that are supported, see Relationship with DOM2 CSS object model.)

A DOM application can use the hasFeature method of the DOM Implementation interface to verify that the
interfaces listed in this section are supported. The list of available interfacesis provided in section Feature

strings for the hasFeatur e method call.

B.2 Naming Conventions

The SVG DOM follows similar naming conventions to the Document Object Model HTML [DOM2-HTML].

All names are defined as one or more English words concatenated together to form a single string. Property or
method names start with theinitial keyword in lowercase, and each subsequent word starts with a capital letter.
For example, a property that returns document meta information such as the date the file was created might be
named "fileDateCreated". In the ECM A Script binding, properties are exposed as properties of a given object. In
Java, properties are exposed with get and set methods.

For attributes with the CDATA data type, the case of the return value is that given in the source document.

B.3 Interface SVGException

Exception SVGEXxception

This exception is raised when a specific SVG operation isimpossible to perform.
IDL Definition

exception SVGEXxception {
unsi gned short code;

b

/'l SVCGExcepti onCode

const unsigned short SVG WRONG TYPE ERR

const unsigned short SVG I NVALI D_VALUE ERR
const unsi gned short SVG MATRI X _NOT_| NVERTABLE

non
NEQ

B.4 Feature strings for the hasFeature method call

The feature strings that are available for the hasFeatur e method call that is part of the SVG DOM's support for
the DOMImplementation interface defined in [DOM 2-CORE] are the same features strings available for the

requiredFeatures attribute that is available for many SVG elements.

The ver sion number for the hasFeatur e method call is"1.0".

B.5 Relationship with DOM2 events

The SVG DOM supports the following interfaces and event types from [DOM2-EVENTS):

o The SVG DOM supports all of the interfaces defined in [DOM2-EVENTS].

« The SVG DOM supports the following Ul event types [DOM2-UIEVENTS]:
o DOMFocusin
o DOM FocusOut
o DOMActivate

o The SVG DOM supports the following mouse event types [DOM2-MOUSEEVENTS]:
o click

O

O

O

O

mousedown
Mmouseup
mouseover
mousemove

mouseout

clientX and clientY parameters for mouse events represent viewport coordinates for the corresponding
'svg' element. relatedNode is the corresponding outermost 'svg' element.

o The SVG DOM supports the following mutation event types [DOM2-MUTEVENTS]:

0

O

O

0

O

O

0

DOM SubtreeM odified

DOMNodel nserted

DOM NodeRemoved

DOM NodeRemovedFromDocument
DOM Nodel nsertedl ntoDocument
DOMAttrModified

DOM CharacterDataM odified

« The SVG DOM defines the following SV G-specific custom event interfaces. These event interfaces are
mandatory for SV G user agents:

O

O

O

O

O

O

SVGLoad

SVGUnload

SV GADort

SV GError

SVGResize

SVGScrall (triggered by either scroll or pan user actions)

e The SVG DOM defines an additional custom event interface:

O

SV GZoom (definition can be found in the description of SV GZoomEvent)

« Thefollowing event types are triggered due to state changes in animations. (The definitions for these
events can be found in the description of Interface TimeEvent in the SMIL Animation specification.)

O

O

0

beginEvemt
endEvent

repeatEvent

Each SV G element which has at least one event attribute assigned to it in the SVG DTD supports the DOM2
event registration interfaces [DOM2-EVREG] and can be registered as an event listener for the corresponding

DOM2 event using the event registration interfaces. Thus, for example, if the SVG DTD indicates that agiven
element supports the "onclick" event attribute, then an event listener for the "click” event can be registered with
the given element as the event target.

SVG's animation elements also support the DOM2 event registration interfaces [DOM 2-EVREG]. Event

http://www.w3.org/TR/smil-animation/

listeners for animation events (i.e., start, end or repeat) can be registered on any of the animation elements.

Event listeners which are established by DOM2 Event registration interfaces [DOM2-EVREG] receive events
before any event listeners that correspond to event attributes (see Event attributes) or animations.

In Java, one way that event listeners can be established is to define a class which implements the EventListener
interface, such as:

cl ass MyActionl inplenents EventListener {
public void handl eEvent (Event evt) {
/'l process the event
}

}

Il ... later ...
MyActionl ncl = new MyActionl();
myEl enment . addEvent Li st ener (" DOMAct i vate", ntl, false);

In ECMAScript, one way to establish an event listener isto define a function and pass the name of that function
to the addEventListener method:

function myActionl(evt) {
/'l process the event

Il ... later ...
myEl ement . addEvent Li st ener (" DOMAct i vate", mnyActionl, false)

In ECMAScript, the character data content of an Event attribute become the definition of the ECM A Script

function which getsinvoked in response to the event. Aswith all registered ECMA Script event listener
functions, this function receives an Event object as a parameter, and the name of the Event object is evt. For
example, it is possible to say:

<rect onactivate="M/ActivateHandl er(evt)" .../>

which will pass the Event object evt into function MyAct i vat eHandl er .

B.6 Relationship with DOM2 CSS object model (CSS
OM)

B.6.1 Introduction

The section describes the facilities from the Document Object Model CSS [DOM 2-CSS], the CSS OM, that are
part of the SVG DOM.

B.6.2 User agents that do not support styling with CSS

User agents that do not support styling with CSS are only required to support the following interfaces from
[DOM2-CSS], along with any interfaces necessary to implement the interfaces, such as CSSPrimitiveValue and

CSSValuelList. These interfaces are used in conjunction with the getPresentationAttribute method call on
interface SV GStylable. This method must be supported on all implementations of the SVG DOM:

¢ Interface RGBColor
o Interface CSSVaue

B.6.3 User agents that support styling with CSS

User agents that support Styling with CSS, the SVG DOM, and aural styling [CSS2-AURAL] must support all
of the interfaces defined in [DOM2-CSS] which apply to aural properties.

For visual media[CSS2-VISUAL], the SYG DOM supports all of the required interfaces defined in
[DOM2-CSS]. All of the interfaces that are optional for [DOM2-CSS] are also optional for the SVG DOM.

B.6.4 Extended interfaces

Whether or not a user agent supports styling with CSS, a user agent still must support interface CSSValue, as
thisisthe type that is returned from the getPresentationAttribute method call on interface SV GStylable.

[DOM2-CSS] defines a set of extended interfaces [DOM2-CSS-El] for use in conjunction with interface
CSSVaue. Thetable below specifies the type of CSSValue [DOM2-CSSV ALUE] used to represent each SVG
property that applies to visual media [CSS2-VISUAL]. The expectation is that the CSSV alue returned from the

getPropertyCSSV aue method on the CSSStyleDeclaration interface or the getPresentationAttribute method on
the SV GStylable interface can be cast down, using binding-specific casting methods, to the specific derived

interface.

For properties that are represented by a custom interface (the valueType of the CSSValueis CSS_ CUSTOM),
the name of the derived interface is specified in the table. For these properties, the table below indicates which
extended interfaces are mandatory and which are not.

For properties that consist of lists of values (the valueType of the CSSVaueis CSS VALUE _LIST), the
derived interface is CSSVauelList. For all other properties (the valueType of the CSSValueis
CSS PRIMITIVE_VALUE), the derived interface is CSSPrimitiveValue.

For shorthand properties, a CSSVaue always will have a value of null. Shorthand property values can only be
accessed and modified as strings.

The SVG DOM defines the following SV G-specific custom property interfaces, all of which are mandatory for
SV G user agents:

« SVGColor
e SVGICCColor
e SVGPaint

http://www.w3.org/TR/1999/CR-DOM-Level-2-19991210/css.html#CSS-RGBColor
http://www.w3.org/TR/1999/CR-DOM-Level-2-19991210/css.html#CSS-CSSValue
http://www.w3.org/TR/1999/CR-DOM-Level-2-19991210/css.html#CSS-CSSValue
http://www.w3.org/TR/1999/CR-DOM-Level-2-19991210/css.html#CSS-CSSValue

Property Name

Representation

(Extended
interfaces

only)
Mandatory?

!'aliqnment-baseline'

|ident

|'base|ineshift' |i dent, length, percent agel
c_I	g	rect, ident	
'c	ip-gath'	uri, ident	
'c	ig-rule'	ident	
'co_	or'	rgbco	or, ident
!'col or-interpolation’	ident		
!'col or-rendering'	ident		
M	[DOM 2-CSS2Cursor]	no	
'di rection’	ident		
'di$	§y'	ident	
!'domi nant-baseline	ident		
!'enable-bacquound‘	ident		
ﬂ	SVGPai nt	yes	
'fi		-opacity'	number
'fi		-ru	e'
M	uri, ident		
'f	ood-co	or'	SV GColor
'f	ood-o;:_)acity'	number	
M	nu	I	
'font-fami ly'	I ist of strings and idents		
'font-si ze	ident, length, percentage		
!'font-si ze-adjust’	number, ident		
'font-stretch'	ident		
'font-sty	€	ident	
'font-variant'	ident		
'font-wei ght'	ident		
!'qlvph-orientati on-horizontal'	ident		
!'qlvph-orientation-vertical'	ident		
!'i mage-rendering'	ident		
'Ietter-$aci ng'	ident, length		
!'I ighting-color'	SV GColor	yes	
'marker'	nu	I	

'marker-end'	uri, ident
'marker-mid'	uri, ident
'marker-start'	uri, ident
Lasl<	uri , ident
‘opacity’ number

I'over—flow' Iident I
!'poi nter-events |ident |
!'shaperenderi ng |i dent |
|'stog-co| or' |SV GColor |ye£
|'stog—ogaci ty' |number |
|'str_oke' |SV GPaint |yes
!'strokedamarrav' |ident or list of lengths |
!'strokedashoffset' |Iength |
!'strokel inecap’ |ident |
!'stroke-l ingjoin’ |ident |
!‘strokemiterl imit' |Iength |
!'strokeopacity' |number |
|'strokewi dth' |Iength |
|'text-anchor' |ident |
!'text-decorati on' |I ist of ident |
!'text-renderi ng' |ident |
'unicodebidi'	ident	
'visibi	ity'	ident
'word-$aci ng'	Iength, ident	
'writi ng-mode'	ident	

B.7 Invalid values

If ascript setsaDOM attribute to an invalid value (e.g., a negative number for an attribute that requires a
non-negative number or an out-of-range value for an enumeration), unless this specification indicates otherwise,
no exception shall be raised on setting, but the given document fragment shall become technically in error as
described in Error processing.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents index

Appendix C: IDL Definitions

This appendix contains the complete OMG IDL for the SVG Document Object Model definitions. The IDL is also available at:
http://www.w3.0rg/TR/2000/CR-SV G-20000802/idl.zip.

/'l File: svg.idl
#i f ndef _SVG IDL_
#define _SVG IDL_

// For access to DOW core
#i ncl ude "domidl"

/!l For access to DOWR events
#i ncl ude "events.idl"

/'l For access to those parts from DOV CSS OM used by SVG DOM
#i ncl ude "css.idl"

/'l For access to those parts from DOV Views OM used by SVG DOM
#include "views.idl"

/'l For access to the SML OMused by SVG DOM
#include "sml.idl"

#pragma prefix "dom w3c. org"
#pragnma j avaPackage "org.w3c. donf
nodul e svg
{
typedef dom :DOVString DOVString;
t ypedef dom : DOVExcepti on DOVExcepti on;
typedef dom : El enent El enent;
typedef dom : Docunment Docunent;
typedef dom : NodelLi st Nodeli st ;

/!l Predecl arations

interface SVGEl enent;

nterface SVGQ.i st;

nt erface SVGL.angSpace;

nt er f ace SVCEXxt er nal Resour cesRequi r ed;
nterface SVGTests;

nterface SVGFit ToVi ewBox;

nt erface SVGZoonmAndPan;

nt erface SVGVi ewSpec;

nt erf ace SVGAURI Ref er ence;

nterface SVGPoi nt;

nterface SVGwatri x;

nt erface SVGPreserveAspect Rati o;
nt erface SVGAni mat edPr eser veAspect Rati o;
nt erface SVGIransfornii st;

nt erface SVGAni mat edTr ansf or nii st ;
nt er f ace SVGIr ansform

nterface SVGAE CCCol or;

nterface SVGCol or;

nterface SVGPaint;

nt er f ace SVGIr ansf or mabl e;

nt erface SV@&ocunent ;

nt er f ace SVGSVGEl enent ;

nt erface SVGEl enent | nst ance;

nt er f ace SVGEl enent | nst anceli st ;

exception SVGException {
unsi gned short code;

file:///D|/Public/CR-SVG-20000802/indexlist.html

b

/| SVGExcepti onCode
const unsigned short SVG WRONG _TYPE_ERR
const unsigned short SVG | NVALI D VALUE ERR

const unsigned short SVG MATRI X_NOT_| NVERTABLE

interface SVCGEl ement : El ement ({
attribute DOVBtring id;

/1 raises DOVException on setting

nnn
NEF O

readonly attribute SVGSVGEl enent owner SVGEl enent ;

b
interface SVAist {

readonly attribute unsigned | ong nunber O | t ens;

voi d clear ()
rai ses(DOVException);
bject initialize (in Object nemtem)

readonly attribute SVGEl enent viewportEl enent;

rai ses(DOVException, SVGException);

hj ect createltem();

bj ect getltem (in unsigned | ong index)
rai ses(DOVException);

bj ect insertltemBefore (in Cbject newltem

i n unsi gned

rai ses(DOVException, SVGException);

hj ect replaceltem (in Object newtem in unsigned |ong

rai ses(DOVException, SVCGException);

hj ect renoveltem (in unsigned |ong index)
rai ses(DOVException);
hj ect appendltem (in Object newtem)

rai ses(DOVException, SVCGException);

b
interface SVG@.engthList : SVAist {};
i nterface SVGAni nat edLengt hLi st {

attribute SVG.engthLi st baseVval;
/'l rai ses DOVException
readonly attribute SVG.engthLi st ani nVal ;

b
interface SVGAni matedString {

attribute DOVString baseVval;
/'l raises DOVException
readonly attribute DOVString ani nval ;

b
i nterface SVGAni mat edBool ean {

attri bute bool ean baseVal ;
/'l rai ses DOVException
readonly attribute bool ean ani nval ;

b
i nterface SVGAni mat edEnuner ati on {

attribute unsigned short baseVal;
/'l rai ses DOVException
readonly attribute unsigned short aninval;

b
interface SVGAngl e {

/1 Angle Unit Types
const unsigned short SVG ANGLETYPE_ UNKNOMN

on

on

on

on

setting

setting

setting

setting

1
L

l ong index)

i ndex)

const unsigned short SVG ANGLETYPE_UNSPECI FI ED = 1;
const unsi gned short SVG ANGLETYPE DEG = 2;
const unsi gned short SVG ANGLETYPE_RAD = 3;
const unsi gned short SVG ANGLETYPE_GRAD = 4;
readonly attribute unsigned short unitType;
attribute fl oat val ue;
/'l rai ses DOVException on setting
attribute float val uel nSpeci fiedUnits;
/1 rai ses DOVException on setting
attribute DOVString val ueAsStri ng;

/'l rai ses DOVException on setting

voi d newVval ueSpeci fiedUnits (in unsigned short unitType, in float val uel nSpecifiedUnits);
voi d convertToSpecifiedUnits (in unsigned short unitType);

}s
i nterface SVGAni nat edAngl e {

attribute SVGAngl e baseVval ;
/'l rai ses DOVException on setting
readonly attribute SVGAngl e ani nval ;

H

interface SVGCol or : css::CSSval ue {
/'l Col or Types

const unsigned short SVG COLORTYPE_ UNKNOMN = 0;

const unsi gned short SVG COLORTYPE_RGBCOLOR = 1;

const unsi gned short SVG COLORTYPE _RGBCOLOR_|I CCCOLOR = 2;

readonly attribute unsigned short col or Type;

readonly attribute css:: RGBCol or rghCol or;

readonly attribute SVA CCCol or i ccCol or;

voi d set RGBCol or (in css::RGCol or rgbCol or);

voi d set RGCol or 1 CCCol or (in css::RGCol or rgbCol or, in SVA CCCol or iccColor);

css: : RGBCol or creat eRGBCol or ();
SVA CCCol or createSVd CCColor ();

b
interface SVA@ CCCol or {

attribute DOVBtring col orProfile;
/'l raises DOVException on setting
readonly attribute SVG. st col ors;

b
i nterface SVGAni mat edl nt eger {

attribute | ong baseVal;
/'l raises DOVException on setting
readonly attribute |ong aninval;

b
interface SVG.ength {

/1 Length Unit Types

const unsi gned short SVG_LENGTHTYPE_UNKNO/W
const unsigned short SVG LENGTHTYPE_NUMBER
const unsigned short SVG LENGTHTYPE_PERCENTAGE
const unsi gned short SVG LENGTHTYPE_EMS
const unsi gned short SVG _LENGTHTYPE_EXS
const unsigned short SVG LENGTHTYPE_PX
const unsigned short SVG LENGTHTYPE_CM
const unsi gned short SVG LENGTHTYPE_WM
const unsigned short SVG LENGTHTYPE_I N
const unsi gned short SVG _LENGTHTYPE_PT
const unsi gned short SVG LENGTHTYPE_PC

T TER TR TR TR TR VRN TRRTRN IR
BooNohonNRO

o

readonly attribute unsigned short unitType;

attribute fl oat val ue;

/'l raises DOVException on setting

attribute float

/1 raises DOVException on setting

attribute DOVString

val ueAsStri ng;

/'l raises DOVException on setting

val uel nSpeci fiedUnits;

voi d newal ueSpecifiedUnits (in unsigned short unitType,
voi d convert ToSpecifiedUnits (in unsigned short unitType);

H
i nterface SVGAni mat edLengt h {

attribute SVG.ength baseVal;
/'l rai ses DOVExcept i
readonly attribute SVG.ength ani nval ;

b
i nterface SVGAni mat edNurrber {

attribute fl oat baseVal;
/'l raises DOVExcepti
readonly attribute float aninVval;

b
i nterface SVG\unberlList : SVAist {};
i nterface SVGAni mat edNunber Li st {

attri bute SVG\unber Li st baseVal;
/'l raises DOVExcepti
readonly attribute SVGNumberLi st ani nVal ;

b
interface SVGRect {

attribute float x;

/'l raises DOVExcepti
attribute float y;

/'l rai ses DOVExcepti
attribute float w dth;

/'l rai ses DOVExcepti
attribute float height;

/'l raises DOVExcepti

b
i nterface SVGAni mat edRect {
attri bute SVGRect baseVal ;

/'l rai ses DOVExcepti
readonly attribute SVGRect aninval;

b
interface SVGQUnit Types {

/1 Unit Types

on

on

on

on

on

on

on

on

const unsi gned short SVG _UN T_TYPE_UNKNOMN
const unsigned short SVG UN T_TYPE_USERSPACEONUSE
const unsigned short SVG UN T_TYPE USERSPACE

const unsi gned short SVG UNI T_TYPE_OBJECTBOUNDI NGBOX

b
interface SVGStyl able {

readonly attribute SVGAni matedString cl assNane;

on

on

on

on

on

on

on

on

setti

setti

setti

setti
setti
setti

setti

setti

readonly attribute css::CSSStyl eDecl aration style;

ng

ng

ng

ng
ng
ng
ng

ng

WP o

in float

css:: CSSVal ue getPresentationAttribute (in DOVString nanme);

val uel nSpeci fiedUnits);

css: : CSSVal ue get Ani mat edPresentationAttribute (in DOVString nane);

h

i nterface SVGIransformable {
readonly attribute SVGEl ement near est Vi ewport El enent ;
readonly attribute SVGEl enent farthest Vi ewport El enent;

readonly attribute SVGAni mat edTransfornii st transform

SVGRect getBBox ();
SVGWatrix getCTM ();
SVGwatri x get ScreenCTM () ;
SVGQwatri x get Transf or nifoEl ement (in SVCEl ement el ement)
rai ses(SVGException);
H

interface SVGTests {

attribute SVG.i st requiredFeatures;

/'l raises DOVException on setting
attribute SVA.i st requiredExtensions;

/'l raises DOVException on setting
attribute SVGE.i st systenlLanguage;

/'l raises DOVException on setting

bool ean hasExtension (in DOMString extension);

}1
i nterface SVA.angSpace {

attribute DOVString xm | ang;

/'l raises DOVException on setting
attribute DOVStri ng xm space;

/'l raises DOVException on setting

b
i nterface SVGExternal ResourcesRequired {

readonly attribute SVGAni mat edBool ean ext er nal Resour cesRequi r ed;

b
interface SVGFit ToVi ewBox {

readonly attribute SVGAni nat edRect vi ewBox;
readonly attribute SVGAni mat edPreserveAspect Rati o preserveAspect Rati o;

b
i nterface SV&ZoonmAndPan {

/'l Zoom and Pan Types

const unsi gned short SVG ZOOVANDPAN_ UNKNOWN
const unsi gned short SVG ZOOVANDPAN DI SABLE
const unsi gned short SVG_ZOOVANDPAN MAGNI FY
const unsi gned short SVG_ZOOMANDPAN ZOOM

nonon
wneE

attribute unsigned short zoomAndPan;
/'l raises DOVException on setting

b

i nterface SVGVi ewSpec :
SVGZoomAndPan,
SVGFi t ToVi ewBox {

attribute SVGIransfornlLi st transform
/'l raises DOVException on setting

attri bute SVGEl enent Vi ewTar get ;
/'l raises DOVException on setting
readonly attribute DOVString vi ewBoxSt ri ng;

readonly attribute DOVString preserveAspect Rati oStri ng;

readonly attribute DOVString
readonly attribute DOVString

s
i nterface SVGURI Ref erence {

attribute DOVString xlinkType;
/1 rai ses DOVException on
attribute DOVString xlinkRol e;
/1 raises DOVException on
attribute DOVString xlinkArcRol e;
/1 rai ses DOVException on
attribute DOVString xlinkTitle;
/'l raises DOVException on
attribute DOVString xlinkShow,
/1 rai ses DOVException on
attribute DOVBtring xlinkActuate;
/'l rai ses DOVException on
readonly attribute SVGAni matedString href;

b
interface SVGCSSRul e : css::CSSRul e {

/1 Additional CSS Rul eType to support ICC co
const unsi gned short COLOR_PROFILE RULE = 7;
b
i nterface SVGRenderinglntent {
/'l Rendering Intent Types
const unsigned short RENDERI NG_| NTENT_UNKNOMN
const unsi gned short RENDERI NG | NTENT_AUTO
const unsigned short RENDERI NG | NTENT_PERCEPTUAL
const unsi gned short RENDERI NG_| NTENT_RELATI VE_COLORI METRI C
const unsi gned short RENDERI NG INTENT SATURATI ON
const unsigned short RENDERI NG | NTENT_ABSOLUTE_COLORI METRI C
b
i nterface SVG@ocumnent
Docunent ,
event s: : Docunent Event {
attribute DOVString title;
/'l raises DOVException on setting
readonly attribute DOVString referrer;
readonly attribute DOVString donai n;
readonly attribute DOVString URL;
readonly attribute SVGSVCGEl enent rootEl enent;
b
i nterface SVGSVCEl enent
SVGEl enent
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGFi t ToVi ewBox,
SVGZoomAndPan,

event s: : Event Tar get,
event s: : Docunent Event ,
css: : Vi ewCss,

css: : Docunment CSS {

readonly attribute SVGAni mat edLength Xx;
readonly attribute SVGAni mat edLength vy;
readonly attribute SVGAni mat edLength wi dt h;
readonly attribute SVGAni mat edLengt h hei ght;
attribute DOVString

transfornttring;
vi ewTar get Stri ng;

setti
setti
setti
setti
setti

setti

ng
ng
ng
ng
ng
ng

content Scri pt Type;

/1 raises DOVException on setting

attribute DOVString

content Styl eType;

ol or specifications

aRhwORO

/'l raises DOVException on setting

readonly attribute SVGRect Vi ewport ;
readonly attribute float pixelUnitToMIlineterX;
readonly attribute float pixelUnitToMIIlineterY,
readonly attribute float screenPi xel ToMI1|i neterX;
readonly attribute float screenPixel TOMIIlinmeterY;
attri bute bool ean useCurrent Vi ew,
/'l rai ses DOVException on setting
readonly attribute SVGVi ewSpec current Vi ew,
attribute float currentScale;
/'l raises DOVException on setting
attri bute SVGPoi nt current Transl at e;
/'l raises DOVException on setting
unsi gned | ong suspendRedraw (in unsigned |long max_wait_mlliseconds)
voi d unsuspendRedraw (i n unsigned | ong suspend_handle_id)
rai ses(DOVException);
voi d unsuspendRedrawAl | ();
voi d forceRedraw ();
voi d pauseAni mations ();
voi d unpauseAni mations ();
bool ean ani mati onsPaused ();
fl oat getCurrentTinme ();
voi d setCurrentTime (in float seconds);
Nodeli st getlntersectionList (in SVGRect rect, in SVGEl enment referenceEl enent
NodelLi st get Encl osureList (in SVGRect rect, in SVCGEl enent referenceEl enent);
bool ean checkl ntersection (in SVGEl ement elenment, in SVGRect rect);
bool ean checkEncl osure (in SVCEl ement elenent, in SVGRect rect);
voi d deSelectAll ();
SVG.engt h createSVG@.ength ();
SVGANngl e createSV&Angle ();
SVGPoi nt createSVGoint ();
SVGwat ri x createSVGwatrix ();
SVCRect createSVGRect ();

SVGTIr ansf orm
SVGTr ansf orm
css: : R@&Col or

SVA@ CCCo
El enent

}s

interface

interface

interface

interface

createSVGIransform ();
createSVGIransfornFronmvatrix (in SVGWatrix matrix);
creat eRGBCol or ();
createSVG CCCol or ();
getEl enentByld (in DOVBtring elenmentld);

| or

SVGGEl enent
SVCGEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events:: Event Target {};

SVCDef sEl enment
SVGEl enent ,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events:: Event Target {};

SVC@DescEl ement :
SVGEl enent ,
SVGLangSpace,
SVGStyl abl e {};

SVGTi t | eEl enent
SVGEl enent ,
SVGLangSpace,
SVGStyl abl e {};

i nterface SVGSynbol El enent
SVGEl enent ,
SVGE.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGFi t ToVi ewBox,
events: : Event Target {};

i nterface SVGUseEl enent
SVGE!l enent
SVGAURI Ref er ence,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
event s: : Event Target {

readonly attribute SVGAni mat edLengt h X;
readonly attribute SVGAni mat edLength vy;
readonly attribute SVGAni nmat edLengt h wi dt h;
readonly attribute SVGAni nat edLength hei ght ;

readonly attribute SVGEl enentl|nstance instanceRoot;
readonly attribute SVGEl enentlnstance ani mat edl nst anceRoot ;

b

i nterface SVGEl enentlnstance : events:: Event Target {
readonly attribute SVGEl enent correspondi ngEl enent ;
readonly attribute SVGUseEl enent correspondi ngUseEl enent ;
readonly attribute SVGEl enent|nstance parent Node;
readonly attribute SVGEl ement | nstanceLi st chil dNodes;
readonly attribute SVGEl enentlnstance firstChild;
readonly attribute SVGEl enentl nstance | ast Child;
readonly attribute SVGEl enentl|nstance previousSibling;
readonly attribute SVGEl enentl| nstance nextSibling;

b
i nterface SVCGEl ement | nst ancelLi st {

readonly attribute SVGEl enmentl| nstance | ength;

H

i nterface SVA nmageEl enent
SVGEl enent
SVGURI Ref er ence,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events: : Event Target {

readonly attribute SVGAni mat edLength Xx;
readonly attribute SVGAni mat edLength vy;
readonly attribute SVGAni mat edLength wi dt h;
readonly attribute SVGAni mat edLengt h hei ght;

b

interface SVGSwi t chEl enent
SVGEl enent
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events:: Event Target {};

SVGEl enent I nstance item (in unsigned |ong index);

i nterface Get SVGocunent {

SVGDocunent get SVGocunent ()

b

rai ses(DOVException);

interface SVGStyl eEl ement : SVCGEl ement {

b

attribute DOVStri ng xm space;

/1 raises DOVException
attribute DOVBtring type;

/'l raises DOVException
attribute DOVString nedi a;

/1 raises DOVException
attribute DOVBtring title;

/'l raises DOVException

i nterface SVGPoi nt {

H

SVGPoi nt matri xTransform (

attribute float x;

/'l rai ses DOVException
attribute float y;

/'l raises DOVException

interface SV@vatrix {

SVGWAt ri
SVGVat ri

SVGWaLt r i
SVQWaL ri
SVGVat ri
SVGVat ri
SVGwvaLt r i

SVGVat ri
SVGVat ri
SVGWaLt r i
SVQwat ri

}s

X X X X X

X X X X

attribute float a;

/'l raises DOVException
attribute float b;

/'l rai ses DOVException
attribute float c;

/'l raises DOVException
attribute float d;

/'l rai ses DOVException
attribute float e;

/'l rai ses DOVException
attribute float f;

/'l raises DOVException

on

on

on

on

on

on

in SV@Qwatrix matrix

on

on

on

on

on

on

multiply (in SVG@Gvatrix secondMatri x

inverse ()
rai ses(SVCGException);

translate (in float x, in float y);

scale (in float scal eFactor);

setti
setti
setti

setti

setti

setti

setti
setti
setti
setti
setti

setti

)

scal eNonUni form (in float scal eFactorX, i

rotate (in float angle);

ng
ng
ng
ng

ng
ng

ng
ng
ng
ng
ng
ng

n float scal eFactorY);

rotateFromvector (in float x, in float y)

rai ses(SVGException);

flipX ();
flipy (-);
skewX (in float angle);
skewY (in float angle);

interface SVGIransfornlist : SVGAist {
SVGIr ansf orm cr eat eSVGIr ansf or nFromvat ri x (

H

SVGITr ansform consolidate ();

i nterface SVGAni mat edTransf or i st {

b

attri bute SVGIransfornii st baseVal ;

in SVGvatrix matrix);

/'l raises DOVException on setting

readonly attribute SVGIransforniist aninVal;

i nterface SVGIransform {

/'l Transform Types

const unsi gned short SVG_TRANSFORM_ UNKNOAN
const unsigned short SVG TRANSFORM MATRI X
const unsigned short SVG TRANSFORM TRANSLATE
const unsi gned short SVG TRANSFORM SCALE
const unsi gned short SVG _TRANSFORM ROTATE
const unsi gned short SVG TRANSFORM SKEWK
const unsi gned short SVG TRANSFORM SKEWY

(TR TR TR TR T
QNRrONRO

readonly attribute unsigned short type;
readonly attribute SVGvatrix matrix;
readonly attribute float angle;

void setMatrix (in SVGvatrix matrix);

void setTranslate (in float tx, in float ty);

void setScale (in float sx, in float sy);

void setRotate (in float angle, in float cx, in float cy);
voi d setSkewX (in float angle);

void setSkewY (in float angle);

b
interface SVGPreserveAspectRati o {

/1 Alignnent Types

const unsi gned short SVG PRESERVEASPECTRATI O UNKNOVWN =
const unsi gned short SVG PRESERVEASPECTRATI O_NONE
const unsigned short SVG PRESERVEASPECTRATI O XM NYM N
const unsigned short SVG PRESERVEASPECTRATI O XM DYM N
const unsi gned short SVG PRESERVEASPECTRATI O XMAXYM N
const unsi gned short SVG PRESERVEASPECTRATI O XM NYM D
const unsi gned short SVG PRESERVEASPECTRATI O XM DYM D
const unsi gned short SVG PRESERVEASPECTRATI O XMAXYM D
const unsi gned short SVG PRESERVEASPECTRATI O XM NYMAX
const unsi gned short SVG PRESERVEASPECTRATI O XM DYMAX
const unsi gned short SVG PRESERVEASPECTRATI O XMAXYMAX
/1l Meet-or-slice Types

const unsigned short SVG MEETORSLI CE_UNKNOWN = O;
const unsigned short SVG MEETORSLI CE_MEET = 1;

const unsi gned short SVG MEETORSLI CE_SLICE = 2;

POONOUAWNE

e

attribute unsigned short align;

/'l raises DOVException on setting
attribute unsigned short nmeetOr Slice;

/'l rai ses DOVException on setting

b
i nterface SVGAni mat edPreserveAspectRati o {

attribute SVGPreserveAspect Rati o baseVal ;
/'l raises DOVException on setting
readonly attribute SVGPreserveAspectRati o ani nVal ;

b
interface SVGPat hSeg {

/1l Path Segnent Types

const unsi gned short PATHSEG UNKNOWN

const unsigned short PATHSEG CLOSEPATH

const unsi gned short PATHSEG MOVETO ABS

const unsi gned short PATHSEG MOVETO REL

const unsigned short PATHSEG LI NETO ABS

const unsigned short PATHSEG LI NETO REL

const unsi gned short PATHSEG CURVETO CUBI C_ABS
const unsi gned short PATHSEG CURVETO CUBI C_REL
const unsi gned short PATHSEG CURVETO QUADRATI C_ABS
const unsi gned short PATHSEG CURVETO QUADRATI C_REL
const unsi gned short PATHSEG ARC ABS

PBoxNoahrwdRO

o~

const unsi gned short PATHSEG ARC REL = 11;
const unsigned short PATHSEG LI NETO HORI ZONTAL_ABS = 12;
const unsi gned short PATHSEG LI NETO HORI ZONTAL_REL = 13;
const unsi gned short PATHSEG LI NETO VERTI CAL_ABS = 14;
const unsigned short PATHSEG LI NETO VERTI CAL_REL = 15;
const unsigned short PATHSEG CURVETO CUBI C_SMOOTH ABS = 16;
const unsi gned short PATHSEG CURVETO CUBI C_SMOOTH REL = 17;
const unsi gned short PATHSEG CURVETO QUADRATI C_SMOOTH_ABS = 18;
const unsi gned short PATHSEG CURVETO QUADRATI C_ SMOOTH REL = 19;

readonly attribute unsigned short pathSegType;
readonly attribute DOVString pat hSegTypeAsLetter;

b
i nterface SVGPat hSegd osePath : SVGPat hSeg {};

i nterface SVGPat hSeghbvet oAbs : SVGPat hSeg {
attribute float X;
/'l raises DOVException on setting
attribute fl oat y;
/'l rai ses DOVException on setting

b

i nterface SVGPat hSeghvbvet oRel : SVGPat hSeg {
attribute fl oat X;
/1 raises DOVException on setting
attribute float Y;
/'l raises DOVException on setting

b

i nterface SVGPat hSegLi net oAbs : SVGPat hSeg {
attribute fl oat X
/'l rai ses DOVException on setting
attribute float y;
/1 rai ses DOVException on setting

b

i nterface SVGPat hSegLi netoRel : SVGPat hSeg {
attribute float X;
/'l raises DOVException on setting
attribute fl oat Y;
/'l rai ses DOVException on setting

b

i nterface SVGPat hSegCurvet oCubi cAbs : SVGPat hSeg {

attribute fl oat X

/'l raises DOVException on setting
attribute float y;

/'l raises DOVException on setting
attribute fl oat x1;

/1 raises DOVException on setting
attribute float y1;

/'l raises DOVException on setting
attribute fl oat X2;

/'l raises DOVException on setting
attribute float y2;

/'l raises DOVException on setting

b

i nterface SVGPat hSegCurvet oCubi cRel : SVGPat hSeg {

attribute fl oat X;

/'l rai ses DOVException on setting
attribute float y;

/1 raises DOVException on setting
attribute fl oat x1;

/'l raises DOVException on setting
attribute fl oat y1;

/'l raises DOVException on setting
attribute fl oat X2;

/'l raises DOVException on setting
attribute float y2;
/'l raises DOVException on setting

b

i nterface SVGPat hSegCurvet oQuadrati cAbs : SVGPat hSeg {

attribute fl oat X

/'l rai ses DOVException on setting
attribute float y;

/1 rai ses DOVException on setting
attribute fl oat x1;

/'l rai ses DOVException on setting
attribute float y1;

/'l raises DOVException on setting

b

i nterface SVGPat hSegCurvet oQuadrati cRel : SVGPat hSeg {

attribute float X;

/'l raises DOVException on setting
attribute fl oat y;

/'l rai ses DOVException on setting
attribute float x1;

/'l raises DOVException on setting
attribute fl oat y1;

/'l rai ses DOVException on setting

b

i nterface SVGPat hSegArcAbs : SVGPat hSeg {

attribute fl oat X

/'l raises DOVException on setting
attribute float Y;

/'l raises DOVException on setting
attribute fl oat ri;

/'l raises DOVException on setting
attribute float r2;

/'l raises DOVException on setting
attribute fl oat angl e;

/'l raises DOVException on setting
attribute bool ean | argeArcFl ag;

/'l raises DOVException on setting
attribute bool ean sweepFl ag;

/'l rai ses DOVException on setting

b

i nterface SVGPat hSegArcRel : SVGPat hSeg {

attribute fl oat X

/'l raises DOVException on setting
attribute float Y;

/'l raises DOVException on setting
attribute fl oat ri;

/'l raises DOVException on setting
attribute fl oat r2;

/'l raises DOVException on setting
attribute fl oat angl e;

/'l raises DOVException on setting
attribute bool ean | argeArcFl ag;

/'l raises DOVException on setting
attribute bool ean sweepFl ag;

/'l raises DOVException on setting

b

i nterface SVGPat hSegLi net oHori zont al Abs : SVGPat hSeg {
attribute fl oat X
/1 raises DOVException on setting

b

i nterface SVGPat hSeglLi net oHori zontal Rel : SVGPat hSeg {
attribute float X;
/'l raises DOVException on setting

b

i nterface SVGPat hSegLi netoVertical Abs : SVGPat hSeg {
attribute fl oat Y;
/'l raises DOVException on setting
b

i nterface SVGPat hSegLi netoVertical Rel : SVGPat hSeg {
attribute float y;
/1 raises DOVException on setting
H

i nterface SVGPat hSegCur vet oCubi cSnoot hAbs : SVGPat hSeg {
attribute float X;
/'l raises DOVException on setting
attribute fl oat Y;
/1 raises DOVException on setting
attribute float X2;
/'l raises DOVException on setting
attribute fl oat y2;
/'l rai ses DOVException on setting

b

i nterface SVGPat hSegCurvet oCubi cSnpbot hRel : SVGPat hSeg {
attribute fl oat X;
/1 raises DOVException on setting
attribute float Y;
/'l raises DOVException on setting
attribute fl oat X2;
/'l raises DOVException on setting
attribute float y2;
/'l raises DOVException on setting

b

i nterface SVGPat hSegCurvet oQuadr ati cSnoot hAbs : SVGPat hSeg {
attribute fl oat X
/'l rai ses DOVException on setting
attribute float Y;
/'l raises DOVException on setting
b

i nterface SVGPat hSegCurvet oQuadrati cSnoot hRel : SVGPat hSeg {
attribute float X;
/'l raises DOVException on setting
attribute fl oat y;
/'l rai ses DOVException on setting

b
i nterface SVGAni nat edPat hDat a {

readonly attribute SVG.i st pat hSegli st ;

readonly attribute SVG. st nor mal i zedPat hSegLi st ;
readonly attribute SVG. st ani mat edPat hSeglLi st ;

readonly attribute SVG.i st ani mat edNor el i zedPat hSeglLi st ;

b

i nterface SVGPat hEl enent
SVGEl enent
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTIr ansf or mabl e,
events: : Event Tar get,
SVGANni mat edPat hDat a {

readonly attribute SVGAni mat edNunber pat hLengt h;

fl oat get Total Length ();

SVGPoi nt get Poi nt AtLength (in float distance);
unsi gned | ong get Pat hSegAt Length (in float distance);
SVGPat hSegd osePat h creat eSVGPat hSegC osePath ();

SVGPat hSegvbvet oAbs cr eat eSVGPat hSegMovet oAbs (in float x, in float y);
SVGPat hSegMvbvet oRel cr eat eSVGPat hSeghMovetoRel (in float x, in float y);
SVGPat hSegLi net oAbs creat eSVGPat hSegLi netoAbs (in float x, in float y);
SVGPat hSegLi net oRel creat eSVGPat hSegLinetoRel (in float x, in float y);
SVGPat hSegCur vet oCubi cAbs cr eat eSVGPat hSegCur vet oCubi cAbs (in float x, in float y, in float

x1l, in float yl1, in float x2, in float y2);

SVGPat hSegCur vet oCubi cRel cr eat eSVGPat hSegCurvet oCubicRel (in float x, in float y, in float
x1, in float yl1, in float x2, in float y2);

SVGPat hSegCur vet oQuadr at i cAbs cr eat eSVGPat hSegCur vet oQuadrati cAbs (in float x, in float vy,
in float x1, in float yl1);

SVGPat hSegCur vet oQuadr at i cRel cr eat eSVGPat hSegCurvet oQuadraticRel (in float x, in float vy,
in float x1, in float yl1);

SVGPat hSegAr cAbs creat eSVGPat hSegArcAbs (in float x, in float y, in float rl, in float r2,
in float angle, in boolean |argeArcFlag, in bool ean sweepFlag);

SVGPat hSegAr cRel creat eSVGPat hSegArcRel (in float x, in float y, in float rl, in float r2,
in float angle, in boolean |argeArcFlag, in bool ean sweepFlag);

SVGPat hSegLi net oHor i zont al Abs creat eSVGPat hSeglLi net oHori zontal Abs (in float x);

SVGPat hSegLi net oHor i zont al Rel cr eat eSVGPat hSegLi net oHori zontal Rel (in float x)
SVGPat hSegLi net oVerti cal Abs creat eSVGPat hSegLi netoVertical Abs (in float y);
SVGPat hSegLi net oVerti cal Rel creat eSVGPat hSeglLi netoVerticalRel (in float y);

SVGPat hSegCur vet oCubi cSnmoot hAbs cr eat eSVGPat hSegCur vet oCubi cSnoot hAbs (in float x, in float
y, in float x2, in float y2);

SVGPat hSegCur vet oCubi cSnoot hRel cr eat eSVGPat hSegCur vet oCubi cSmmoot hRel (in float x, in float
y, in float x2, in float y2);

SVGPat hSegCur vet oQuadr at i cSnoot hAbs cr eat eSVGPat hSegCur vet oQuadr ati cSmoot hAbs (in float x,
infloat y);

SVGPat hSegCur vet oQuadr at i cSnoot hRel cr eat eSVGPat hSegCur vet oQuadr ati cSnoot hRel (in float x,
infloat y);

interface SVGRect El enent :
SVGEl enent ,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events: : Event Target {

readonly attribute SVGAni mat edLength X;
readonly attribute SVGAni mat edLength vy;
readonly attribute SVGAni mat edLength wi dt h;
readonly attribute SVGAni mat edLengt h hei ght;
readonly attribute SVGAni mat edLength rx;
readonly attribute SVGAni mat edLength ry;

b

i nterface SVGC rcl eEl enent
SVGEl enent ,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
event s: : Event Target {

readonly attribute SVGAni mat edLength cx;
readonly attribute SVGAni mat edLength cy;
readonly attribute SVGAni mat edLength r;

b

i nterface SVCGEl | i pseEl enent
SVGEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXxt er nal Resour cesRequi r ed,

SVGSt yl abl e,
SVGTr ansf or mabl e,
events: : Event Target {

readonly attribute SVGAni mat edLength cx;
readonly attribute SVGAni mat edLength cy;
readonly attribute SVGAni mat edLength rx;
readonly attribute SVGAni mat edLength ry;

b

interface SVGA.i neEl enent
SVGEl enent
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events: : Event Target {

readonly attribute SVGAni mat edLength x1;
readonly attribute SVGAni mat edLength y1;
readonly attribute SVGAni mat edLength x2;
readonly attribute SVGAni mat edLength y2;

s
i nterface SVGAni nat edPoi nts {

readonly attribute SVG. st poi nt s;
readonly attribute SVG.i st ani mat edPoi nt s;

b

i nterface SVGPol yl i neEl enent
SVGEl enent
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events: : Event Tar get,
SVGAni mat edPoi nts {};

i nterface SVGPol ygonEl enent
SVCGEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events: : Event Tar get,
SVGAni mat edPoi nts {};

i nterface SVGText Cont ent El ement
SVGEl enent ,
SVGTest s,
SVGLangSpace,
SVGEXxt er nal Resour cesRequi r ed,
SVGSt yl abl e,
event s:: Event Target {

/1 1 engthAdjust Types

const unsi gned short LENGTHADJUST_ UNKNOAN = 0;
const unsi gned short LENGTHADJUST_SPACI NG = 1;
const unsi gned short LENGTHADJUST SPACI NGANDGLYPHS

readonly attribute SVGAni mat edLengt h t ext Lengt h;

readonly attribute SVGAni mat edEnunerati on | engt hAdj ust;

| ong get Nunber Of Chars ();
fl oat get Conput edText Length ();

fl oat get SubStringLength (in unsigned |ong charnum in unsigned |ong nchars)
rai ses(DOVException);
SVGPoi nt getStart PositionO Char (in unsigned | ong charnum)
rai ses(DOVException);
SVGPoi nt get EndPosi ti onOf Char (in unsigned | ong charnum)
rai ses(DOVException);
SVGRect getExtentOf Char (in unsigned | ong charnum)
rai ses(DOVException);

fl oat getRotati onOf Char (in unsigned | ong charnum)
rai ses(DOVException);
| ong get Char NumAt Position (in SVGPoint point);
voi d sel ect SubString (in unsigned | ong charnum in unsigned | ong nchars)

rai ses(DOVException);
}

interface SVGText El enent :
SVGText Cont ent El enent ,
SVGTIr ansf or mabl e {

readonly attribute SVGAni mat edLength Xx;
readonly attribute SVGAni mat edLength y;
3
interface SVGlext Rotate {

/'l rotate types

const unsigned short ROTATE_UNKNOWN = O;
const unsi gned short ROTATE_AUTO = 1;
const unsi gned short ROTATE_ANGLES = 2;

attribute unsigned short rotateVal ueType;
/'l raises DOVException on setting
readonly attribute SVG.i st angles;

b
i nterface SVGAni mat edText Rotate {

attribute SVGText Rotate baseVal;
/'l raises DOVException on setting
readonly attribute SVGText Rotate ani nval;

b

i nterface SVGText Posi tioni ngEl enent : SVGText Cont ent El enent {
readonly attribute SVGAni mat edLengt hLi st x;
readonly attribute SVGAni mat edLengt hLi st v;
readonly attribute SVGAni mat edLengt hLi st dx;
readonly attribute SVGAni mat edLengt hLi st dy;
readonly attribute SVGAni mat edText Rotate rot at e;

3
i nterface SVGTSpanEl ement : SVGText Positioni ngEl enent {};

interface SVGIRef El enent :
SVGText Posi ti oni ngEl erment ,
SVGURI Ref erence {};

i nterface SVGAE yphRunEl enent : SVGText Posi tioni ngEl ement {
readonly attribute SVGAni mat edNunberLi st gl yphOrder;

H

i nterface SVGText Pat hEl enent
SVGText Posi ti oni ngEl erment ,
SVGURI Ref erence {

/'l textPath Method Types

const unsi gned short TEXTPATH _METHODTYPE_UNKNOW
const unsi gned short TEXTPATH METHODTYPE_ALI GN
const unsi gned short TEXTPATH METHODTYPE_STRETCH
/'l textPath Spacing Types

= o

const unsi gned short TEXTPATH _SPACI NGTYPE_UNKNOWN =
const unsi gned short TEXTPATH_SPACI NGTYPE_AUTO =

const unsi gned short TEXTPATH_SPACI NGTYPE_EXACT

readonly attribute SVGAni mat edLength

readonly attribute SVGAni mat edEnunerati on mnet hod;
readonly attribute SVGAni mat edEnunerati on spaci ng;

b

i nterface SVGAl td yphEl enent :
SVGText Cont ent El enent ,
SVGURI Ref erence {};

interface SVGAl td yphDef El ement : SVCEl enent {};

interface SVGAl t A yphl tenkEl enent : SVGEl enent {};

i nterface SVGA yphRef El enent
SVGEl enent ,
SVGURI Ref er ence,
SVGSt yl abl e {

b

interface SVGPai nt

/1 Pai
const
const
const
const
const
const
const
const
const

attribute DOVString gl yphRef;

/'l raises DOVException on setting

attribute DOVString format;

nt Types
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short
short
short
short
short
short
short
short
short

/'l raises DOVException on setting

SVCCol or {

SVG_PAI NTTYPE_UNKNOWN

SVG_PAI NTTYPE_RGBCOLOR

SVG_PAI NTTYPE_RGBCOLOR | CCCOLOR
SVG_PAI NTTYPE_NONE

SVG_PAI NTTYPE_CURRENTCOLOR
SVG_PAI NTTYPE_URI _NONE

SVG_PAI NTTYPE_URI _CURRENTCOLOR
SVG_PAI NTTYPE_URI _RGBCOLOR

SVG_PAI NTTYPE_URI _RGBCOLOR | CCCOLOR

readonly attribute unsigned short paintType;
readonly attribute DOVString uri;

voi d setUri

SVGE CCCol or

b

(in DOMBtring uri);
void setPaint (in unsigned short paintType
iccColor);

i nterface SVGVar ker El enent

SVGEl enent

SVG.angSpace,

SVGEXxt er nal Resour cesRequi red
SVGSt yl abl e,

SVGFi t ToVi ewBox {

/] Marker Unit

const
const
const
const

unsi gned
unsi gned
unsi gned
unsi gned

Types
short
short
short
short

SVG_MARKERUNI TS_UNKNOVWN
SVG_MARKERUNI TS_USERSPACEONUSE
SVG_MARKERUNI TS_USERSPACE
SVG_MARKERUNI TS_STROKEW DTH

wnNR o

/1 Marker Orientation Types

const unsi gned short SVG MARKER ORI ENT_UNKNOVW
const unsi gned short SVG MARKER_ ORI ENT_AUTO
const unsigned short SVG MARKER ORI ENT_ANGLE

readonl y
readonl y
readonl y
readonl y

attribute SVGAni mat edLengt h ref X
attribute SVGAni mat edLengt h refY
attri bute SVGAni mat edEnunerati on markerUnits;
attribute SVGAni mat edLengt h

mar ker W dt h;

1.

0;
2;

in DOVString

NP O

uri,

start O f set;

106

in css::RG@Col or rgbCol or

in

readonly attribute SVGAni nat edLength mar ker Hei ght ;
readonly attribute SVGAni mat edEnunerati on orient Type;
readonly attribute SVGAni mat edAngl e ori ent Angl €;

void setOrient ToAuto ();
void setOrientToAngle (in SVGAngl e angle);

b

interface SVGCol or Profil eEl enent
SVGEl enent ,
SVGRenderi ngl ntent {

attribute DOVString name;

/'l raises DOVException on setting
attribute unsigned short renderinglntent;

/'l rai ses DOVException on setting

b

interface SVGCol or Profil eSrcEl enent
SVGEl enent ,
SVGURI Ref erence {};

interface SVGCol orProfil eRul e :
SVGCSSRul e,
SVGRenderi ngl ntent {

attribute DOVString src;
/'l raises DOVException on setting
attribute DOVString nane;

/'l raises DOVException on setting
attribute unsigned short renderinglntent;
/'l raises DOVException on setting

b

interface SVGG adi ent El enent
SVGEl enent ,
SVGURI Ref er ence,
SVGEXt er nal Resour cesRequi red,
SVGUni t Types {

/'l Spread Method Types

const unsi gned short SVG_SPREADMETHOD UNKNOAN
const unsi gned short SVG SPREADMETHOD PAD
const unsi gned short SVG SPREADMETHOD REFLECT
const unsi gned short SVG SPREADVMVETHOD REPEAT

whkro

readonly attribute SVGAni mat edEnunerati on gradi ent Uni ts;
readonly attribute SVGAni mat edTransformnli st gradi ent Transform
readonly attribute SVGAni mat edEnunerati on spr eadMet hod;

b

i nterface SVAi near G adi ent El ement : SVG& adi ent El ement {
readonly attribute SVGAni mat edLength x1;
readonly attribute SVGAni mat edLength y1;
readonly attribute SVGAni mat edLength x2;
readonly attribute SVGAni mat edLength y2;

h

i nterface SVGRadi al G adi ent El ement : SVG& adi ent El ement {
readonly attribute SVGAni mat edLength cx;
readonly attribute SVGAni mat edLength cy;
readonly attribute SVGAni mat edLength r;
readonly attribute SVGAni mat edLength fx;
readonly attribute SVGAni mat edLength fy;

}s

i nterface SVGSt opEl enent
SVGEl enent
SVGStyl abl e {

readonly attribute SVGAni mat edNunber of fset;
b

interface SVGPatt er nEl enent
SVGEl enent ,
SVGAURI Ref er ence,
SVGTest s,
SVGLangSpace,
SVGEXxt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGFi t ToVi ewBox,
SVGUni t Types {

SVGANni mat edEnuner at i on

SVGAni mat edTr ansf or nli st
SVGAni mat edLengt h X;
SVGAni mat edLengt h y;
SVGAni mat edLengt h
SVGAni mat edLengt h

attribute
attribute
attribute
attribute
attribute
attribute

readonl y
readonl y
readonl y
readonl y
readonl y
readonl y

b

i nterface SVGCO i pPat hEl enent
SVGEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
SVGUni t Types {

H

interface SVGvaskEl enent
SVGEl enent ,
SVGTest s,
SVGLangSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
SVGUni t Types {

patternUnits;
patternTransform

wi dt h;
hei ght ;

readonly attribute SVGAni mat edEnunerati on cli pPathUnits;

readonly attribute SVGAni mat edEnunerati on maskUnits;
readonly attribute SVGAni mat edLength X;
readonly attribute SVGAni nat edLengt h Y;
readonly attribute SVGAni mat edLength wi dt h;
readonly attribute SVGAni mat edLength hei ght ;
b
interface SVGHi |t erEl ement

SVGEl enent

SVGAURI Ref er ence,

SVGLangSpace,

SVGEXt er nal Resour cesRequi r ed,

SVGSt yl abl e,

SVGUni t Types {
readonly attribute SVGAni mat edEnuneration filterUnits;
readonly attribute SVGAni mat edEnuneration primtiveUnits;
readonly attribute SVGAni mat edLengt h X;
readonly attribute SVGAni nat edLengt h y;
readonly attribute SVGAni mat edLength wi dt h;
readonly attribute SVGAni nat edLength hei ght ;
readonly attribute SVGAni mat edl nt eger filterResX;
readonly attribute SVGAni mat edl nt eger filterResY,

void setFilterRes (in unsigned long filterResX,

in unsigned long filterResY);

interface SVGFilterPrimtiveStandardAttributes {

readonl y
readonl y
readonl y
readonl y
readonl y

b

attribute
attribute
attribute
attribute
attribute

SVGAni mat edLengt h x;
SVGAni mat edLengt h y;
SVGAni nat edLengt h wi dt h;
SVGAni mat edLengt h hei ght;
SVGAni mat edString result;

i nterface SVG-EBI endEl enent
SVGEl enent
SVGFilterPrinmitiveStandardAttributes {

/1 Blend Mbde Types

const
const
const
const
const
const

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short
short
short
short
short
short

SVG_FEBLEND_ MODE_UNKNOWN
SVG_FEBLEND_MODE_NORVAL
SVG_FEBLEND_MODE_MULTI PLY
SVG_FEBLEND_MODE_SCREEN
SVG_FEBLEND_MODE_DARKEN
SVG_FEBLEND_MODE_LI| GHTEN

ARhONEO

readonly attribute SVGAni matedString ini;
readonly attribute SVGAni matedString in2
readonly attribute SVGAni mat edEnunerati on node;

b

i nterface SVG-ECol or Mat ri XEl enrent
SVGEl enent
SVGFilterPrinmitiveStandardAttributes {

/1 Col
const
const
const
const
const

or Matrix Types

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short
short
short
short
short

SVG_FECOLORMATRI X_TYPE_UNKNOAN
SVG_FECOLORMVATRI X_TYPE_MATRI X
SVG_FECOLORMATRI X_TYPE_SATURATE
SVG_FECOLORMATRI X_TYPE_HUEROTATE
SVG_FECOLORMVATRI X_TYPE_LUM NANCETOAL PHA

TR TN TAN TR
PONREO

readonly attribute SVGAni matedString ini;
readonly attribute SVGAni mat edEnunerati on type;
readonly attribute SVGAni mat edNunberLi st val ues;

b

i nterface SVG-EConponent Tr ansf er El ement
SVGEl enent ,
SVGFilterPrinmitiveStandardAttributes {

H

readonly attribute SVGAni matedString inl

i nterface SVGConponent Tr ansf er Functi onEl enent : SVCEl enent {
/| Conponent Transfer Types

const
const
const
const
const
const

readonl y
readonl y
readonl y
readonl y
readonl y
readonl y
readonl y

b

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

attribute
attribute
attribute
attribute
attribute
attribute
attribute

short
short
short
short
short
short

SVG_FECOVPONENTTRANFER _TYPE_UNKNOWN
SVG_FECOVPONENTTRANFER _TYPE_I DENTI TY
SVG_FECOVPONENTTRANFER _TYPE_TABLE
SVG_FECOVPONENTTRANFER _TYPE_DI SCRETE = 3
SVG_FECOVPONENTTRANFER _TYPE_LI NEAR
SVG_FECOVPONENTTRANFER_TYPE_GAMVA

SVGANni mat edEnuner ati on type;
SVGAni mat edNunber Li st t abl eval ues;
SVGANi mat edNunber sl ope

SVGAni mat edNunber i ntercept;
SVGAni mat edNunber anpl i t ude;
SVGAni mat edNunber exponent ;
SVGAni mat edNunber of f set;

i nterface SVGFEFuncREl ement : SVGConponent Tr ansf er Functi onEl enment {};

i nterface SVGFEFuncCEl ement : SVGConponent Tr ansf er Functi onEl enent {};
i nterface SVGFEFuncBElI enent : SVGConponent Tr ansf er Functi onEl ement {};
i nterface SVGFEFuncAEl ement : SVGConponent Tr ansf er Functi onEl ement {};
i nterface SVGFEConposit eEl enment

SVGEl enent ,

SVGFilterPrimtiveStandardAttributes {

/| Conposite Operators

const unsi gned short SVG_FECOWPQOSI TE_OPERATOR_UNKNOMN = 0;
const unsi gned short SVG FECOWPOSI TE_OPERATOR OVER = 1;
const unsigned short SVG FECOWOSI TE_OPERATOR I N = 2;
const unsi gned short SVG _FECOWPCOSI TE_OPERATOR_OUT = 3;
const unsigned short SVG FECOWOSI TE_OPERATOR _ATOP = 4;
const unsi gned short SVG FECOWQSI TE_OPERATOR_XOR = 5;
const unsi gned short SVG FECOVWPOSI TE_OPERATOR_ARI THVETI C = 6;
readonly attribute SVGAni matedString inl;
readonly attribute SVGAni matedString in2;
readonly attribute SVGAni mat edEnunerati on operator;
readonly attribute SVGAni mat edNunber k1;
readonly attribute SVGAni mat edNunber k2;
readonly attribute SVGAni mat edNunber k3;
readonly attribute SVGAni mat edNunber k4;
b
i nterface SVGFEConvol veMat ri xXEl enent
SVGEl enent ,
SVGFilterPrimtiveStandardAttributes {
/'l Edge Mbde Val ues
const unsigned short SVG EDGEMODE_UNKNOMN = 0;
const unsi gned short SVG EDGEMODE DUPLI CATE = 1;
const unsi gned short SVG_EDGEMODE_WRAP = 2;
const unsi gned short SVG_EDGEMODE_NONE = 3;
readonly attribute SVGAni mat edl nt eger order X;
readonly attribute SVGAni nat edl nt eger orderY;
readonly attribute SVGAni mat edNunberLi st kernel Matri x;
readonly attribute SVGAni mat edNunber di vi sor;
readonly attribute SVGAni mat edNunber bi as;
readonly attribute SVGAni mat edl nt eger targetX;
readonly attribute SVGAni mat edl nt eger target;
readonly attribute SVGAni mat edEnuner ati on edgeMde;
readonly attribute SVGAni mat edLength ker nel Uni t Lengt hX;
readonly attribute SVGAni mat edLength ker nel Uni t Lengt hY;
readonly attribute SVGAni mat edBool ean preserveAl pha;
3
i nterface SVGFEDI f fuseLi ghti ngEl enent
SVGEl enent
SVGFilterPrinmitiveStandardAttributes {
readonly attribute SVGAni matedString inil;
readonly attribute SVGAni mat edNunmber surfaceScal e;
readonly attribute SVGAni mat edNunber di ffuseConst ant;
b

i nterface SVGFED st ant Li ght El enent : SVGEl enent {
readonly attribute SVGAni mat edNunber azi nut h;
readonly attribute SVGAni mat edNunber el evati on;

H

i nterface SVGFEPoi nt Li ght El enent : SVGEl enent {
readonly attribute SVGAni mat edNunber x;
readonly attribute SVGAni mat edNunber vy;

readonly attribute SVGAni mat edNunber z;
b

i nterface SVGFESpot Li ght El ement : SVGEl enent {
readonly attribute SVGAni mat edNunber x;
readonly attribute SVGAni mat edNunber vy;
readonly attribute SVGAni mat edNunber z;
readonly attribute SVGAni mat edNunber poi nt sAt X;
readonly attribute SVGAni mat edNunber pointsAtY;
readonly attribute SVGAni mat edNunber poi nt sAt Z;
readonly attribute SVGAni mat edNunber specul ar Exponent ;
readonly attribute SVGAni mat edNunber |initingConeAngl e;

b
i nterface SVGFED spl acenment MapEl enent
SVGEl enent
SVGFilterPrinmitiveStandardAttributes {
/1 Channel Selectors
const unsi gned short SVG CHANNEL UNKNOWN = O;
const unsi gned short SVG CHANNEL_R = 1;
const unsigned short SVG CHANNEL_G = 2;
const unsi gned short SVG CHANNEL_B = 3;
const unsi gned short SVG CHANNEL_A = 4;
readonly attribute SVGAni matedString ini;
readonly attribute SVGAni matedString in2;
readonly attribute SVGAni mat edNunber scal e;
readonly attribute SVGAni mat edEnunerati on xChannel Sel ect or;
readonly attribute SVGAni mat edEnunerati on yChannel Sel ect or;
b
i nterface SVGFEFI oodEl enent
SVGEl enent ,
SVGSt yl abl e,
SVGFilterPrimtiveStandardAttributes {
readonly attribute SVGAni matedString ini;
b

i nterface SVGEGaussi anBl ur El enent
SVGEl enent ,
SVGFilterPrinmitiveStandardAttributes {

readonly attribute SVGAni matedString ini;
readonly attribute SVGAni mat edNunber stdDevi ati onX;
readonly attribute SVGAni mat edNunber st dDevi ati onY;

voi d setStdDeviation (in float stdDeviationX, in float stdDeviationY);
b

i nterface SVGFElI nageEl enent
SVGEl enent ,
SVGURI Ref er ence,
SVGLangSpace,
SVGEXxt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
SVGFilterPrinmitiveStandardAttributes {};

i nterface SVG-EMer geEl enent
SVGEl enent
SVGFilterPrinmitiveStandardAttributes {};

i nterface SVG-EMer geNodeEl ement : SVGEl enent {
readonly attribute SVGAni matedString ini;

b
i nterface SVG-EMbrphol ogyEl enent

SVCGEl enent ,
SVGFilterPrimtiveStandardAttributes {

/'l Morphol ogy Operators

const unsi gned short SVG MORPHOLOGY_OPERATOR_UNKNOWN = O;
const unsi gned short SVG MORPHOLOGY_OPERATOR_ERCDE = 1;
const unsi gned short SVG MORPHOLOGY_ _OPERATOR DI LATE = 2;
readonly attribute SVGAni matedString ini;
readonly attribute SVGAni mat edEnuner ati on operator;
readonly attribute SVGAni mat edLength radi usX;
readonly attribute SVGAni nat edLengt h radi usy;
b
interface SVGFEO f set El ement
SVGEl enent
SVGFilterPrinmitiveStandardAttributes {
readonly attribute SVGAni matedString inil;
readonly attribute SVGAni mat edLengt h dx;
readonly attribute SVGAni mat edLengt h dy;
3
i nterface SVG-ESpecul arLi ghti ngEl enent
SVGEl enent
SVGFilterPrinmitiveStandardAttributes {
readonly attribute SVGAni matedString inil;
readonly attribute SVGAni mat edNunmber surfaceScal e;
readonly attribute SVGAni mat edNunber specul ar Const ant ;
readonly attribute SVGAni mat edNunber specul ar Exponent ;
b
i nterface SVG-ETI | eEl enent
SVGEl enent
SVGFilterPrimtiveStandardAttributes {
readonly attribute SVGAni matedString inil;
b
i nterface SVG-ETur bul enceEl enent
SVGEl enent
SVGFilterPrinmtiveStandardAttributes {
/'l Turbul ence Types
const unsi gned short SVG_TURBULENCE_TYPE_UNKNOMN = 0;
const unsigned short SVG TURBULENCE_TYPE_FRACTALNO SE = 1;
const unsigned short SVG TURBULENCE TYPE TURBULENCE = 2;
/1 Stitch Options
const unsi gned short SVG_STI TCHTYPE_UNKNOWN = 0;
const unsi gned short SVG STI TCHTYPE_STITCH = 1;
const unsigned short SVG STI TCHTYPE_NOSTI TCH = 2;
readonly attribute SVGAni mat edNunber baseFr equencyX;
readonly attribute SVGAni mat edNunber baseFr equencyY;
readonly attribute SVGAni mat edl nt eger nunCct aves;

readonly attribute SVGAni mat edNunber seed;
readonly attribute SVGAni mat edEnuneration stitchTil es;
readonly attribute SVGAni mat edEnunerati on type;

}s

i nterface SVGCursor El emrent
SVGEl enent ,
SVGURI Ref er ence,
SVGTest s,
SVGEXt er nal Resour cesRequi red {

readonly attribute SVGAni matedLength Xx;
readonly attribute SVGAni matedLength vy;

b

interface SVGAEl enent :
SVGEl enent
SVGURI Ref er ence,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or nabl e,
events: : Event Target {

readonly attribute SVGAni matedString target;
b

interface SVGVIi ewEl enent
SVGEl enent ,
SVGEXt er nal Resour cesRequi r ed,
SVGFi t ToVi ewBox,
SVGZoomAndPan {

attribute SVGEl enent viewTarget;
/'l raises DOVException on setting

b

i nterface SVGScri pt El enent
SVGEl enent ,
SVGAURI Ref er ence,
SVGEXt er nal Resour cesRequi red {

attribute DOVBtring type;
/'l raises DOVException on setting

b
interface SVGEvent : events::Event {};

interface SVGZoonEvent : events:: U Event {

attribute SVGRect zoonRect Screen;

/'l raises DOVException on setting
attribute float previousScal e;

/'l rai ses DOVException on setting
attribute SVGPoi nt previousTransl ate;

/'l raises DOVException on setting
attribute fl oat newScal e;

/'l raises DOVException on setting
attri bute SVGPoi nt newlransl at e;

/'l raises DOVException on setting

b
i nterface SVGAni mati onEl enent
SVCGEl enent ,
SVGTest s,
SVGEXt er nal Resour cesRequi r ed,
sm | :: El enent Ti neContr ol ,
events: : Event Target {
readonly attribute SVGEl enent targetEl ement;
float getStartTine ();
float getCurrentTine ();
float getSinpleDuration ()
rai ses(DOVException);
3

i nterface SVGAni nat eEl ement : SVGAni nati onEl enent {};
interface SVGSet El enent : SVGAni mati onEl enent {};

i nterface SVGAni nat eMbti onEl enent : SVGAni mati onEl ement {};

nt erface SVGAni mat eCol or El ement : SVGAni mat i onEl ement {};

nterface SVGAni mat eTr ansf or nEl enent : SVGAni mati onEl enent {};

nt erf ace SVGFont El enent
SVGEl enent ,
SVGEXt er nal Resour cesRequi r ed,
SVGStyl abl e {};

nt erface SVGA yphEl enent
SVGEl enent
SVGStyl abl e {};

nt erface SVGM ssi ngd yphE!l enent
SVGEl enent
SVGStyl able {};

nt erface SVCGHKer nEl enent : SVCGEl enent {};

nterface SVGVKernEl enent : SVGEl enent {};

nt erface SVGFont FaceEl ement : SVCEl enent {};

nterface SVGront FaceSrcEl enent : SVCGEl enent {};

nterface SVGFont FaceUri El ement : SVGEl ement {};

nt erf ace SVGFont FaceFor mat El enent : SVCEl enent {};

nt erface SVGFont FaceNaneEl ement : SVCEl enent {};

nterface SVGefinitionSrcEl enent : SVGEl enent {};

nterface SVGQWet adat aEl ement : SVCEl enent {};

nt erface SVGForei gnhj ect El enent
SVGEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi red,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events: : Event Target {

readonly attribute SVGAni mat edLengt h x;
readonly attribute SVGAni mat edLength vy;
readonly attribute SVGAni mat edLength wi dt h;
readonly attribute SVGAni mat edLengt h hei ght;

b

}s
#endif // _SVG IDL_

previous next contents index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents index

Appendix D: Java Language Binding

The Java binding for the SVG Document Object Model definitionsis available at:

http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ j ava- bi ndi ng. zi p

previous next contents index

file:///D|/Public/CR-SVG-20000802/indexlist.html
http://www.w3.org/TR/2000/CR-SVG-20000802/java-binding.zip
file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents index

Appendix E: ECMAScript Language
Binding
The ECMA Script binding for the SVG Document Object Model definitionsis available at:

http://ww. w3. org/ TR/ 2000/ CR- SVG 20000802/ ecmascr.i pt - bi ndi ng. ht m

previous next contents index

file:///D|/Public/CR-SVG-20000802/indexlist.html
http://www.w3.org/TR/2000/CR-SVG-20000802/ecmascript-binding.html
file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

Appendix F: Implementation Requirements

Contents

e F.1 Introduction

e F.2 Error processing

e« F.3Version control

e F.4 Clamping values which are restricted to a particular range

o F.5'path' element implementation notes

o F.6 Elliptical arc implementation notes

o F.6.1 Elliptical arc syntax

o F.6.2 Out-of-range parameters

o F.6.3 Parameterization alternatives

o F.6.4 Conversion from center to endpoint parameterization

o F.6.5 Conversion from endpoint to center parameterization

o F.6.6 Correction of out-of-range radii

e F.7 Text salection implementation notes

« F.8 Printing implementation notes

This appendix isnormative.

F.1 Introduction

The following are notes about implementation requirements corresponding to various featuresin the SV G
language.

F.2 Error processing

There are various scenarios where an SV G document fragment is technically in error:

« When the content does not conform to the XML 1.0 specification [XML 10], such as the use of incorrect
XML syntax

« When an element or attribute is encountered in the document which is not part of the SYG DTD and

file:///D|/Public/CR-SVG-20000802/indexlist.html

which is not properly identified as being part of another namespace (see "Namespacesin XML"
[XML-NS])

« When an element has an attribute or property value which is not permissible according to this
specification

« Other situations that are described as being in error in this specification

A document can go in and out of error over time. For example, document changes from the SYG DOM or from
animation can cause a document to becomein error and a further change can cause the document to become
correct again.

The following error processing shall occur when a document isin error:

« The document shall be rendered up to, but not including, the first element which has an error.
(Exception: if a'path’ element is the first element which has an error and the only errors are in the path
data specification, then render the 'path’ up to the point of the path data error. See 'path’ element
implementation notes.) This approach will provide avisual clue to the user or devel oper about where the
error might be in the document.

« If the document has animations, the animations shall stop at the point at which an error is encountered
and the visual presentation of the document shall reflect the animated status of the document at the point
the error was encountered.

« A highly perceivable indication of error shall occur. For visual rendering situations, an example of an
indication of error would be to render atranslucent colored pattern such as a checkerboard on top of the
areawhere the SV G content is rendered.

« If the user agent has access to an error reporting capability such as status bar, it is recommended that the
user agent provide whatever additional detail it can to enable the user or developer to quickly find the
source of the error. For example, the user agent might provide an error message along with aline
number and character number at which the error was encountered.

Because of situations where a block of scripting changes might cause a given SV G document fragment to go
into and out of error, error processing shall occur only at times when document presentation (e.g., rendering to
the display device) is updated. In particular, error processing shall be disabled whenever redraw has been
suspended viaDOM calls to suspendRedraw().

F.3 Version control

The SV G user agent must verify the reference to the PUBLIC identifier in the <! DOCTYPE> statement or the
namespace reference in the xm ns attribute on the 'svg’ element to ensure that the given document (or

document fragment) identifies a version of the SV G language which the SV G user agent supports. If the version
information is missing or the version information indicates a version of the SV G language which the SVG user
agent does not support, then the SV G user agent is not required to render that document or fragment. In
particular, it is not required that an SV G user agent attempt to render future versions of the SV G language. If
the user environment provides such an option, the user agent should aert or otherwise notify the user that the
version of thefileis not supported and suggest an alternate processing option (e.g., installing an updated version
of the user agent) if such an option exists.

An SV G user agent which supports the SVG Recommendation should alert or otherwise notify the user
whenever it encounters an SV G document (or document fragment) whose <! DOCTYPE> statement or
corresponding xni ns attribute corresponds to a working draft version of the SV G specification. All content
based on working drafts of this specification should be updated to the SVG Recommendation.

F.4 Clamping values which are restricted to a
particular range

Some numeric attribute and property values have restricted ranges, such as color component values. When
out-of-range values are provided, but the user agent shall defer any error checking until after presentation time,
as composited actions might produce intermediate values which are out-of-range but final values which are
within range.

Color values are not in error if they are out-of-range, even if final computations produce an out-of-range color
value at presentation time. It is recommended that user agents clamp color values to the nearest color value
(possibly determined by simple clipping) which the system can process as late as possible (e.g., presentation
time), although it is acceptable for user agents to clamp color values as early as parse time. Thus,
implementation dependencies might preclude consistent behavior across different systems when out-of-range
color values are used.

Opacity values out-of-range are not in error and should be clamped to the range 0 to 1 at the time which opacity
values have to be processed (e.g., at presentation time or when it is necessary to perform intermediate filter
effect calculations).

F.5 'path' element implementation notes

A conforming SV G user agent must implement path rendering as follows:
« Error handling:

o Thegenera rulefor error handling in path datais that the SV G user agent shall render a 'path’
element up to (but not including) the path command containing the first error in the path data
specification. Thiswill provide avisual clue to the user or developer about where the error might
be in the path data specification. Thisrule will greatly discourage generation of invalid SVG path
data.

o If apath data command contains an incorrect set of parameters, then the given path data
command is rendered up to and including the last correctly defined path segment, even if that
path segment is a sub-component of a compound path data command, such as a"lineto” with
several pairs of coordinates. For example, for the path data string "M 10,10 L 20,20,30", thereis
an odd number of parameters for the "L" command, which requires an even number of
parameters. The user agent isrequired to draw the line from (10,10) to (20,20) and then perform
error reporting since "L 20 20" isthe last correctly defined segment of the pat data specification.

o Wherever possible, all SVG user agents shall report all errorsto the user.
o Markers, directionality and zero-length path segments:

o If markers are specified, then amarker is drawn on every applicable vertex, even if the given
vertex isthe end point of a zero-length path segment and even if "moveto” commands follow
each other.

o Certain line-capping and line-joining situations and markers require that a path segment have
directionality at its start and end points. Zero-length path segments have no directionality. In
these cases, the following algorithm is used to establish directionality: to determine the
directionality of the start point of a zero-length path segment, go backwards in the path data

specification within the current subpath until you find a segment which has directionality at its
end point (e.g., a path segment with non-zero length) and use its ending direction; otherwise,
temporarily consider the start point to lack directionality. Similarly, to determine the
directionality of the end point of a zero-length path segment, go forwards in the path data
specification within the current subpath until you find a segment which has directionality at its
start point (e.g., a path segment with non-zero length) and use its starting direction; otherwise,
temporarily consider the end point to lack directionality. If the start point has directionality but
the end point doesn't, then the end point uses the start point's directionality. If the end point has
directionality but the start point doesn't, then the start point uses the end point's directionality.
Otherwise, set the directionality for the path segment's start and end points to align with the
positive x-axis in user space.

If 'stroke-linecap’ is set to butt and the given path segment has zero length, do not draw the
linecap for that segment; however, do draw the linecap for zero-length path segments when
‘'stroke-linecap' is set to either round or square. (This alows round and square dots to be
drawn on the canvas.)

« The S/s commandsindicate that the first control point of the given cubic Bézier segment is calculated by

(newx1, newyl)

reflecting the previous path segments second control point relative to the current point. The exact math
isasfollows. If the current point is (curx, cury) and the second control point of the previous path
segment is (oldx2, oldy?2), then the reflected point (i.e., (newxl1, newy1l), thefirst control point of the
current path segment) is:

(curx - (oldx2 - curx), cury - (oldy2 - cury))
(2*curx - oldx2, 2*cury - ol dy2)

« A non-positive radius value is an error.

Unrecognized contents within a path data stream (i.e., contents that are not part of the path data
grammar) isan error.

F.6 Elliptical arc implementation notes

F.6.1 Elliptical arc syntax

Anédliptical arcisaparticular path command. Assuch, it is described by the following parameters in order:

(X1, yy) are the absolute coordinates of the current point on the path, obtained from the last two parameters of
the previous path command.

ry and ry aretheradii of the ellipse (also known asits semi-major and semi-minor axes).

{ﬁ? is the angle from the x-axis of the current coordinate system to the x-axis of the ellipse.

faisthelargearc flag, and is O if an arc spanning less than or equal to 180 degreesis chosen, or 1 if an arc
spanning greater than 180 degrees is chosen.

fsisthe sweep flag, and is 0 if the line joining center to arc sweeps through decreasing angles, or 1 if it sweeps
through increasing angles.

(X2, Y») are the absolute coordinates of the final point of the arc.

This parameterization of elliptical arcswill be referred to as endpoint parameterization. One of the advantages
of endpoint parameterization isthat it permits a consistent path syntax in which all path commands end in the
coordinates of the new "current point”. The following notes give rules and formulae to help implementers deal
with endpoint parameterization.

F.6.2 Out-of-range parameters

Arbitrary numerical values are permitted for all elliptical arc parameters, but where these values are invalid or
out-of-range, an implementation must make sense of them as follows:

If the endpoints (x4, y1) and (X,, y») areidentical, then thisis equivalent to omitting the elliptical arc segment
entirely.

If r«=0orry=0thenthisarcistreated as astraight line segment (a"lineto") joining the endpoints.

If ry or ry have negative signs, these are dropped; the absolute value is used instead.

If ry, ryand {.‘:5-'" are such that thereis no solution (basically, the ellipse is not big enough to reach from (X4, y4)
to (X5, Y,)) then the ellipseis scaled up uniformly until there is exactly one solution (until the ellipseisjust big
enough).

';ﬁ?is taken mod 360 degrees.

Any nonzero value for either of the flags for fgis taken to mean the value 1.

Thisforgiving yet consistent treatment of out-of-range values ensures that:

« Theinevitable approximations arising from computer arithmetic cannot cause a valid set of values
written by one SV G implementation to be treated as invalid when read by another SVG
implementation. Thiswould otherwise be a problem for common boundary cases such as a semicircular
arc.

« Continuous animations that cause parameters to pass through invalid values are not a problem. The
motion remains continuous.

F.6.3 Parameterization alternatives

An arbitrary point (X, y) on the elliptical arc can be described by the 2-dimensional matrix equation

X COS ¢& — B &7 Py COB C
= _ - _ + (F.6.3.1)
¥ si @ cosgr | | #y5m & Cy
(cx, cy) are the coordinates of the center of the ellipse.

ry and ry are the radii of the ellipse (also known as its semi-major and semi-minor axes).

Fﬁ? Is the angle from the x-axis of the current coordinate system to the x-axis of the ellipse.
ranges from:
1 whichisthe start angle of the elliptical arc prior to the stretch and rotate operations.

2 which isthe end angle of the elliptical arc prior to the stretch and rotate operations.

A&

which is the difference between these two angles.

If one thinks of an ellipse as a circle that has been stretched and then rotated, then
: and
A A™A

are the start angle, end angle and sweep angle, respectively of the arc prior to the stretch and rotate operations.
This leads to an alternate parameterization which is common among graphics APIs, which will be referred to as
center parameterization. In the next sections, formulas are given for mapping in both directions between center
parameterization and endpoint parameterization.

F.6.4 Conversion from center to endpoint parameterization

Given:
Cy Cy Ty 1y & & AF
the task isto find:

X\ 0% ¥, faJs

Here are the formulas:

™

(X, cos g —sin g7 (rycos &) (cy
=| - _ t (F.6.4.1)
K S @7 COoSgr | | s & Cy |
(X, cos ¢ —sin g {rycos(d + A& (¢,
=|" . _ + (F.6.4.2)
L sin ¢#z cos ¢ | | rpsin(& + A &) Cy
1 if [A4>180°
f = _ (F.6.4.3)
0 if [A4<180°
P (1 ifAF>0°
=] (F.6.4.4)
0 if A<

W

F.6.5 Conversion from endpoint to center parameterization

Given:

X, % ¥, fats

thetask isto find:
Cy Cy Ty 1y & & AF

The equations simplify after atranslation which places the origin at the midpoint of the line joining (x4, y;) to
(X2, ¥o), followed by arotation to line up the coordinate axes with the axes of the ellipse. All transformed

coordinates will be written with primes. They are computed as intermediate values on the way toward finding
the required center parameterization variables. This procedure consists of the following steps:

Step 1: Compute (X4, y1') according to the formula
! . . : H—x
X COS ¢ 8IN ¢ .
- - (F.6.5.1)

' e . . H—¥a
¥, SIN ¢ COS ¢ .

Sep 2: Compute (Cx ', ¢y ') according to the formula

r 2,2 2.2 . ioif AN

Cx =+ ¥ty T3 i T (F.65.2)
' - 2 12 2 12 !"}-’.‘-’i’l'

Cy Ty Ty Ty

where the + sign is chosen if f!l = fEf

and the - sign is chosen if fﬂ - fEf

Sep 3: Compute (Cy, Cy) from(cy ', cy')

. o . ! A+ A4
Cy| [COsg —smgr| [Cy :
= - + (F.6.5.3)
: . : ! F1 ¥
Cy SIN @7 CO8 g7 | | €y :
Sep 4. Compute ﬁf and & ﬁ‘?
In general, the angle between two vectors (uy, uy) and (v, vy) can be computed as
_ H-v
Z(ii, V)= +arccos —— (F654)
el [
where the £ sign appearing here isthe sign of uy vy - Uy Vx
This angle function can be used to express and asfollows:
HTAG
1 xn'-cr'
gd=L T (F65.5)
0 | ¥y
¥

xn'-cr' -x'-cr'

A=/ F 'z mod 360° (F656)

w'-er' 1P| —wn-er!

where ﬁ‘? isfixed in the range -360° < & ,-55‘? < 360° such that:
1

iff =O,then&ﬁ}<0,

N

elseiff _1,thenﬂﬁ;>0.
o=

In other words, if fg = 0 and the right side of (F.6.5.6) is> 0, then subtract 360°, whereasiif f5 = 1 and the right
side of (F.6.5.6) is< 0, then add 360°. In all other casesleaveit asis.

F.6.6 Correction of out-of-range radii

This section formalizes the adjustments to out-of-range ry and ry mentioned in F.6.2. Algorithmically these
adjustments consist of the following steps:

Sep 1: Ensureradii are non-zero

If r«=0o0rry=0, then treat this as a straight line from (x4, y;) to (X, y¥») and stop. Otherwise,

Sep 2: Ensureradii are positive

Take the absolute value of ry and ry:
ry — |yl e — |1 (F661)

Sep 3: Ensureradii are large enough

Using the primed coordinate values of equation (F.6.5.1), compute

4 1
-x !
A= 1 7 + yl ; (F.6.6.2)

Fy ty

If the result of the above equation is less than or equal to 1, then no further change need be madetory and ry.
If the result of the above equation is greater than 1, then make the replacements

F.6.6.3
re —nlA 1y ry —=~Ar, (F6:63)

Sep 4: Proceed with computations

Proceed with the remaining elliptical arc computations, such asthosein section F.6.5. Note: As a consequence
of the radii correctionsin this section, equation (F.6.5.2) for the center of the ellipse always has at |east one
solution (i.e. the radicand is never negative). In the case that the radii are scaled up using equation (F.6.6.3), the
radicand of (F.6.5.2) is zero and there is exactly one solution for the center of the ellipse.

F.7 Text selection implementation notes

The following implementation notes describe the algorithm for deciding which characters are selected during a
text selection operation.

As the text selection operation occurs (e.g., while the user clicks and drags the mouse to identify the selection),
the user agent determines a start selection position and an end selection position, each of which represents a
position in the text string between two characters. After determining start selection position and end selection
position, the user agent selects the appropriate characters, where the resulting text selection consists of either:

e NO selection or

« astart character, an end character (possibly the same character), and all of the characters within the
same 'text’ element whose position in the DOM islogically between the start character and end

character.

On systems with pointer devices, to determine the start selection position, the SVG user agent determines which
boundary between characters corresponding to rendered glyphs is the best target (e.g., closest) based on the
current pointer location at the time of the event that initiates the selection operation (e.g., the mouse down
event). The user agent then tracks the completion of the selection operation (e.g., the mouse drag, followed
ultimately by the mouse up). At the end of the selection operation, the user agent determines which boundary
between charactersis the best target (e.g., closest) for the end selection position.

If no character reordering has occurred due to bidirectionality, then the selection consists of all characters
between the start selection position and end selection position. For example, if a'text' element contains the

string "abcdef" and the start selection position and end selection positions are 0 and 3 respectively (assuming
the left side of the"a" is position zero), then the selection will consist of "abc".

When the user agent isimplementing selection of bidirectional text, and when the selection starts (or ends)
between characters which are not contiguousin logical order, then there might be multiple potential
combinations of characters that can be considered part of the selection. The algorithms to choose among the
combinations of potential selection options shall choose the selection option which most closely matches the
text string's visual rendering order.

When multiple characters map inseparably to a given set of one or more glyphs, the user agent can either
disallow the selection to start in the middle of the glyph set or can attempt to allocate portions of the area taken
up by the glyph set to the characters that correspond to the glyph.

For systems which support pointer devices such as a mouse, the user agent is required to provide a mechanism
for selecting text even when the given text has associated event handlers or links, which might block text
selection due to event processing precedence rules (see Pointer events). One implementation option: For
platforms which support a pointer device such as a mouse, the user agent may provide for a small additional
region around character cells which initiates text selection operations but does not initiate event handlers or
links..

F.8 Printing implementation notes

For user agents which support both zooming on display devices and printing, it is recommended that the default
printing option produce printed output that reflects the display device's current view of the current SVG
document fragment (assuming there is no media-specific styling), taking into account any zooming and panning
done by the user, the current state of animation, and any document changes due to DOM and scripting . Thus, if
the user zooms into a particular area of a map on the display device and then requests a hardcopy, the hardcopy
should show the same view of the map as appears on the display device. If a user pauses an animation and
prints, the hardcopy should show the same graphics as the currently paused picture on the display device. If
scripting has added or removed elements from the document, then the hardcopy should reflect the same changes
that would be reflected on the display.

When an SV G document is rendered on a static-only device such as a printer which do not support SVG's
animation and scripting and facilities, then the user agent shall ignore any animation and scripting elementsin
the document and render the remaining graphics elements according to the rules in this specification.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

Appendix G: Conformance Criteria

Contents

G.1 Introduction

G.2 Conforming SVG Document Fragments

G.3 Conforming SV G Stand-Alone Files

G.4 Conforming SV G Included Document Fragments

G.5 Conforming SV G Generators

G.6 Conforming SV G Interpreters

G.7 Conforming SVG Viewers

Thisappendix is normative.

G.1 Introduction

Different sets of SV G conformance criteria exist for:

Conforming SV G Document Fragments

Conforming SV G Stand-Alone Files

Conforming SV G Included Documents

Conforming SV G Generators

Conforming SV G Interpreters

Conforming SVG Viewers

G.2 Conforming SVG Document Fragments

An SV G document fragment is a Conforming SVG Document Fragment if it adheres to the specification
described in this document (Scalable V ector Graphics (SVG) Specification) including SVG'sDTD (see

Document Type Definition) and also:

(relativeto XML) is well-formed.

if all non-SVG namespace elements and attributes and all xmlns attributes which refer to non-SVG
namespace elements are removed from the given document, and if an appropriate XML declaration (i.e.,
<?xm ... ?>)isincluded at the top of the document, and if an appropriate document type declaration
(i.e, <! DOCTYPE svg ... >)whichpointstothe SVG DTD isincluded immediately thereafter, the

file:///D|/Public/CR-SVG-20000802/indexlist.html
http://www.w3.org/TR/REC-xml.html#sec-well-formed

resultisavalid XML document.

« conforms to the following W3C Recommendations:
o the XML 1.0 specification (Extensible Markup Language (XML) 1.0).

o (if any namespaces other than SV G are used in the document) Namespacesin XML.
o any useof CSS shall conform to Cascading Style Sheets, level 2 CSS2 Specification.

o any references to external style sheets shall conform to Associating stylesheets with XML
documents.

The SV G language or these conformance criteria provide no designated size limits on any aspect of SVG
content. There are no maximum values on the number of e ements, the amount of character data, or the number
of charactersin attribute values.

G.3 Conforming SVG Stand-Alone Files

A fileisa Conforming SVG Sand-Alone Fileif:
o itisan XML document.
« itsroot element isan 'svg element.

e it conformsto the criteriafor Conforming SV G Document Fragment.

G.4 Conforming SVG Included Document Fragments

SV G document fragments can be included within parent XML documents using the XML namespace facilities
described in Namespacesin XML.

An SV G document fragment that is included within a parent XML document is a Conforming Included SVG
Document Fragment if the SV G document fragment, when taken out of the parent XML document, conforms to
the SV G Document Type Definitions (DTD).

In particular, note that individual elements from the SV G namespace cannot be used by themselves. Thus, the
SVG part of the following document is not conforming:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE SoneParent XM_.G ammar PUBLI C "-// SonePar ent "
"http:// SomePar ent XMLG amar . dt d" >

<Par ent XM_>
<l-- Elenents from Parent XM. go here -->

<l-- The following is not conformng -->
<z:rect xmns:z="http://ww. w3. org/ 2000/ svg"
x="0" y="0" wi dth="10" hei ght="10" />

<l-- More elenents from Parent XM. go here -->
</ Par ent XM_>

Instead, for the SV G part to become a Conforming Included SV G Document Fragment, the file could be

http://www.w3.org/TR/REC-xml.html#sec-prolog-dtd
http://www.w3.org/TR/REC-xml.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-xml-names/

modified as follows (the example below shows the use of Stylable SVG):

<?xm version="1.0" standal one="no"?>

<! DOCTYPE SonePar ent XM_.G ammar PUBLI C "-// SonePar ent "
"http:// SomePar ent XMLGr amar . dt d" >

<Par ent XM_>
<l-- Elenents from Parent XML go here -->

<l-- The following is conformng -->
<z:svg xm ns:z="http://ww. w3. or g/ 2000/ svg"
wi dt h="100px" hei ght ="100px" >
<z:rect x="0" y="0" wi dth="10" hei ght="10" />
</z:svg>

<I-- More elenents from Parent XM. go here -->
</ Par ent XM_>

G.5 Conforming SVG Generators

A Conforming SVG Generator is a program which:

« aways creates at least one of Conforming SV G Document Fragments, Conforming SVG Stand-Alone
Files or Conforming SV G Included Documents.

« does not create non-conforming SV G document fragments of any of the above types.

Additionally, an authoring tool which isa Conforming SV G Generator conformsto all of the Priority 1
accessibility guidelines from the document "Authoring Tool Accessibility Guidelines 1.0" [ATAG] that are

relevant to generators of SV G content. (Priorities 2 and 3 are encouraged but not required for conformance.)

SV G generators are encouraged to follow W3C developments in the area of internationalization. Of particular

interest is the W3C Character Model and the concept of Webwide Early Uniform Normalization, which
promises to enhance the interchangability of Unicode character data across users and applications. Future
versions of the SV G specification are likely to require support of the W3C Character Model in Conforming
SVG Generators.

G.6 Conforming SVG Interpreters

An SVG interpreter is a program which can parse and process SV G document fragments. Examples of SVG
interpreters are server-side transcoding tools (e.g., atool which converts SV G content into araster image) or
analysistools (e.g., atool which extracts the text content from SV G content). An SVG viewer aso satisfies the

requirements of an SV G interpreter in that it parse and process SV G document fragments, where processing
consists of rendering the SV G content to the target medium.

In a Conforming SVG Interpreter, the XML parser must be able to parse and process all XML constructs
defined within [XML10] and [XML-NS].

There are two sub-categories of Conforming SVG Interpreters:

« Conforming Static SVG Interpreters must be able to parse and process the static language features of
SVG that correspond to the feature string "org.w3c.svg.static” (see Feature strings).

http://www.w3.org/International/

« Inaddition to the requirements for the static category, Conforming Dynamic SVG Interpreters must be

able parse and process the language features of SV G that correspond to the feature string
"org.w3c.svg.dynamic” (see Feature strings) and which support all of the required featuresin the SVG

DOM. described in this specification.

In both cases, it is not required, however, that the semantics of every possible SV G feature be understood and
supported beyond parsing. Thus, for example, a Conforming SV G Interpreter might only parse the defined
syntax but not process the semantics of all featuresin the language.

G.7 Conforming SVG Viewers

An SVG viewer is a program which can parse and process an SV G document fragment and render the contents
of the document onto some sort of output medium such as adisplay or printer; thus, an SVG Viewer isaso an
SVG Interpreter.

There are two sub-categories of Conforming SVG Viewers:

Conforming Static SVG Viewers support the static language features of SV G that correspond to the
feature string "org.w3c.svg.static" (see Feature strings). This category often corresponds to platforms

and environments which only render static documents, such as printers.

Conforming Dynamic SVG Viewers support the language features of SV G that correspond to the feature
string "org.w3c.svg.dynamic" (see Feature strings). This category often appliesto platforms and
environments such as common Web browsers which support user interaction and dynamic document
content (i.e., documents whose content can change over time). (User interaction includes support for
hyperlinking, events [e.g., mouse clicks], text selection, zooming and panning [see Interactivity].
Dynamic document content can be achieved via declarative animation or by scripts modifying the SVG
DOM.)

Specific criteriathat apply to both Conforming Static SVG Viewers and Conforming Dynamic SVG Viewers:

The program must also be a Conforming SV G Interpreter,

For interactive user environments, facilities must exist for zooming and panning of standalone SV G
documents or SV G document fragments embedded within parent XML documents.

In environments that have appropriate user interaction facilities, the viewer must support the ability to
activate hyperlinks.

If printing devices are supported, SV G content must be printable at printer resolutions with the same
graphics features available as required for display (e.g., the specified colors must be rendered on color
printers).

On systems where this information is available, the parent environment must provide the viewer with
information about physical device resolution. In situations where this information isimpossible to
determine, the parent environment shall pass a reasonable value for device resolution which tends to
approximate most common target devices.

The viewer must support JPEG [JPEG] and PNG [PNG10] image formats.

The viewer must support apha channel blending of the image of the SVG content onto the target canvas.
SV G implementations which support the HTTP protocol must correctly support gzip-encoded SV G data
streams according to the HTTP 1.1 specification [REC2616]; thus, the client must specify
"Accept-Encoding: gzip" [HTTP-ACCEPT-ENCODING] on its request-header field and then
decompress any gzip-encoded data streams that are downloaded from the server. If the implementation

supports progressive rendering, the implementation should also support progressive rendering of
compressed data streams.

« Theviewer must support base64 encoded content using the "data:” protocol [RFC2397] wherever URI
referencing is permitted within SV G content.
« Theviewer must support the following W3C Recommendations with regard to SV G content:
o complete support for the XML 1.0 specification [XML10].

o complete support for inclusion of non-SV G namespaces within SV G content as defined in
"Namespacesin XML" [XML-NS]. (Note that data from non-SV G namespaces are included in

the DOM but are otherwise ignored.)
« All visual rendering must be accurate to within one device pixel to the mathematically correct result.

« On systems which support accurate SRGB [SRGB] color, al sRGB color computations and all resulting

color values must be accurate to within one SRGB color component value, where sSRGB color
component values range from 0 to 255.

Although anti-aliasing support is not a strict requirement for a Conforming SVG Viewer, it is highly
recommended for display devices. Lack of anti-aliasing support will generally result in poor results on display
devices.

Specific criteriathat apply to only Conforming Dynamic SVG Viewers:

« InWeb browser environments, the viewer must have the ability to search and select text strings within
SVG content.

« If display devices are supported, the viewer must have the ability to select and copy text from SVG
content to the system clipboard.

« Theviewer must have complete support for an ECMA Script binding of the SVG Document Object
Model.

The Web Accessibility Initiative [WAI] is defining "User Agent Accessibility Guidelines 1.0" [UAAG].
Viewers are encouraged to conform to the Priority 1 accessibility guidelines defined in this document, and
preferably also Priorities 2 and 3. Once the guidelines are completed, a future version of this specification is
likely to require conformance to the Priority 1 guidelinesin Conforming SVG Viewers.

A higher order concept is that of a Conforming High-Quality SVG Viewer, with sub-categories Conforming
High-Quality Static SVG Viewer and Conforming High-Quality Dynamic SVG Viewer.

Both a Conforming High-Quality Static SVG Viewer and a Conforming High-Quality Dynamic SVG Viewer
must support the following additional features:

« Professional-quality results with good processing and rendering performance and smooth, flicker-free
animations.

« On low-resolution devices such as display devices at 150dpi or less, support for smooth edges on lines,
curves and text. (Smoothing is often accomplished using anti-aliasing techniques.)

« Color management via Il CC profile support (i.e., the ability to support colors defined using ICC profiles).

« Resampling of image data using algorithms at least as good as bicubic resampling methods.

« At least double-precision floating point computation on coordinate system transformation numerical
calculations.

A Conforming High-Quality Dynamic SVG Viewer must support the following additional features:

« Progressive rendering and animation effects (i.e., the start of the document will start appearing and
animations will start running in parallel with downloading the rest of the document).

 Restricted screen updates (i.e., only required areas of the display are updated in response to redraw
events).

« Background downloading of images and fonts retrieved from a Web server, with updating of the display
once the downloads are compl ete.

A Conforming SVG Viewer must be able to apply styling propertiesto SV G content using presentation
attributes.

If the user agent includes a CSS2 capability, a Conforming SVG Viewer must support CSS styling of SVG
content and must support all features from CSS2 (Cascading Style Sheets, level 2 CSS2 Specification) that are

described in this specification as applying to SV G (see properties shared with CSS and XSL, Styling with CSS
and Facilities from CSS and XSL used by SVG). The supported features from CSS2 must be implemented in
accordance with the conformance definitions from the CSS2 specification.

If the user agent includesan HTML or XHTML viewing capability or can apply CSS/XSL styling propertiesto
XML documents, then a Conforming SVG Viewer must support resources of MIME type "image/svg-xml"
wherever raster images external resources can be used, such asinthe HTML or XHTML 'img' element and in
CSS/XSL properties that can refer to raster image resources (e.g., ‘background-image)).

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

Appendix H: Accessibility Support

Contents

e H.1 WAI Accessibility Guidelines
e H.2 SVG Content Accessibility Guidelines

This appendix is informative, not normative.

H.1 WAI Accessibility Guidelines

This appendix explains how accessibility guidelines published by W3C's Web Accessibility Initiative (WAI)
apply to SVG.
1. The"Web Content Accessibility Guidelines 1.0" [WCAG] explains how authors can create Web content
that is accessible to people with disabilities.

2. The"Authoring Tool Accessibility Guidelines 1.0" [ATAG] explains how devel opers can design
accessible authoring tools such as SV G authoring tools. To conform to the SV G specification, an SVG
authoring tool must conform to ATAG (priority 1). SVG support for element grouping and reuse is
relevant to designing accessible SV G authoring tools.

3. The"User Agent Accessibility Guidelines 1.0" [UAAG] explains how developers can design accessible

user agents such as SV G-enabled browsers. To conform to the SV G specification, an SV G user agent
should conform to UAAG. SVG support for scaling, style sheets, the DOM, and metadata are all
relevant to designing accessible SV G user agents.

The W3C Note "Accessibility Features of SVG" [not yet published] explainsin detail how the requirements of
the three guidelines apply to SVG.

H.2 SVG Content Accessibility Guidelines

This section explains briefly how authors can create accessible SVG documents; it summarizes "Accessibility
Features of SVG" [not yet published)].

Provide text equivalents for graphics.

o When the text content of a graphic (e.g., in a'text’ element) explainsits function, no text
equivalent is required. Use the 'title' child element to explain the function 'text’ elements whose
meaning is not clear from their text content.

o When a graphic does not include explanatory text content, it requires atext equivalent. If the
equivalent is complex, use the 'desc’ element, otherwise use the 'title' child element.

file:///D|/Public/CR-SVG-20000802/indexlist.html

O

If agraphic isbuilt from meaningful parts, build the description from meaningful parts.

Do not rely on color aone.

O

O

Do not use color alone to convey information.

Ensure adequate color contrast. Use style sheets so that users who require certain color
combinations may apply them through user style sheets.

Use markup and style sheets and do so properly.

O

O

O

O

Represent text as character data, not asimages or curves. Style text with fonts. Authors may
describe their own fontsin SVG.

Separate structure from presentation.
Use the 'g’ element and rich descriptions to structure SV G documents. Reuse named objects.

Publish highly-structured documents, not just graphical representations. Documents that are rich
in structure may be rendered graphically, as speech, or as braille. For example, express
mathematical relationshipsin MathML [MATHML] and use SV G for explanatory graphics.

Author documents that validate to the SV G grammar.
Use style sheets to specify graphical and aural presentation.
Use relative unitsin style sheets.

Clarify natural language usage.

O

Use xml:lang to identify the natural language of content and changesin natural language.

Ensure that dynamic content is accessible.

O

O

Ensure that text equivalents for dynamic content are updated when the dynamic content changes.

Ensure that SVG documents are usable when scripts or other programmatic objects are turned off
or not supported.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

Appendix I: Internationalization Support

Contents

e |.1 Introduction
e |.2 Internationalization and SVG
e 1.3 SVG Internationalization Guidelines

This appendix is informative, not normative.

.1 Introduction

This appendix provides a brief summary of SVG's support for internationalization. The appendix is hyperlinked
to the sections of the specification which elaborate on particular topics.

|.2 Internationalization and SVG
SVGisan application of XML [XML 10] and thus supports Unicode [UNICODE], which defines a standard
universal character set.

Additionally, SV G provides a mechanism for precise control of the glyphs used to draw text strings, whichis
described in Alternate glyphs. Thisfacility provides:

« theability to specify the rendering of particular glyphs which might not be accessible when defining
character data using Unicode

« theability to override the user agent's character-to-glyph algorithms

« theability to follow the guidelines for normalizing character data for the purposes of enhanced
interoperability (see [CHARMOD]), while still having precise control over the glyphs that are drawn.

SV G supports:
« Horizontal, left-to-right text found in Roman scripts (see the 'writing-mode' property)

« Vertical and vertical-ideographic text (see the 'writing-mode' property)

« Bidirectional text (for languages such as Arabic and Hebrew - see the 'direction’ and 'unicode-bidi'
properties)

SV G fonts support contextual glyph selection for Arabic and Han text.

Multi-language SV G documents are possible by utilizing the systemL anguage attribute to have different text
strings appear based on the client machine's language setting.

file:///D|/Public/CR-SVG-20000802/indexlist.html

1.3 SVG Internationalization Guidelines

SV G generators should follow W3C guidelines for normalizing character data[CHARMOD]. When precise
control over glyph selection isrequired, use the facilities for Alternate glyphsto override the user agent's

character-to-glyph mapping algorithms.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

Ap

pendix J: Minimizing SVG File Sizes

This appendix is informative, not normative.

Considerable effort has been made to make SV G file sizes as small as possible while still retaining the benefits
of XML and achieving compatibility and leverage with other W3C specifications.

Here are some of the featuresin SV G that promote small file sizes:

SVG's path data definition was defined to produce a compact data stream for vector graphics data: all
commands are one character in length; relative coordinates are available; separator characters do not
have to be supplied when tokens can be identified implicitly; smooth curve formulations are available
(cubic Béziers, quadratic Béziers and elliptical arcs) to prevent the need to tesselate into polylines; and
shortcut formulations exist for common forms of cubic Bézier segments, quadratic Bézier segments, and
horizontal and vertical straight line segments so that the minimum number of coordinates need to be
specified.

Text can be specified using XML character data -- no need to convert to outlines.

SV G contains afacility for defining symbols once and referencing them multiple times using different
visual attributes and different sizing, positioning, clipping and client-side filter effects

User agents that support styling with CSS can use CSS selectors and property inheritance to define
commonly used sets of attributes once as named styles.

Filter effects allow for compelling visual results and effects typically found only in image-authoring
tools using small amounts of vector and/or raster data

Additionally, HTTP 1.1 allows for compressed data to be passed from server to client, which can result in
significant file size reduction. Here are some sample compression results using gzip compression on SVG

documents:
Uncompressed With gzip Compression
SVG compression ratio

12,912 2,463 81%

12,164 2,553 79%

11,613 2,617 7%

18,689 4,077 78%

13,024 2,041 84%

A related issue is progressive rendering. Some SV G viewers will support:

Here ar

the ability to display thefirst parts of an SV G document fragments as the remainder of the document is
downloaded from the server; thus, the user will see part of the SVG drawing right away and interact
withiit, even if the SVG filesizeislarge.

delayed downloading of images and fonts. Just like some HTML browsers, some SV G viewers will
download images and Web fonts last, substituting a temporary image and system fonts, respectively,
until the given image and/or font is available.

e techniques for minimizing SV G file sizes and minimizing the time before the user is able to start

file:///D|/Public/CR-SVG-20000802/indexlist.html

interacting with the SV G document fragments:

« Construct the SV G file such that any links which the user might want to click on are included at the
beginning of the SVG file

» Usedefault values whenever possible rather than defining all attributes and properties explicitly.

» Take advantage of the path data data compaction facilities: use relative coordinates; use h and v for

horizontal and vertical lines; use sor t for cubic and quadratic Bézier segments whenever possible;
eliminate extraneous white space and separators.

« Utilize symbolsif the same graphic appears multiple timesin the document

« For user agents that support styling with CSS, utilize CSS property inheritance and selectors to

consolidate commonly used properties into named styles or to assign the properties to a parent <g>
element.

« Utilizefilter effectsto help construct graphics via client-side graphics operations.

previous next contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

Appendix K. References

Contents

« H.1 Normative references

e H.2 Informative references

K.1 Normative references

[ATAG]

"Authoring Tool Accessibility Guidelines 1.0", J. Treviranus, J. Richards, |. Jacobs, C. McCathieNevile,
editors, 3 February 2000.
Available at http://www.w3.0rg/TR/IATAG10/

[COLORIMETRY]

"Colorimetry, Second Edition", CIE Publication 15.2-1986, ISBN 3-900-734-00-3.
Available at http://www.hike.te.chiba-u.ac.jp/ikeda/Cl E/publ/abst/15-2-86.html.

[CSS2]

"Cascading Style Sheets, level 2", B. Bos, H. W. Lig, C. Lilley, I. Jacobs, 12 May 1998.
Available at http://www.w3.0rg/TR/REC-CSS2/.

Specific topics:
o [CSS2-CONFORM] CSS2 conformance
0 [CSS2-UNITS] CSS2 units
o0 [CSS2-CASCADE] CSS2 cascading and inheritance
o [CSS2-CASCADE-RULES] CSS2 cascading rules
0 [CSS2-SPECIFIED] CSS2 specified values
o [CSS2-COMPUTED] CSS2 computed values
o [CSS2-INHERIT] CSS2 inheritance
0 [CSS2-ATRULES] CSS2 At-rules
o [CSS2-POSN] CSS2 positioning properties
o [CSS2-LAYOUT] CSS2 positioning properties
o [CSS2-DYNPSEUDO] CSS2 dynamic pseudo-classes
o [CSS2-AURAL] aural media
o [CSS2-VISUAL] visua media
o [CSS2-UNITSPEREM] units per em

file:///D|/Public/CR-SVG-20000802/indexlist.html
http://www.w3.org/TR/ATAG10/
http://www.hike.te.chiba-u.ac.jp/ikeda/CIE/publ/abst/15-2-86.html
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/conform.html#conformance
http://www.w3.org/TR/REC-CSS2/syndata.html#length-units
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/cascade.html#cascade
http://www.w3.org/TR/REC-CSS2/cascade.html#specified-value
http://www.w3.org/TR/REC-CSS2/cascade.html#computed-value
http://www.w3.org/TR/REC-CSS2/cascade.html#inheritance
http://www.w3.org/TR/REC-CSS2/syndata.html#at-rules
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2/fonts.html#unitsperem

o [CSS2-azimuth] CSS2 'azimuth' property definition

o [CSS2-clip] CSS2 ‘clip' property definition

o [CSS2-color] CSS2 ‘color' property definition

o [CSS2-cueg] CSS2 'cue’ property definition

0 [CSS2-cue-after] CSS2 ‘cue-after' property definition

o [CSS2-cue-before] CSS2 'cue-before’ property definition
o [CSS2-display] CSS2 'display’ property definition

0 [CSS2-elevation] CSS2 'elevation’ property definition

o [CSS2-height] CSS2 'height' property definition

o [CSS2-overflow] CSS2 ‘overflow' property definition

0 [CSS2-pause] CSS2 'pause’ property definition

o [CSS2-pause-after] CSS2 'pause-after' property definition

o0 [CSS2-pause-before] CSS2 'pause-before’ property definition
o [CSS2-pitch] CSS2 'pitch’ property definition
o [CSS2-pitch-range] CSS2 ‘pitch-range’ property definition

o [CSS2-play-during] CSS2 'play-during' property definition

o [CSS2-richness] CSS2 'richness property definition

o [CSS2-speak] CSS2 'speak’ property definition

o0 [CSS2-speak-header] CSS2 'speak-header' property definition

o [CSS2-speak-numeral] CSS2 'speak-numeral’ property definition

o [CSS2-speak-punctuation] CSS2 'speak-punctuation’ property definition

o [CSS2-speech-rate] CSS2 'speech-rate’ property definition
0 [CSS2-stress| CSS2 'stress property definition
o [CSS2-voice-family] CSS2 'voice-family' property definition

o [CSS2-volume] CSS2 'volume' property definition
o [CSS2-width] CSS2 ‘width' property definition

[DOM 1]

"Document Object Model (DOM) Level 1 Specification”, V. Apparao, S. Byrne, M. Champion, S.
Isaacs, |. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, L. Wood, editors, 1 October 1998.
Available at http://www.w3.0org/TR/REC-DOM-Level-1/

[DOM?2]

"Document Object Model (DOM) Level 2 Specification”, V. Apparao, M. Champion, A. Le Hors, T.
Pixley, J. Robie, P. Sharpe, C. Wilson, L. Wood, editors, 23 September 19909.
Available at http://www.w3.0rg/TR/2000/CR-DOM-L evel-2-20000510/

Specific topics:
o [DOM2-CORE] Document Object Model Core

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-azimuth
http://www.w3.org/TR/REC-CSS2/visufx.html#clipping
http://www.w3.org/TR/REC-CSS2/colors.html#propdef-color
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-before
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-display
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-elevation
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/visufx.html#overflow
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch-range
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-play-during
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-richness
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-speak-header
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-numeral
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-punctuation
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speech-rate
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-stress
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-voice-family
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-volume
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/core.html

[}

[DOM2-HTML] Document Object Model HTML
[DOM 2-VIEWS] Document Object Model Views
o [DOM2-SHEETS] Document Object Model StyleSheets
[DOM 2-CSS] Document Object Model CSS
= [DOM2-CSSVALUE] Document Object Model CSS - Interface CSSValue
= [DOM2-CSS-RGBCOL OR] Document Object Model CSS - Interface RGBColor
[DOM 2-CSS-El] Document Object Model CSS - Extended I nterfaces
[DOM 2-CSS2Azimuth] Interface CSS2A zimuth
[DOM 2-CSS2Cur sor] Interface CSS2Cursor
» [DOM2-CSS2PlayDuring] Interface CSS2PlayDuring
o [DOM2-EVENTS] Document Object Model Events
= [DOM2-EVREG] Event registration interfaces
= [DOM2-EVTARGET] Interface EventTarget
= [DOM2-EVLISTEN] Interface EventL istener
= [DOM2-EVCAPTURE] Event capture
= [DOM2-EVBUBBLE] Event bubbling
= [DOM2-UIEVENTS] Interface UlEvent
= [DOM2-MOUSEEVENTS] Interface MouseEvent
= [DOM2-KEYEVENTS] Interface KeyEvent
= [DOM2-MUTEVENTS] Interface MutationEvent
» [DOM2-HTMLEVENTS] HTML event types
o [DOM2-TRAV] Document Object Model Traversa
o [DOM2-RANGE] Document Object Model Range

[}

[}

[1CC32]

"Specification 1CC.1:1998-09, File Format for Color Profiles", 1998.
Available at http://www.color.org/ICC-1 1998-09.PDF.

"Document ICC.1A:1999-04, Addendum 2 to Spec. ICC.1:1998-09", 1999.
Available at http://www.color.org/I CC-1A 1999-04.PDF.

[1S08601]

"Data elements and interchange formats - Information interchange - Representation of dates and times”,
International Organization for Standardization, 1998.

[JPEG]
|SO/IEC 10918. Available from the International Organization for Standardization (1SO).
[PNG10]

"PNG (Portable Network Graphics) Specification, Version 1.0 specification”, T. Boutell ed., 1 October
1996.
Available at http://www.w3.org/TR/REC-png-multi.html.

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/html.html
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/views.html
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/stylesheets.html
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/css.html
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/css.html#CSS-RGBColor
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/css.html#CSS-extended
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/css.html#CSS-CSS2Azimuth
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/css.html#CSS-CSS2Cursor
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/css.html#CSS-CSS2PlayDuring
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-Registration-interfaces
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-EventTarget
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-EventListener
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-eventgroupings-uievents
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-eventgroupings-mouseevents
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-eventgroupings-keyevents
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-eventgroupings-mutationevents
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/events.html#Events-eventgroupings-htmlevents
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/traversal.html
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510/range.html
http://www.color.org/ICC-1_1998-09.PDF
http://www.color.org/ICC-1A_1999-04.PDF
http://www.w3.org/TR/REC-png-multi.html

[PORTERDUFF]

"Compositing Digital Images’, T. Porter, T. Duff, SIGGRAPH '84 Conference Proceedings, Association
for Computing Machinery, Volume 18, Number 3, July 1984.

[RFC1738]

"Uniform Resource Locators', T. Berners-Lee, L. Masinter, and M. McCahill, December 1994.
Available at ftp://www.ietf.org/rfc/rfc1738.txt.

[RFC1766]

"Tagsfor the Identification of Languages', H. Alvestrand, March 1995. RFC1766 is expected to be
updated by http://www.ietf.org/internet-drafts/draft-al vestrand-lang-tags-v2-02.txt, currently awork in

progress.
Available at ftp://www.ietf.org/rfc/rfc1766.txt.

[RFC1808]

"Relative Uniform Resource Locators', R. Fielding, June 1995.
Available at ftp://www.ietf.org/rfc/rfc1808.txt.

[RFC2044]

"UTF-8, atransformation format of Unicode and 1SO 10646", F. Y ergeau, October 1996. Note that this
RFC obsoletes RFC1521, RFC1522, and RFC1590.
Available at ftp://www.ietf.org/rfc/rfc2044.txt.

[RFC2045]

"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies', N.
Freed and N. Borenstein, November 1996. Note that this RFC obsoletes RFC1521, RFC1522, and
RFC1590.

Available at ftp://www.ietf.org/rfc/rfc2045.txt.

[RFC2046]

"Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types', N. Freed and N. Borenstein,
November 1996. Note that this RFC obsoletes RFC1521, RFC1522, and RFC1590.
Available at ftp://www.ietf.org/rfc/rfc2046.txt.

[REC2119]

"Key words for use in RFCs to Indicate Requirement Levels', S. Bradner, March 1997.
Available at ftp://www.ietf.org/rfc/rfc2119.1xt.

[RFC2141]

"URN Syntax", R. Moats, May 1997.
Available at ftp://www.ietf.org/rfc/rfc2141.txt.

[RFC2318]

"Thetext/css Media Type", H. Lie, B. Bos, C. Lilley, March 1998.
Available at ftp://www.ietf.org/rfc/rfc2318.txt.

[RFC2396]

‘Uniform Resource |dentifiers (URI): Generic Syntax’, T. Berners-Lee, R. Fielding, L. Masinter, August
1998.
Available at ftp://www.ietf.org/rfc/rfc2396.txt.

[RFC2397]

ftp://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/internet-drafts/draft-alvestrand-lang-tag-v2-02.txt
ftp://www.ietf.org/rfc/rfc1766.txt
ftp://www.ietf.org/rfc/rfc1808.txt
ftp://www.ietf.org/rfc/rfc2044.txt
ftp://www.ietf.org/rfc/rfc2045.txt
ftp://www.ietf.org/rfc/rfc2046.txt
ftp://www.ietf.org/rfc/rfc2119.txt
ftp://www.ietf.org/rfc/rfc2141.txt
ftp://www.ietf.org/rfc/rfc2318.txt
ftp://www.ietf.org/rfc/rfc2396.txt

‘The"data’ URL scheme, L. Masinter, August 1998.
Available at ftp://www.ietf.org/rfc/rfc2397.txt.

[RFC2616]

"Hypertext Transfer Protocol -- HTTP/1.1", R. Fielding, J. Gettys, J. Mogul, H. Frystyk Nielsen, L.
Masinter, P. Leach and T. Berners-Lee, June 1999. This RFC obsoletes RFC 2068.
Available at ftp://www.ietf.org/rfc/rfc2616.txt. Specific topics:

o [HTTP-ACCEPT-ENCODING] HTTP Accept-Encoding request header

[SMIL1]

"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification”, P. Hoschka, editor, 15 June
1998.
Available at http://www.w3.org/TR/REC-smil/

Specific topics:
0 [SMIL10-SYSLANG] 'system-language’ attribute

[SMILANIM]

"SMIL Animation”, P. Schmitz, K. Day, A. Cohen, P. Hoschka, editors, 02 September 1999.
Available at http://www.w3.org/TR/smil-animation/

Specific topics:
0 [SMILANIM-TARGET] Specifying the animation target
o [SMILANIM-ANIMFUNC] Specifying the animation function
o [SMILANIM-AD] Computing the Active Duration
o [SMILANIM-UNIFY] Unifying Event-based and Scheduled Timing
o [SMILANIM-ADD] Additive Animation
o [SMILANIM-ACCUM] Controlling behavior of repeating animation - Cumulative Animation
o [SMILANIM-FROMTOBY-ADD] How from, to and by attributes affect additive behavior
o [SMILANIM-LINKS] Hyperlinks and Timing
o [SMILANIM-TRANSITIONS] State Transition Model
o0 [SMILANIM-RESTART] Restarting animations
o [SMILANIM-ATTR-BEGIN] 'begin' attribute
o [SMILANIM-ATTR-DUR] 'dur' attribute
o [SMILANIM-ATTR-END] 'end attribute
0 [SMILANIM-ATTR-RESTART] 'restart’ attribute
o [SMILANIM-ATTR-REPEATCOUNT] 'repeatCount' attribute
o [SMILANIM-ATTR-REPEATDUR] 'repeatDur’ attribute
o [SMILANIM-ATTR-FILL] fill' attribute
o [SMILANIM-ATTR-VALUES] Specifying function values
o [SMILANIM-ATTR-ORIGIN] 'origin’ attribute
o [SMILANIM-DOM-METHODS] Supported methods

ftp://www.ietf.org/rfc/rfc2397.txt
ftp://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-smil/#language
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/smil-animation/#SpecifyingAnimationTarget
http://www.w3.org/TR/smil-animation/#SpecifyingAnimationFunction
http://www.w3.org/TR/smil-animation/#ComputingActiveDur
http://www.w3.org/TR/smil-animation/#Unifying
http://www.w3.org/TR/smil-animation/#AdditiveAnim
http://www.w3.org/TR/smil-animation/#Accumulate
http://www.w3.org/TR/smil-animation/#FromToByAndAdditive
http://www.w3.org/TR/smil-animation/#HyperlinkSemantics
http://www.w3.org/TR/smil-animation/#AnimationStateTransitionModel
http://www.w3.org/TR/smil-animation/#Restart
http://www.w3.org/TR/smil-animation/#BeginAttribute
http://www.w3.org/TR/smil-animation/#DurAttribute
http://www.w3.org/TR/smil-animation/#EndActiveAttribute
http://www.w3.org/TR/smil-animation/#RestartAttribute
http://www.w3.org/TR/smil-animation/#RepeatCountAttribute
http://www.w3.org/TR/smil-animation/#RepeatDurAttribute
http://www.w3.org/TR/smil-animation/#FillAttribute
http://www.w3.org/TR/smil-animation/#AnimFuncValues
http://www.w3.org/TR/smil-animation/#MotionOriginAttribute
http://www.w3.org/TR/smil-animation/#DOM-SupportedMethods

[SRGB]

|EC 61966-2-1 (1999-10) - "Multimedia systems and equipment - Colour measurement and
management - Part 2-1: Colour management - Default RGB colour space - SRGB", ISBN:
2-8318-4989-6 - ICS codes: 33.160.60, 37.080 - TC 100 - 51 pp.
Available at: http://www.iec.ch/nr1899.htm.

[UNICODE]

The Unicode Consortium. "The Unicode Standard, Version 3.0", Reading, MA, Addison-Wesley
Developers Press, 2000. ISBN 0-201-61633-5. Refer also to
http://www.unicode.org/unicode/standard/versions/.

[URI]

"Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee, R. Fielding, L. Masinter,
August 1998. Note that RFC 2396 updates [RFC1738] and [RFC1808].
Available at http://www.ics.uci.edu/publ/ietf/uri/rfc2396.txt. (The term "URI-reference” is defined in

Section 4: URI References.)
[WCAG]

"Web Content Accessibility Guidelines 1.0", W. Chisholm, G. Vanderheiden, |. Jacobs, editors,
Available at:
http://www.w3.0rg/ TR/WAI-WEBCONTENT/.

[XLINK]

"XML Linking Language (XLink)", S. DeRose, E. Maler, D. Orchard, B. Trafford, editors, 3 July 2000.
Available at http://www.w3.0rg/TR/2000/CR-xlink-20000703/

[XML 10]

"Extensible Markup Language (XML) 1.0", T. Bray, J. Paoli, C.M. Sperberg-McQueen, editors, 10
February 1998.
Available at http://www.w3.org/ TR/REC-xml/.

Specific topics:
o [XML-MIXED] XML mixed content
[XML-NS]

"Namespacesin XML", T. Bray, D. Hollander, A. Layman, editors, 14 January 1999.
Available at http://www.w3.0rg/TR/REC-xml-names/.

[XML-SS]
"Associating Style Sheets with XML documents Version 1.0", James Clark, editor, 29 June 1999.
Available at http://www.w3.org/TR/xml-stylesheet/.

[XPTR]

"XML Pointer Language (XPointer)”, S. DeRose, R. Daniel Jr., E. Maler, editors, 6 December 1999.
Available at http://www.w3.org/TR/xptr

K.2 Informative references

[CHARMOD]

"Character Model for the World Wide Web (working draft)”, M. Durst, editor, 25 February 1999.
Available at http://www.w3.org/TR/charmod/

http://www.iec.ch/nr1899.htm
http://www.unicode.org/unicode/standard/versions/
http://www.ics.uci.edu/pub/ietf/uri/rfc2396.txt
http://www.w3.org/TR/WAI-WEBCONTENT/
http://www.w3.org/TR/2000/CR-xlink-20000703/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml#sec-mixed-content
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/xptr
http://www.w3.org/TR/charmod/

[DCORE]
The Dublin Core. For more information, refer to http://purl.org/DC.

[FOLEY-VANDAM]

"Computer Graphics : Principles and Practice, Second Edition”, James D. , Andries van Dam, Steven K.
Feiner, John F. Hughes, Richard L. Phillips, Addison-Wesley, pp. 488-491.

[HTMLA4]

"HTML 4.01 Specification”, D. Raggett, A. Le Hors, |. Jacobs, 24 December 1999.
Available at http://www.w3.org/TR/html401/. The Recommendation defines three document type

definitions: Strict, Transitional, and Frameset, all reachable from the Recommendation.
[MATHML]

"Mathematical Markup Language (MathML) 1.01 Specification”, P. lon, R. Miner, 7 July 1999.
Available at http://www.w3.org/ TR/REC-MathML/.

[MIMETYPES]

List of registered content types (MIME types). Download alist of registered content types from
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types.

[OPENTY PE]
See http://www.microsoft.com/OpenType/OT Spec/. Specific topics:
0 [OPENTYPE-BASETABLE] Baseline table (BASE)

[RDF10]

"Resource Description Framework (RDF) Model and Syntax Specification”, O. Lassila, R. Swick, eds.,
22 February 1999. This document is http://www.w3.org/ TR/REC-rdf-syntax/.

[UAAG]

"User Agent Accessibility Guidelines 1.0", J. Gunderson, |. Jacobs, editors, 10 March 2000.
Available at http://www.w3.0rg/TRIUAAG10/

[WAI]

Home page for Web Accessibility Initiative:
http://www.w3.org/WAI/.

[XHTML]

"XHTML (tm) 1.0: The Extensible HyperText Markup Language”,
Available at http://www.w3.org/TR/xhtml1/.

[XSL]

"Extensible Stylesheet Language (XSL) Specification”, S. Deach, editor, 21 Apr 1999.
Available at http://www.w3.org/TR/xsl/

[XSLT]

"XSL Transformations (XSLT) Version 1.0", J. Clark, editor, 08 October 1999.
Available at http://www.w3.org/TR/xslt

previous next contents properties index

http://purl.org/DC
http://www.w3.org/TR/html401/
http://www.w3.org/TR/REC-MathML/
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/
http://www.microsoft.com/OpenType/OTSpec
http://www.microsoft.com/OpenType/OTSpec/base.htm
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/UAAG10/
http://www.w3.org/WAI/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xslt
file:///D|/Public/CR-SVG-20000802/indexlist.html

previous next contents properties index

Appendix L: Property Index

Per centages

- Appliesto oo . Media :
Name Values Initial value (Default: all) Inherited? (D';elf/iu)lt. groups Animatable
baseline | top | before-edge | text-top |
midele bottor | ater-edge| y Lo topar, I,
o o middle | bottom | after-edge see property |: \ ;
alionment-tesding text-bottom | text-after-edge | description % " no visud yes
ideographic | lower | hanging | Lextrah elements
mathematical | inherit
refersto the
'line-height'
of the 'text’ yes
] 'text', 'tspan’, 'tref’, element, (non-additive,
el e £ baseline | sub | super | <percentage> | : el ad whichinthe |,; 'set’ and
"baseline-shift <length> | inherit baseline %aﬂd t no case of SVG visual animate
Aexttelhl elements is defined to elements
be equal to only)
the
‘font-size'
elements which
‘clip' <shape> | auto | inherit auto establish a new no visual yes
viewport
‘clip-path’ <uri> | none | inherit none all elements no visua yes
graphics elements
‘clip-rule evenodd | nonzero | inherit evenodd within a'clipPath’ |yes visual ves
element
'fill', 'stroke’, e
. . dqgends on Lto -COlOI", Inheritance .
color <color> | inherit user agent Ir!ogq-colorl » of Paintin visua ves
m@gm Properties
properties
.] color interpolation _
‘color-interpol ation' auto | sSRGB | linearRGB | inherit sRGB and compositing |yes visual yes
operations
. color interpolation
' T auto | optimizeSpeed | " .
color-rendering S o . auto and compositing |yes visual yes
optimizeQuality | inherit operations
[[<uri>]* [auto | crosshair | default | _
pointer | move | e-resize | ne-resize | container elements visual
‘cursor' nw-resize | n-resize | se-resize | auto and graphics yes m five|Ves
Sw-resize | s-resize | w-resize| text | elements
wait | help]] | inherit
'text’, 'tspan’, 'tref’
‘direction’ Itr | rtl | inherit Itr and 'textPath' yes visua no
elements
inline | block | list-item | run-in |
compact | marker | table | inline-table | see
table-row-group | table-header-group | Inheritance
'display’ table-footer-group | table-row | inline of Painting al yes
table-column-group | table-column | Properties
table-cell | table-caption | none | below
inherit
auto | autosense-script | no-change | 'text’, ‘tspan, 'tref',
‘A nant- P reset| : o ;
"dominant-baseline' ideographic | lower | hanging | auto % t no visual yes
mathematical | inherit Aextraln elements
' . accumulate | new [(<x> <y> <width> . .
enable-background <height>)] | inherit accumulate |container elements |no visual no
fill' <paint> (See Specifying paint) black no visual yes
fill-opacity’ <opacity-value> | inherit 1 yes visual yes

file:///D|/Public/CR-SVG-20000802/indexlist.html
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/visufx.html#value-def-shape
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#interactive-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#all-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group

“fill-rule' |evenodd | nonzero | inherit evenodd yes visudl |yes
filter' <uri> | none | inherit none gg?ﬁ;'rclzraggm ents (N0 visual yes
currentColor |
<color>
'flood-color' [icc-color(<name>,<icccol orvalue>+)] black ‘feFlood' elements |no visual yes
I
inherit
flood-opacity' <alphavalue> | inherit 1 ‘feFlood' elements [no visud |yes
alowed on
[[font-style' || ‘font-variant' || font-size yes
‘font-weight']? font-size [/ ividug [T tspan tref f’i‘_nd —_— ,(Sﬂe?P-agd't'V&
‘font ‘line-height']? ‘font-family'] | caption ;fg‘p')grt'i‘;“ ‘glyphRun’, ves (.'I?rf;ﬁegght. visual .anmﬁ‘;é
| icon | menu | message-box | ‘textPath’ elements same as elements
small-caption | status-bar | inherit font-size' in only)
SVG)
[[<family-name> | <generic-family> ‘text’, 'tspan’, 'tref’,
‘font-family’ 1.J* [<family-name> | Sze”d;?t” ‘glyphRun, ves visud |yes
<generic-family>] | inherit ag ‘textPath' elements
. T 'text', 'tspan’, 'tref’, |YeS the refer to
font-size <absolute-size> | <relative-size> | medium ‘glyphRun', computed | parent visual es
- <length> | <percentage> | inherit t tPath'ei i valueis |element's Y
AEXIRAN E1eMeNtS inherited [font size
‘font-size-adjust’ <number> | none | inherit none yes visual ves
normal | wider | narrower |
ultra-condensed | extra-condensed | ‘text', 'tspan, 'tref’
‘font-stretch’ condensed | semi-condensed | normal ‘T]IyghRun‘, o ves visual yes
— semi-expanded | expanded | textPath' el t -
extra-expanded | ultra-expanded | Lextraln elements
inherit
'text', 'tspan’, 'tref’,
‘font-style normal | italic | oblique | inherit normal ‘glyphRun’, yes visual ves
‘textPath’ elements
‘font-variant' normal | small-caps | inherit normal yes visual yes
normal | bold | bolder | lighter | 100 | ‘text’, 'tspan’, 'tref’,
‘font-weight' 200 | 300|400 |500]600| 700|800 [normal ‘alyphRun’, yes visual yes
900 | inherit '‘textPath' elements
‘text’, 'tspan’, 'tref’,
‘alyph-orientation-horizontal' |<angle> | inherit 0 ‘glyphRun’, yes visual no
‘textPath’ elements
'text', 'tspan’, 'tref’,
‘alyph-orientation-vertical' |<angle> | auto | inherit auto ‘alyphRun’, yes visual no
'textPath’ elements
" T auto | optimizeSpeed | . ;
ag g L OREE
image-renderin optimizeQuality | inherit aio IMages yes visua yes
'text’, 'tspan’, 'tref’,
'l etter-spacing' normal | <length> | inherit normal ‘alyphRun, yes visual yes
'textPath’ elements
currentColor | feDiffusel ightina'
<color> Q—gand
'lighting-color' [icc-color(<name> <icccolorvalue>+)] [white ‘feSpecularLighting |"° visual yes
|
inherit elements
see
. ‘path’, 'line', Inheritance
‘marker' seeindividual properties sersglr;rdtli\;dual ‘polyline and of Painting visual yes
prop ‘polygon’ elements |Properties
below
see
'marker-end' none | ‘path’, 'line', Inheritance
‘marker-mid' inherit | none ‘polyline’ and of Painting visual yes
‘marker-start' <uri> ‘polygon’ elements |Properties
below

http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-line-height
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-family-name
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-generic-family
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-family-name
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-generic-family
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-absolute-size
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-relative-size
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-percentage
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-number
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group

‘mask’ |<uri> | none | inherit Inone no visual yes
‘opacity’ <aphavalue> | inherit 1 no visual ves
elements which
‘overflow' visible | hidden | scroll | auto | inherit |see prose establish anew no visual yes
viewport
visiblePainted | visibleFill | ;
_ visibleStroke | visibleFill Stroke | conthalements _
'pointer-events' visible | visiblePainted |and graphics yes visua yes
painted | fill | stroke | fillstroke | al | elements
none | inherit
. - auto | optimizeSpeed | crispEdges | ;
ap g g PR T
shape-renderin geometricPrecision | inherit aio yes visudl Yes
currentColor |
<color>
stop-color' [icc-color(<name>,<icccolorvalue>+)] |black 'stop’ elements no visual |yes
|
inherit
'stop-opacity’ <alphavalue> | inherit 1 'stop’ elements no visual yes
see
Inheritance
'stroke' <paint> (See Specifying paint) none of Painting visual yes
Properties
below
'stroke-dasharray' none | <dasharray> | inherit none yes visual
'stroke-dashoffset' <dashoffset> | inherit 0 yes seeprose |visua yes
'stroke-linecap']butt | round | square | inherit butt yes visual yes
'stroke-lingjoin’ miter | round | bevel | inherit miter yes visual yes
'stroke-miterlimit’ <miterlimit> | inherit 4 yes visual yes
'stroke-opacity’ <opacity-value> | inherit 1 yes visual yes
‘stroke-width' <width> | inherit 1 yes visual ves
‘text', 'tspan’, 'tref’,
‘text-anchor’ start | middle | end | inherit start ‘alyphRun’, yes visual ves
'textPath’ elements
. . 'text’, 'tspan’, 'tref’,
N - none | [underline || overline || T .~ |no(see ;
‘text-decoration’ line-through | blink] | inherit none alyphRun, prose) visual - lyes
'textPath’ elements
) auto | optimizeSpeed | .
'text-rendering’ optimizeL egibility | auto 'text’ elements yes visual yes
geometricPrecision | inherit
‘text’, ‘tspan’, 'tref’
‘unicode-bidi' normal | embed | bidi-override | inherit |normal and 'textPath’ no visual no
elements
‘visibility' visible | hidden | collapse | inherit inherit no visual yes
‘text', 'tspan’, 'tref’,
‘word-spacing' normal | <length> | inherit normal ‘alyphRun’, yes visual yes
‘textPath’ elements
‘writing-mode' Ir-tb [rl-tb [th-rl [Ir |rl [tb [inherit |[Ir-th ‘text’ elements yes visual no

previous next contents

properties index

http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
file:///D|/Public/CR-SVG-20000802/indexlist.html

previous contents properties index

Appendix M: Change History

Changes since the last public draft specification

» Global and miscellaneous changes

o Changed all of the <title> elements so that the chapter names appear first, then "W3C SVG
Specification”.

o Editorial work to synchronize with latest drafts of DOM2, along with general cleanup and
consolidation of write-ups on events and editorial completion on pending changes to the
animation chapter. A table has been added to the Interactivity chapter showing the complete list
of events supported by SVG. The following functional changes have occurred with this draft
spec:

= Removal of keyboard events as these are not part of DOM2. A future version of DOM
will define keyboard events.

= The ondblclick event has been removed asit is not part of DOM2 and is redundant with
the click event, which provides an indication of the number of clicks as part of its detail
argument.

» Theonsdect event has been removed.

= Additional of event attributes onbegin, onend and onrepeat, which occur when an
animation begins, ends or repeats.
o DOM: Changed all DOM attributes which are of type SVGAnimated**** to readonly as these

DOM attributes should never be overridden by assignment. The baseVal attribute on the
SVGAnimated**** interfaces can be overridden by assignment, however.

« Changesto Basic Data Types and Interfaces

o DOM: Because SVGColor isone of the CSS_CUSTOM extended interfaces, it has been changed
to extend CSSValue. This also resultsin SV GPaint inheriting from CSSValue indirectly.

« Changesto Document Structure

o Inthe description of URI referencing, added a note to authors that a URI has a restricted set of
legal characters and that other characters must be escaped, and added a recommendation to
implementers similar to the recommendation in the HTML specification that user agents should
process URI attribute values to ensure that the tranmitted bytes are restricted to the byte values

acceptablein URIs.

o DOM: Fixed erroneous description of rootElement in SVGDocument. Now says that it points to
the root 'svg' element in the document hierarchy.

o DOM: Changed SVGSV GElement to extend the ViewCSS and DocumentCSS defined in DOM2
to provide script writers with access to the computed values for an element and to the override
style sheet.

file:///D|/Public/CR-SVG-20000802/indexlist.html

O

O

DOM: Removed createSV GPaint() and createSV GColor since these objects can never be directly
assigned (via assignment) to any of the DOM attributesin the SVG DOM and because they
derive from CSSValue, which cannot exist outside of a document tree.

DOM: Added createRGBColor() since the setPaint() method call needs this type of object.

» Changesto Coordinate Systems, Transformations and Units

O

Fix errorsin the list of elements that establish new viewports. The ‘'use, ‘marker' and 'pattern’
elements do not establish new viewports, but areferenced 'symbol’ will. An 'image’ which
references an SVG file will result in a new viewport because the referenced content will have an
'svg' element.

A change to the 29 June public draft specification was not listed in the change history in that
version: the BNF for the 'transform'’ attribute was modified to reflect the ability to provide
optional cx,cy values on arotate specification.

DOM: A change to the 29 June public draft specification was not listed in the change history in
that version: the setRotate() method call on the SV GTransform interface was modified to reflect
the additional of new parameters cx and cy.

« Changesto Text

O

Many editorial cleanups and clarifications without changing the intended effect of various
elements and attributes. These miscellaneous cleanups and clarifications often are related to
internationalization issues and updates to the descriptions for baseline alignment properties that
are being developed for both XSL and SVG.

Updated the overview sections and the detailed descriptions of the baseline properties to
synchronize with the latest XSL drafts.

Renamed 'baseline-identifier' to ‘alignment-baseline' to synchronize with changesto XSL.

Introduced the concepts of "absolute position adjustments” and "text chunks", and provided
additional clarification of how absolute position adjustments affect ligatures, ‘text-anchor’,
bidirectionality.

Modified terminology to be consistent with XSL. Instead of "text advance direction”, we now
use the term "inline progression direction”. Instead of "reference point”, we now use the term

"alignment-point”. Added discussions of "reference orientation” for additional consistency with
XSL.

Clarified that character position offsets are based on the string that results after application of the
white space handling rulesin SVG.

Added a hyperlink to the XML 1.0 spec's discussion of end-of-line characters.

Fixed error in write-up about text on a path. Previously, the spec said that 'x' and 'y' attributes on
'tspan’, etc. areignored. Now the spec says that for horizontal text, 'x' provides a set of
per-character absolute offset values, and 'y' isignored, whereas for vertical text, 'y' provides a set
of per-character absolute offset values, and 'x' isignored.

Fixed error where 'dominant-baseline’ was only allowed on ‘text' elements. Now it can now be
applied to any text element, not just ‘text'.

DOM: Added clarifications for how getComputedTextL ength() and getSubStringL ength() so that
the description matches the write-ups in the language definition for computing text advance
distances.

DOM: Expressed more precisely how getStartPositionOf Char() and getEndPositionOf Char()
work, and made the description less ambiguous.

« Changesto Painting: Filling, Stroking and Marker Symbols

o Increased detail in the description of how exactly markers are rendered. No longer is atemporary
viewport created.

Changesto Filter Effects

o DOM: Fixed error in definition of setStdDeviation() method in SV GFEGaussianBlurElement.
Previously, the method took SV GL ength parameters. Now, it takes 'float’ values to match the
<number> type for attribute 'stdDeviation'.

Changesto I nteractivity

o Renamed zoom, load, unload, error, abort, resize, scroll to SVGZoom, SVGLoad, SV GUnload,
SV GError, SVGAbort, SVGResize, SVGScroll per DOM2 feedback comments.

Changes to Scripting
o Renamed zoom, load, unload, error, abort, resize, scroll to SVGZoom, SV GLoad, SVGUnload,
SVGError, SVGADbort, SVGResize, SV GScroll per DOM2 feedback comments. Added interface

SVGEvent to be the target interface for SV GLoad, SVGUnload, SV GError, SVGAbort,
SVGResize and SVGScroll.

Changes to Animation

o Added keyPointsto DTD for ‘animateMotion’. This had been documented, but an editorial error
left it out of the DTD.

o Added attributes'min' and 'max’ attributes, updated definitions of 'begin' and 'end' attributes
(primarily, just additional optional white space), added a'media keyword to 'dur’ attribute, and
changed event names from 'begin’, ‘end’ and 'repeat’ to 'beginEvent', 'endEvent’ and 'repeatEvent’
to synchronize with latest developments in the SMIL Boston timing model draft.

o DOM: Added EventTarget to base interface SV GAnimationElement, which is required to allow
access to the begin, end and repeat events.

o DOM: Fixed error where SV GAnimateCol orElement had been missing from DOM.
Changes to Fonts

o Added a'd attribute to 'glyph' to allow an option for compact fonts that are styled just like
system fonts without the potential coordinate system problems with arbitrary SVG in fonts.

Changes to Metadata

o Replaced "openinterchange.org” with "example.org" to reinforce that the exampleis
hypothetical.

Changes to Extensihility
o Added a new section that describes the extension entitiesin the SVG DTD.
Changesto SVG DTD

o Changed the URL for the SVG namespace to "http://www.w3.0rg/2000/svg" to match W3C
conventions and due to imminent Candidate Recommendation status.

o Changed the URL for the XLink namespace from the incorrect URL
"http://www.w3.0rg/2000/xlink/namespace/" to "http://www.w3.0rg/1999/xlink".

o Added attribute 'arcrole’ to XLink entities.

o Extended the list of possible values for 'show' and ‘actuate’ in XLink to match the list of valuesin
the latest XLink spec.

o Fixed typo in DTD where altGlyphltem was spelled incorrectly.

« Changesto SVG DOM

o DOM: Changed the names of events focusin, focusout and activate to DOM Focuslin,
DOMFocusOut and DOMA ctivate, respectively, to match the latest draft of DOM2.

o DOM: Changed the range module from DOM2 from required to optional for SVG.

o DOM: Changed the initial feature number for calls to hasFeature from "1" to "1.0" for
compatibility with DOM2.

« Changesto IDL

o Thenew IDL reflectsany DOM changes with this draft spec.
« Changesto Javalanguage DOM binding

o The new Javalanguage binding reflect any DOM changes with this draft spec.
« Changesto ECMA Script language DOM binding

o The new ECMA Script language binding reflect any DOM changes with this draft spec.
« Changesto Internationalization Support

o Variousterminology editoria cleanups per feedback from the I nternationalization working
group.
« Changes to Implementation Requirements

o Clarified and simplified the section on text selection implementation notes. Added language to
address situations where the character-to-glyph mapping is more complex than one-to-one.

« Changesto Conformance Criteria

o Added aclarification about when SV G user agent isincluded in a user agent that supports also
supports other languages, such as XHTML and/or CSS/XSL. The clarification is that MIME type
"Image/svg-xml" must be supported wherever raster image formats are supported.

« Changesto References
o Added areference for ISO8601, representation of dates and times.

previous contents properties index

file:///D|/Public/CR-SVG-20000802/indexlist.html

	Local Disk
	W3C Specification - Scalable Vector Graphics (SVG) 1.0 - Candidate Recommendation 20000802
	Introduction to SVG - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Concepts - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Rendering Model - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Basic Data Types and Interfaces - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Document Structure - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Styling - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Coordinate Systems, Transformations and Units - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Paths - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Basic Shapes - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Text - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Painting: Filling, Stroking and Marker Symbols - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Color - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Gradients and Patterns - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Clipping, Masking and Compositing - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Filter Effects - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Interactivity - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Linking - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Scripting - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Animation - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Fonts - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Metadata - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Backwards Compatibility - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Extensibility - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	DTD - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	SVG DOM - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	IDL Definitions - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Java Language Binding - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	ECMAScript Language Binding - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Implementation Requirements - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Conformance Criteria - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Accessibility Support - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Internationalization Support - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Minimizing SVG File Sizes - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	References - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Property Index - W3C SVG 1.0 Specification - Candidate Recommendation 20000802
	Change History - W3C SVG 1.0 Specification - Candidate Recommendation 20000802

