Mathematical Markup Language (MathML) Version 2.0

W3C Working Draft 28 March 2000

This version: http://www.w3.0org/TR/2000/WD-MathML2-20000328
Also available asHTML zip archive XHTML zip archive, XML zip archive, PDF (screen)PDF (paper)
Latest version: http://www.w3.org/TR/MathML2
Previous versions:
http://www.w3.0rg/TR/2000/WD-MathML2-20000211
http://www.w3.0rg/TR/1999/WD-MathML2-19991222
http://www.w3.0rg/TR/1999/WD-MathML2-19991201
Editors: Nico Poppelier (Penta Scope)
Robert Miner (Geometry Technologies, Inc.)
Patrick lon (Mathematical Reviews, American Mathematical Society)
David Carlisle (NAG)
Principal Writers: Ron Ausbrooks, Stephen Buswell, Stéphane Dalmas, Stan Devitt, Angel Diaz, Roger Hunter,
Bruce Smith, Neil Soiffer, Robert Sutor, Stephen Watt

Copyright(© 1998-2000 W3® (MIT, INRIA, Keio), All Rights Reserved/V3C liability, trademarkdocument usand
software licensingules apply.

Abstract

This specification defines the Mathematical Markup Language, or MathML. MathML is an XML application for de-
scribing mathematical notation and capturing both its structure and content. The goal of MathML is to enable mathe
matics to be served, received, and processed on the World Wide Web, just as HTML has enabled this functionality fc
text.

This specification of the markup language MathML is intended primarily for a readership consisting of those who will
be developing or implementing renderers or editors using it, or software that will communicate using MathML as a
protocol for input or output. It imot a User’s Guide but rather a reference document.

This document begins with background information on mathematical notation, the problems it poses, and the philos
ophy underlying the solutions MathML proposes. MathML can be used to encode both mathematical notation an
mathematical content. About thirty of the MathML tags describe abstract notational structures, while another one hur
dred provide a way of unambiguously specifying the intended meaning of an expression. Additional chapters discus
how the MathML content and presentation elements interact, and how MathML renderers might be implemented an
should interact with browsers. Finally, this document addresses the issue of MathML characters and their relation 1
fonts.

While MathML is human-readable, it is anticipated that, in all but the simplest cases, that authors will use equatior
editors, conversion programs, and other specialized software tools to generate MathML. Several early versions of su
MathML tools already exist, and a number of others, both freely available software and commercial products, are unds
development.

Status of this document

This is the Last Call Working Draft of the MathML 2.0 specification prepared by the W3C Math Working Group. The
Last Call review period ends 30 April 2000. The Math Working Group decided to proceed to Last Call with this draft at
its recent Ann Arbor face-to-face meetingi(utes message

This is a W3C Working Dratft for review by W3C members and other interested parties. It is a draft document and may
be updated, replaced or made obsolete by other documents at any time. It is inappropriate to use W3C working dra

http://www.w3.org/TR/2000/WD-MathML2-20000328/
file:WD-MathML2-20000328.zip
file:XHTML-MathML-20000328.zip
file:XML-MathML-20000328.zip
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/2000/WD-MathML2-20000211/
http://www.w3.org/TR/1999/WD-MathML2-19991222/
http://www.w3.org/TR/1999/WD-MathML2-19991201/
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html
http://lists.w3.org/Archives/Member/w3c-math-wg/2000JanMar/0358.html

as reference material or to cite them as other than ‘work in progress’. This is work in progress and does not impl
endorsement by, or the consensus of, either W3C or participants in the Math Working Group.

This document has been produced byWeC Math Working Group
A list of current W3C Technical Reports can be foundhép://www.w3.org/TR

This document has been produced as part of the activity of\tB€ User Interface DomairThe goals of the W3C
Math Working Group are discussed in thie3C Math WG Charte(revised February 2000 from original of 11 June
1998). A list ofparticipants in the W3C Math Working Grougpavailable.

The present draft is a revision of the earlier correté&lC Recommendation MathML 1.0l differs from it in that all
chapters have been updated and two added.

Chapters 1 and 2, which are introductory material have been revised to reflect the changes elsewhere in the docume
and in the rapidly eveolving Web context. Chapters 3 and 4 have been extended to describe new functionalities adde
as well as smaller improvements of material already proposed. Chapter 5 has been newly written to reflect changes
the technology available. The major tables in Chapter 6 have been regenerated to reflect an improved list of Unicoc
characters useful for mathematics, and the text revised to reflect the new preferred form for accessing them. Chap
7 has been completely revised for Web technology has changed. A new chapter 8 on the DOM for MathML has bee
added; the latter points to a new appendix E for a detailed listing.

The appendices have been reorganized into normative and non-normative groups. Appendices E and H are complet
new.

Comments on this document should be sent tgothtgic mailing list of the Math Working Group

http://www.w3.org/Math/
http://www.w3.org/TR/
http://www.w3.org/UI/
http://www.w3.org/Math/W3CDocs/mathcharter.html
http://www.w3.org/1999/07/REC-MathML-19990707/
mailto:www-math@w3.org

Contents

1.1

1.2

121
1.2.2
1.2.3
1.2.4
1.25
1.3

131
1.3.2

2.1

211
212
2.13
214
2.2

221
2.2.2
2.2.3
2.3

23.1
2.3.2
2.3.3
234
2.3.5
2.3.6

3.1

3.1.1
3.1.2
3.1.3
3.14
3.15
3.2

3.2.1
3.2.2
3.2.3
3.24

Introduction 7

Mathematics and its Notation 7

Origins and Goals 8

The History of MathML 8
Acknowledgments 8

Limitations of HTML 9

Requirements for Mathematics Markup
Design Goals of MathML 10

The Role of MathML on the Web 11
Layered Design of Mathematical Web Servicdd
Relation to Other Web Technology 2
MathML Fundamentals 15

MathML Overview 15

Taxonomy of MathML Elementsi5
Presentation Markup17

Content Markup 18

Mixing Presentation and Conteni 8
Some MathML Examples 19
Presentation Exampled 9

Content Examples21

Mixed Markup Examples 23

MathML Syntax and Grammar 25
MathML Syntax and Grammar25

An XML Syntax Primer 25

Children versus Argument26

MathML Attribute Values 26

Attributes Shared by all MathML Elements$1
Collapsing Whitespace in Input32
Presentation Markup 34

Introduction 34

What Presentation Elements Represetst
Terminology Used In This ChapteB5
Required Arguments36

Elements with Special Behaviors7
Summary of Presentation Element38
Token Elements 39

Attributes common to token element39
Identifier gi) 40

Numberidn) 42

Operator, Fence, Separator or Accen) (43

3.25
3.2.6
3.2.7
3.2.8
3.2.9
3.3

3.3.1
3.3.2
3.3.3
3.34
3.35
3.3.6
3.3.7
3.3.8
3.3.9
3.4

34.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.5

3.5.1
3.5.2
3.5.3
354
3.55
3.6

3.6.1

4.1

41.1
4.1.2
4.1.3
4.2

42.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.3

4.3.1
4.3.2

Text fitext) 52

Spacen(space) 54

String Literalfis) 55

Referring to non-ASCII charactesschar) 56
Adding new character glyphs to MathMbgllyph) 56
General Layout Schemata 58

Horizontally Group Sub-Expressiong¢w) 58
Fractions{frac) 60

Radicalsi{sqrt, mroot) 62

Style Changenétyle) 63

Error Messagenérror) 67

Adjust Space Around Contenipgdded) 68
Making Content Invisiblenphantom) 72
Content Inside Pair of Fencesénced) 74
Enclose Content Inside Notatiatefclose) 77
Script and Limit Schemata 78

Subscriptr{sub) 79

Superscripigup) 79

Subscript-superscript Paitsftbsup) 80
Underscriptrfunder) 81

Overscriptfover) 82

Underscript-overscript Patifinderover) 83
Prescripts and Tensor Indiceafltiscripts) 85
Tables and Matrices 86

Table or Matrixifitable) 86

Row in Table or Matrixutr) 89

Labeled Row in Table or Matrix{abeledtr) 90
Entry in Table or Matrixe(td) 91

Alignment Markers 92

Enlivening Expressions 100

Bind Action to Sub-Expressiomndction) 100
Content Markup 102

Introduction 102

The Intent of Content Markup102

The Scope of Content Markupl 02

Basic Concepts of Content Markud03

Content Element Usage Guide 104

Overview of Syntax and Usagd 04

Containers 113

Functions, Operators and Qualifiers1 7
Relations 121

Conditions 122

Syntax and Semantics23

Semantic Mappingsi125

Constants and Symbold 25

MathML element types 125

Content Element Attributes 126

Content Element Attribute Valued 26
Attributes Modifying Content Markup Semantic$26

4.3.3 Attributes Modifying Content Markup Rendering 28
4.4 The Content Markup Elements 129
441 Token Elements 133

4.4.2 Basic Content Elementsi 36

4.4.3 Arithmetic, Algebra and Logic 145
444 Relations 160

445 Calculus and Vector Calculug 64
4.4.6 Theory of Sets 173

4.4.7 Sequences and Serie$79

4.4.8 Elementary classical functiond 83
4.4.9 Statistics 185

4.4.10 Linear Algebra 188

4411 Semantic Mapping Elementd93
4412 Constant and Symbol Element$95

5 Combining Presentation and Content Markup 202
5.1 Why Two Ditferent Kinds of Markup? 202
5.2 Mixed Markup 203

5.2.1 Reasons to Mix Markup203

5.2.2 Combinations that are prohibite@05

5.2.3 Presentation Markup Contained in Content Mark@pé
5.2.4 Content Markup Contained in Presentation Mark@pé
5.3 Parallel Markup 207

53.1 Top-level Parallel Markup 207

5.3.2 Fine-grained Parallel Markup208

5.3.3 Parallel Markup via Cross-Referencasandxref 209
5.34 Annotation Cross-References using XLib&:andhref 210
5.4 Tools, Style Sheets and Macros for Combined Markup 211
54.1 Notational Style Sheets212

5.4.2 Content-Faithful Transformations213

5.4.3 Style Sheets for Extensiong214

6 Characters, Entities and Fonts 216

6.1 Introduction 216

6.1.1 The Intent of Character Nameg16

6.1.2 The STIX Project 216

6.1.3 Character Listings 217

6.1.4 Non-Marking Characters217

6.1.5 Printing Character Symbol Listing218

6.1.6 Special Constants218

6.1.7 Alphabetical Lists 219

6.1.8 ISO Character Set Grouping219

7 The MathML Interface 221

7.1 Embedding MathML in other Documents 221

7.1.1 MathML and Namespace22

7.1.2 The Top-Levehath Element 224

7.1.3 Invoking MathML Processors225

7.1.4 Mixing and Linking MathML and HTML 226

7.2 Generating, Processing and Rendering MathML 227
7.2.1 MathML Compliance 227

7.2.2 Handling of Errors 229

7.2.3 Attributes for unspecified data229
7.3 Future Extensions 229

7.3.1 Macros and Style Sheet230
7.3.2 XML Extensions to MathML 230

8 Document Object Model for MathML 232
8.1 Introduction 232

8.1.1 MathML DOM Extensions 233

A Parsing MathML 234

Al The MathML DTD 235

B Content Markup Validation Grammar 271
C Content Element Definitions 276

Cl1 About Content Markup Elements 276

Cl1 The Default Definitions 276

C.l1.2 The Structure of an MMLdefinition.277
C.2 Definitions of MathML Content Elements 278
C.21 Leaf Elements 278

C.2.2 Basic Content Element281

c.2.3 Arithmetic, Algebra and Logic 288
C.24 Relations 305

C.25 Calculus 306

C.2.6 Theory of Sets 310

c.2.7 Sequences and Serie312

c.2.8 Trigonometry 314

C.29 Statistics 318

C.2.10 Lineary Algebra 322

D Operator Dictionary (Non-Normative) 327

D.1 Format of operator dictionary entries 327

D.2 Indexing of operator dictionary 328

D.3 Choice of entity names 328

D.4 Notes on 1space and rspace attributes 328

D.5 Operator dictionary entries 328

E Document Object Model for MathML (Non-Normative) 338
E.1 IDL Interfaces 338

E.1.1 Miscellaneous Object Definitions338

E.1.2 Generic MathML Elements339

E.1.3 Presentation Elements43

E.1.4 Content Elements365

Glossary (Non-Normative) 382

Working Group Membership (Non-Normative) 386
Changes (Non-Normative) 388

References (Non-Normative) 391

— IO

Chapter 1

Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system of two-dimensional symboli
notations. As J.R. Pierce has written in his book on communication theory, mathematics and its notations should not |
viewed as one and the same thifge]]. Mathematical ideas exist independently of the notations that represent
them. However, the relation between meaning and notation is subtle, and part of the power of mathematics to descri
and analyze derives from its ability to represent and manipulate ideas in symbolic form. The challenge in putting
mathematics on the World Wide Web is to capture both notation and content (that is, meaning) in such a way the
documents can utilize the highly-evolved notational forms of written and printed mathematics, and the potential fol
interconnectivity in electronic media.

Mathematical notations are constantly evolving as people continue to make innovations in ways of approaching ar
expressing ideas. Even the commonplace notations of arithmetic have gone through an amazing variety of styles, |
cluding many defunct ones advocated by leading mathematical figures of theiCdayil 929. Modern mathemat-

ical notation is the product of centuries of refinement, and the notational conventions for high-quality typesetting ar:
quite complicated. For example, variables, or letters which stand for numbers, are usually typeset today in a speci
italic font subtly distinct from the usual text italic. Spacing around symbols for operations such asg and / is
slightly different from that of text, to reflect conventions about operator precedence. Entire books have been devote
to the conventions of mathematical typesetting, from the alignment of superscripts and subscripts, to rules for choo
ing parenthesis sizes, to specialized notational practices for subfields of mathematics (for inStaaced {195},

[el Pl } or in the EX literature | Jand [.

Notational conventions in mathematics, and printed text in general, guide the eye and make printed expressions mu
easier to read and understand. Though we usually take them for granted, we rely on hundreds of conventions such
paragraphs, capital letters, font families and cases, and even the device of decimal-like numbering of sections such
we are using in this document (an invention due to G. Peano, who is probably better known for his axioms for the natur:
numbers). Such notational conventions are perhaps even more important for electronic media, where one must conte
with the difficulties of on-screen reading.

However, there is more to putting mathematics on the Web than merely finding ways of displaying traditional mathe
matical notation in a Web browser. The Web represents a fundamental change in the underlying metaphor for knowled:
storage, a change in whidhterconnectivity plays a central role. It is becoming increasingly important to find ways of
communicating mathematics which facilitate automatic processing, searching and indexing, and reuse in other math
matical applications and contexts. With this advance in communication technology, there is an opportunity to expan
our ability to represent, encode, and ultimately to communicate our mathematical insights and understanding with ea
other. We believe that MathML is an important step in developing mathematics on the Web.

1.2 Origins and Goals
1.2.1 The History of MathML

The problem of encoding mathematics for computer processing or electronic communication is much older than th
Web. The common practice among scientists before the Web was to write papers in some encoded form based
the ASCII character set, and e-mail them to each other. Several markup methods for mathematics, in pgiicular T
[], were already in wide use in 1992 just before the Web rose to prominence)§ |

Since its inception, the Web has demonstrated itself to be a very effective method of making information available
to widely separated groups of individuals. However, even though the World Wide Web was initially conceived and
implemented by scientists for scientists, the possibilities for including mathematical expressions in HTML has beer
very limited. At present, most mathematics on the Web consists of text with images of scientific notation (in GIF or
JPEG format), which are difficult to read and to author, or of entire documents in PDF form.

The World Wide Web Consortium (W3C) recognized that lack of support for scientific communication was a serious
problem. Dave Raggett included a proposal for HTML Math in the HTML 3.0 working draft in 1994. A panel discussion

on mathematical markup was held at the WWW Conference in Darmstadt in April 1995. In November 1995, represente
tives from Wolfram Research presented a proposal for doing math in HTML to the W3C team. In May 1996, the Digital
Library Initiative meeting in Champaign-Urbana played an important role in bringing together many interested parties
Following the meeting, an HTML Math Editorial Review Board was formed. In the intervening years, this group has
grown, and was formally reconstituted as the W3C Math working group in March 1997.

The MathML proposal reflects the interests and expertise of a very diverse group. Many contributions to the developme|
of MathML deserve special mention, some of which we touch on here. One such contribution concerns the questic
of accessibility, especially for the visually handicapped. T.V. Raman is particularly notable in this regard. Neil Soiffer
and Bruce Smith from Wolfram Research shared their experience with the problems of representing mathematics

connection with the design of Mathematica 3.0; this expertise an important influence in the design of the presentatic
elements. Paul Topping from Design Science also contributed his expertise in mathematical formatting and editin
MathML has benefited from the participation of a number of working group members involved in other mathematical
encoding efforts in the SGML and computer-algebra communities, including Stephen Buswell from Stilo Technologies
Nico Poppelier (then with Elsevier Science), Stéphane Dalmas from INRIA (Sophia Antipolis), Stan Devitt at first with

Waterloo Maple, Angel Diaz and Robert S. Sutor from IBM, and Stephen M. Watt from the University of Western

Ontario. In particular, MathML has been influenced by the OpenMath project, the work of the 1ISO 12083 working
group, and Stilo Technologies’ work on a ‘semantic’ mathematics DTD fragment. The American Mathematical Society
has played a key role in the development of MathML. Among other things, it has provided two working group chairs:
Ron Whitney led the group from May 1996 to March 1997, and Patrick lon, who has co-chaired the group with Rober
Miner from The Geometry Center, from March 1997 to the present.

1.2.2 Acknowledgments

The working group benefited from the help of many other people in developing the specification for MathML 1.0. We
would like to particularly name Barbara Beeton, Chris Hamlin, John Jenkins, Ira Polans, Arthur Smith, Robby Villegas
and Joe Yurvati for help and information in assembling the character tables in Cagganell as Peter Flynn, Russel

S.S. O’Connor, Andreas Strotmann, and other contributors to the www-math mailing list for their careful proofreading
and constructive criticisms.

As the Math Working Group went on to MathML 2.0 it again was helped by many from the W3C family of Working

Groups with whom we necessarily had a great deal of interaction. Outside the W3C, a particularly active relevant fror
was the interface with the Unicode Technical Committee (UTC) and the NTSC WG2 dealing with ISO 10646. There
the STIX project put together a proposal for the addition of characters for mathematical notation to Unicode, and thi
work was again spear-headed by Barbara Beeton of the AMS. The whole problem ended split into three proposal

8

two of which were advanced by Murray Sargent of Microsoft, a Math WG member and member of the UTC. But the
mathematical community should be grateful for essential help and guidance over a couple of years of refinement of tt
proposals to help mathematics provided by Kenneth Whistler of Oracle, and a UTC and WG2 member. Asmus Freita
also involved in the UTC and WG2 deliberations was also a stalwart supporter of the needs of scientific notation.

1.2.3 Limitations of HTML

The demand for effective means of electronic scientific communication remains high. Ever increasingly, researcher
scientists, engineers, educators, students and technicians find themselves working at dispersed locations and rely
on electronic communication. At the same time, the image-based methods that are currently the predominant mea
of transmitting scientific notation over the Web are primitive and inadequate. Document quality is poor, authoring is
difficult, and mathematical information contained in images is not available for searching, indexing, or reuse in othe
applications.

The most obvious problems with HTML for mathematical communication are of two types.

Display Problems. Consider the equatior?2= 10. This equation is sized to match the surrounding line in 14pt type on
the system where it was authored. Of course, on other systems, or for other font sizes, the equation is too small or t
large. A second point to observe is that the equation image was generated against a white background. Thus, if a rea
or browser resets the page background to another color, the anti-aliasing in the image results in white ‘halos’. Nex
consider the equation= —2=vP'—4ac VZ*;ZM which is an example with the equation’s horizontal alignment axis above the tops
of the lower-case letters in surrounding text.

This equation has a descender which places the baseline for the equation at a point about a third of the way fro
the bottom of the image. One can pad the image like this; =2=v*—4ac Vzgz“ac, so that the centerline of the image and

the baseline of the equation coincide, but this causes problems with the inter-line spacing, resulting in the equatic
becoming difficult to read. Moreover, center alignment of images is handled in slightly different ways by different
browsers, making it impossible to guarantee proper alignment for different clients.

Image-based equations are generally harder to see, read and comprehend than the surrounding text in the brow
window. Moreover, these problems become worse when the document is printed. The resolution of the equations
images will be around 70 dots per inch, while the surrounding text will typically be 300, 600 or more dots per inch. The
disparity in quality is judged to be unacceptable by most people.

Encoding Problems. Consider trying to search this document for part of an equation, for example, the ‘=10’ from the
first equation above. In a similar vein, consider trying to cut and paste an equation into another application; even moi
demanding is to cut and paste a sub-expression. Using image-based methods, neither of these common needs ca
adequately addressed. Although the use ofathein the document source can help, it is clear that highly interactive
Web documents must provide a more sophisticated interface between browsers and mathematical notation. Anott
problem with encoding mathematics as images is that it requires more bandwidth. Markup describing an equation
typically smaller and more compressible than an image of the equation. Also by using markup-based encoding, more
the rendering process is moved to the client machine.

124 Requirements for Mathematics Markup

Some display problems associated with including mathematical notation in HTML documents as images could b
addressed by improving image handling by browsers. However, even if image handling were improved, the problem c
making the information contained in mathematical expressions available to other applications would remain. Therefor
in planning for the future, it is not sufficient merely to upgrade image-based methods. To integrate mathematical materi
fully into Web documents, a markup-based encoding of mathematical notation and content is required.

In designing any markup language, it is essential to consider carefully the needs of its potential users. In the case
MathML, the needs of potential users cover a broad spectrum, from education to research, and on to commerce:

9

The education community is a large and important group that must be able to put scientific curriculum materials on th
Web. At the same time, educators often have limited resources of time and equipment, and are severely hampered by
difficulty of authoring technical Web documents. Students and teachers need to be able to create mathematical cont
quickly and easily, using intuitive, easy-to-learn, low-cost tools.

Electronic textbooks are another way of using the Web which will potentially be very important in education. Manage-
ment consultant Peter Drucker has prophesied the end of big-campus residential higher education and its distributi
over the Web []. Electronic textbooks will need to be interactive, allowing intercommunication between
the text and scientific software and graphics.

The academic and commercial research communities generate large volumes of dense scientific material. Increasing
research publications are being stored in databases, such as the highly successful physics preprint server and arct
www.arXiv.org, which replacesxx.lanl.goy, at Los Alamos National Laboratory. This is especially true in some areas
of physics and mathematics where academic journal prices have been increasing at an unsustainable rate. In additi
databases of information on mathematical research, sutlatsmatical Reviewand Zentralblatt fir Mathematik

offer millions of records on the Web containing mathematics.

To accommodate the research community, a design for mathematical markup must facilitate the maintenance and c
eration of large document collections, for which automatic searching and indexing are important. Because of the larc
collection of legacy documents, for mathematics especiallyg}) the ability to convert between existing formats and

any new one is also very important to the research community. Finally, the ability to maintain information for archival
purposes is vital to academic research.

Corporate and academic scientists and engineers also use technical documents in their work to collaborate, to rec
results of experiments and computer simulations, and to verify calculations. For such uses, mathematics on the W
must provide a standard way of sharing information that can be easily read, processed and generated using commo
available, easy-to-use tools.

Another general design requirement is the ability to render mathematical material in other media such as speech
braille, which is extremely important for the visually impaired.

Commercial publishers are also involved with mathematics on the Web at all levels from electronic versions of prin
books to interactive textbooks and academic journals. Publishers require a method of putting mathematics on the W
that is capable of high-quality output, robust enough for large-scale commercial use, and preferably compatible wit
their previous, often SGML-based, production systems.

1.25 Design Goals of MathML

In order to meet the diverse needs of the scientific community, MathML has been designed with the following ultimate
goals in mind.

MathML should:

Encode mathematical material suitable for teaching and scientific communication at all levels.
Encode both mathematical notation and mathematical meaning.
° Facilitate conversion to and from other mathematical formats, both presentational and semantic. Output for
mats should include:
— graphical displays
— speech synthesizers
— input for computer algebra systems
— other mathematics typesetting languages, sucipés T
— plain text displays, e.g. VT100 emulators
— print media, including braille

10

http://www.arXiv.org
http://xxx.lanl.gov
http://www.ams.org/mathscinet
http://www.zblmath.fiz-karlsruhe.de

It is recognized that conversion to and from other notational systems or media may entail loss of information
in the process.

° Allow the passing of information intended for specific renderers and applications.
. Support efficient browsing of lengthy expressions.

° Provide for extensibility.

° Be well suited to template and other mathematics editing techniques.

° Be human legible, and simple for software to generate and process.

No matter how successfully MathML may achieve its goals as a markup language, it is clear that MathML will only
be useful if it is implemented well. To this end, the W3C Math Working Group has identified a short list of additional

implementation goals. These goals attempt to describe concisely the minimal functionality MathML rendering anc
processing software should try to provide.

. MathML equations in HTML pages should render properly in popular Web browsers, in accordance with
reader and author viewing preferences, and at the highest quality possible given the capabilities of the pla
form.

° HTML documents containing MathML equations should print properly and at high-quality printer resolu-
tions.

° MathML equations in Web pages should be able to react to user gestures, such those as with a mouse, a
coordinate communication with other applications through the browser.

° Equation editors and converters should be developed to facilitate the creation of Web pages containin
MathML equations.

These goals have begun to be addressed for the near term by using embedded elements such as Java applets, |
ins and ActiveX controls to render MathML. However, the extent to which these goals are ultimately met depends ot
the cooperation and support of browser vendors, and other software developers. The W3C Math working group hz
continued to work with the working groups for the Document Object Model (DOM) and the Extensible Style Language
(XSL) to ensure that the needs of the scientific community will be met in the future, and feels that MathML 2.0 shows
considerable progress in this area over the situation that obtained at the time of the MathML 1.0 Recommendation (Apt
1998).

1.3 The Role of MathML on the Web
131 Layered Design of Mathematical Web Services

The design goals of MathML require a system for encoding mathematical material for the Web which is flexible and
extensible, suitable for interaction with external software, and capable of producing high-quality rendering in severa
media. Any markup language that encodes enough information to do all these tasks well will of necessity involve som
complexity.

At the same time, it is important for many groups, such as students, to have simple ways to include mathematics in We
pages by hand. Similarly, other groups, such as géecbmmunity, would be best served by a system which allowed
the direct entry of markup languages likgXTinto Web pages. In general, specific user groups are better served by
specialized kinds of input and output tailored to their needs. Therefore, the ideal system for communicating mathemati
on the Web should provide both specialized services for input and output, and general services for interchange
information and rendering to multiple media.

In practical terms, the observation that mathematics on the Web should provide for both specialized and general nee
naturally leads to the idea of a layered architecture. One layer consists of powerful, general software tools exchangin
processing and rendering suitably encoded mathematical data. A second layer consists of specialized software toc
aimed at specific user groups, which are capable of easily generating encoded mathematical data which can then
shared with a particular audience.

11

MathML is designed to provide the encoding of mathematical information for the bottom, more general layer in a
two-layer architecture. It is intended to encode complex notational and semantic structure in an explicit, regular, an
easy-to-process way for renderers, searching and indexing software, and other mathematical applications.

As a consequence, raw MathML markumist primarily intended for direct use by authors. While MathML is human-
readable, which helps a lot in debugging it, in all but the simplest cases it is too verbose and error-prone for han
generation. Instead, it is anticipated that authors will use equation editors, conversion programs, and other specializ
software tools to generate MathML. Alternatively, some renderers may convert other kinds of input directly included in
Web pages into MathML on the fly, in response to a cut-and-paste operation, for example.

In some ways, MathML is analogous to other low-level, communication formats such as Adobe’s PostScript language
You can create PostScript files in a variety of ways, depending on your needs; experts write and modify them b
hand, authors create them with word processors, graphic artists with illustration programs, and so on. Once you ha
a PostScript file, however, you can share it with a very large audience, since devices which render PostScript, such
printers and screen previewers, are widely available.

Part of the reason for designing MathML as a markup language for a low-level, general, communication layer is tc
stimulate mathematical Web software development in the layer above. MathML provides a way of coordinating the
development of modular authoring tools and rendering software. By making it easier to develop a functional piece of
larger system, MathML can stimulate a ‘critical mass’ of software development, greatly to the benefit of potential user:
of mathematics on the Web.

One can envision a similar situation for mathematical data. Authors are free to create MathML documents using th
tools best suited to their needs. For example, a student might prefer to use a menu-driven equation editor that ¢
write out MathML to an HTML file. A researcher might use a computer algebra package that automatically encode:
the mathematical content of an expression, so that it can be cut from a Web page and evaluated by a colleague. .
academic journal publisher might use a program that convgitsyiarkup to HTML and MathML. Regardless of the
method used to create a Web page containing MathML, once it exists, all the advantages of a powerful and genel
communication layer become available. A variety of MathML software could all be used with the same document tc
render it in speech or print, to send it to a computer algebra system, or to manage it as part of a large Web docume
collection. To render high-quality printed mathematics the MathML encoding will often be converted back to standarc
typesetting and composition languages, includipg Which is widely appreciated for the job it does in this regard.
Finally, one may expect that eventually MathML will be integrated into other arenas where mathematical formulas
occur, such as spreadsheets, statistical packages and engineering tools.

The W3C Math working group has been working with vendors to ensure that a variety of MathML software will soon be
available, including both rendering and authoring tools. A current list of MathML software is maintained jourotie
Math pageat the World Wide Web Consortium .

1.3.2 Relation to Other Web Technology

The original conception of HTML Math was a simple, straightforward extension to HTML that would be natively
implemented in browsers. However, very early on, the explosive growth of the Web made it clear that a general extensic
mechanism was required, and that mathematics was only one of many kinds of structured data which would have to |
integrated into the Web using such a mechanism.

Given that MathML must integrate into the Web as an extension, it is extremely important that MathML and MathML
software can interact well with the existing Web environment. In particular, MathML has been designed with three kinds
of interaction in mind. First, in order to create mathematical Web content, it is important that existing mathematical
markup languages can be converted to MathML, and that existing authoring tools can be modified to generate MathMl
Second, it must be possible to embed MathML markup seamlessly in HTML markup in such a way that it will be
accessible to future browsers, search engines, and all kinds of Web applications which now manipulate HTML. Finally

12

http://www.w3.org/Math
http://www.w3.org/Math

it must be possible to render MathML embedded in HTML in today’s Web browsers in some fashion, even if it is less
than ideal.

1.3.2.1 Existing Mathematical Markup Languages

Perhaps the most important influence on mathematical markup languages of the last two decadgX iypesdtting
system developed by Donald Knuth{]. TeX is a de facto standard in the mathematical research community,
and it is pervasive in the scientific community at largeX Bets a standard for quality of visual rendering, and a great
deal of effort has gone into ensuring MathML can provide the same visual rendering quality. Moreover, because of th
many legacy documents irgX, and because of the large authoring community verseg¥ a priority in the design

of MathML was the ability to convertgX mathematics input into MathML format. The feasibility of such conversion
has been demonstrated by prototype software.

Extensive work on encoding mathematics has also been done in the SGML community, and SGML-based encodir
schemes are widely used by commercial publishers. ISO 12083 is an important markup language which contains
DTD fragment primarily intended for describing the visual presentation of mathematical notation. Because ISO 1208
mathematical notation and its derivatives share many presentational aspectgXyiind@ because SGML enforces
structure and regularity more thagX; much of the work in ensuring MathML is compatible witpXTalso applies well

to 1ISO 12083.

MathML also pays particular attention to compatibility with other mathematical software, and in particular, with com-
puter algebra systems. Many of the presentation elements of MathML are derived in part from the mechanism c
typesetting boxes. The MathML content elements are heavily indebted to the OpenMath project and the work by Stil
Technologies on a mathematical DTD fragment. The OpenMath project has close ties to both the SGML and cormr
puter algebra communities, and has laid a foundation for an SGML- and XML-based means of communication betwee
mathematical software packages, amongst other things. The feasibility of both generating and interpreting MathML i
computer algebra systems has been demonstrated by prototype software.

1.3.2.2 HTML Extension Mechanisms

As noted above, the success of HTML has led to enormous pressure to incorporate a wide variety of data types a
software applications into the Web. Each new format or application potentially places new demands on HTML and or
browser vendors. For some time, it has been clear that a general extension mechanism is necessary to accommodate
extensions to HTML. At the very beginning the working group began its work thinking of a plain extension to HTML
in the spirit of the first mathematics support suggested for HTML 3.2. But for a good number of reasons, once we gc
into the details this proved to be not so good an idea. Since work first began on MathML, XML has emerged as th
dominant such general extension mechanism.

XML stands for Extensible Markup Language. It is designed as a simplified version of SGML (Standard Generalizec
Markup Language), the meta-language used to define the grammar and syntax of HTML. One of the goals of XML i
to be suitable for use on the Web, and in the context of this discussion it can be viewed as the general mechanism f
extending HTML. As its name implies, extensibility is a key feature of XML; authors are free to declare and use new
elements and attributes. At the same time, XML grammar and syntax rules carefully enforce regular document structu
to facilitate automatic processing and maintenance of large document collections. Mathematically speaking XML i
essentially a notation for decorated rooted planar trees, and thus of great generality as an encoding tool.

Since the setting up of the first W3C Math Working Group, XML has garnered broad industry support including that of
major browser vendors. The migration of HTML to an XML form has been important to the W3C, and has resulted in
the XHTML Recommendation which delivers a new modularized form of HTML. MathML can be viewed as another
module which fits very well with the new XHTML. Indeed in Appendixthere is a new DTD for math which is the
result of collaboration with the W3C HTML Working Group.

13

Furthermore, other applications of XML for all kinds of document publishing and processing promise to become in-
creasingly important. Consequently, both on theoretical and pragmatic grounds, it has made a great deal of sense
specify MathML as an XML application.

1.3.2.3 Browser Extension Mechanisms

By now, as opposed to the situation when tethML 1.0 Recommendatiowas adopted, the details of a general
model for rendering and processing XML extensions to HTML are largely clear. Formatting Properties, developec
by the Cascading Style Sheets and Formatting Properties Working Group for CSS and made available through tl
Document Object Model (DOM), will be applied to MathML elements to obtain stylistic control over the presentation
of MathML. Further development of these Formatting Properties falls within the charters of both the CSS&FP and the
XSL working groups. For an introduction to this topic see the discussion in Chagter detailed commentary on how

to render MathML with current systems consult the Wi@@th WG Home Page

Until style sheet mechanisms are capable of delivering native browser rendering of MathML, however, it is necessary
extend browser capabilities by using embedded elements to render MathML. It is already possible to instruct a brows
to use a particular embedded renderer to process embedded XML markup such as MathML, and to coordinate tl
resulting output with the surrounding Web page, however the results are not yet entirely as one wishes. Seé. Chapter

For specialized processing, such as connecting to a computer algebra system, the capability of calling out to oth
programs is likely to remain highly desirable. However, for such an interaction to be really satisfactory, it is necessar
to define a document object model rich enough to facilitate complicated interactions between browsers and embedd
elements. For this reason, the W3C Math working group has coordinated its efforts closely with the Document Objec
Model (DOM) working group. The results are described in Chapter 8.

For processing by embedded elements, and for inter-communication between scientific software generally, a style she
based layout model is in some ways less than ideal. It can impose an additional implementation burden in a settir
where it may offer few advantages, and it imposes implementation requirements for coordination between browsers al
embedded renderers that will likely be unavailable in the immediate future.

For these reasons, the MathML specification defines an attribute-based layout model, which has proven very effecti
for high-quality rendering of complicated mathematical expressions in several independent implementations. MathMI
presentation attributes utilize W3C Formatting Properties where possible. Also, MathML elementg aasepityle

andid attributes to facilitate their use with CSS style sheets. However, at present, there are few settings where CS
machinery is currently available to MathML renderers.

The use of CSS style sheet mechanisms has been mentioned above. The mechanisms of XSL have also recently bec
available for the transformation of XML documents to effect their rendering. Indeed the alternative forms of this presen
recommendation, including the definitive public HTML version, have been prepared from an underlying XML source
using XSL transformation language tools. As further developments in this direction become available to MathML, it
is anticipated their use will become the dominant method of stylistic control of MathML presentation meant for use in
rendering environments which support those mechanisms.

14

http://www.w3.org/TR/REC-MathML
http://www.w3.org/Math

Chapter 2

MathML Fundamentals

2.1 MathML Overview

This chapter introduces the basic ideas of MathML. The first section describes the overall design of MathML. The
second section presents a number of motivating examples, to give the reader something concrete to refer to wh
reading subsequent chapters of the MathML Specification. The final section describes basic features of the MathV
syntax and grammar, which apply to all MathML markup. In particular, Se&i8mshould be readefore Chapter3,
Chapter4 and Chapteb.

A fundamental challenge in defining a markup language for mathematics on the Web is reconciling the need to enco
both the presentation of a mathematical notation and the content of the mathematical idea or object which it represen

The relationship between a mathematical notation and a mathematical idea is subtle and deep. On a formal level, t
results of mathematical logic raise unsettling questions about the correspondence between systems of symbolic lo
and the phenomena they model. At a more intuitive level, anyone who uses mathematical notation knows the differen
that a good choice of notation can make; the symbolic structure of the notation suggests the logical structure. F
example, the Leibniz notation for derivatives ‘suggests’ the chain rule of calculus through the symbolic cancellation o

. .dfdx _ df
fractlons.&a = G-

Mathematicians and teachers intuitively understand this very well; part of their expertise lies in choosing notation tha
emphasizes key aspects of a problem while hiding or diminishing extraneous aspects. It is commonplace in mathemat
and science to write one thing when strictly technically something else is meant, because long experience shows tt
actually communicates the idea better at some higher level than rigorous detail.

In many other settings, though, mathematical notation is used to encode the full, precise meaning of a mathematic
object. Mathematical notation is capable of prodigious rigor, and when used carefully, it can be virtually free of ambi-
guity. Moreover, it is precisely this lack of ambiguity which makes it possible to describe mathematical objects so tha
they can be used by software applications such as computer algebra systems and voice renderers. In situations wt
such inter-application communication is of paramount importance, the nuances of visual presentation generally play
minimal role.

MathML allows authors to encode both the notation which represents a mathematical object and the mathematic
structure of the object itself. Moreover, authors can mix both kinds of encoding in order to specify both the presentatiol
and content of a mathematical idea. The remainder of this section gives a basic overview of how MathML can be use
in each of these ways.

211 Taxonomy of MathML Elements

All MathML elements fall into one of three categories: presentation elements, content elements and interface elemen
Each of these categories is described in detail in Ch&p&hapterd and Chapter, respectively.

15

Presentation elements describe mathematical notation’s visually oriented two-dimensional structure. Typical exampl
are themrow element, which is usually employed to indicate a horizontal row of pieces of expressions, ardhe
element, which is used to mark up a base expression and a superscript to it. As a general rule, each presentation elen
corresponds to a single kind of “???’ such as digits, letters, or other symbol characters.

Although this particular example involves mathematical notation, and hence presentation markup, the same observati
about decomposition applies equally well to abstract mathematical objects, and hence to content markup. For examp
in the context of content markup our superscript example would typically be denoted by an exponentiation operation thi
would require two operands: a ‘base’ and an ‘exponent’. This is no coincidence, since as a general rule, mathematic
notation’s layout closely follows the logical structure of the underlying mathematical objects.

The recursive nature of mathematical objects and notation is strongly reflected in MathML markup. In use, most pre
sentation or content elements contain some number of other MathML elements corresponding to the constituent piec
out of which the original object is recursively built. The original schema is commonly callepathet schema, and

the constituent pieces are calleidild schemata. More generally, MathML expressions can be regarded as trees, where
each node corresponds to a MathML element, the branches under a ‘parent’ node correspond to its ‘children’, and tl
leaves in the tree correspond to atomic notation or content units such as numbers, characters, etc.

Most leaf nodes in a MathML expression tree are eitla@onically empty elements with no bodies, otoken elements.
Canonically empty elements represent symbols directly in MathML, for example, the content etgmesy> does

this. MathML token elements are the only MathML elements permitted to contain MathML character data. The MathML
character data may consist of Unicode characters and Matidhar /> elements. Thesenchar/> elements, such as
<mchar name="alpha" />and<mchar name="rightarrow" />,typically denote Unicode characters notin ASCII
code and thewame attribute carries the information as to which special symbol is being representedmdier/>
construction supersedes the use of special MathML entities sughlaaa; to encode special symbols specified in
MathML 1 for compatibility with general XML mechanisms. A third kind of leaf node permitted in MathML is the
annotation element, which is used to hold data which is not in MathML format.

The most important presentation token elementsnarein andmo for representing identifiers, numbers and operators
respectively. Typically a renderer will employ slightly different typesetting styles for each of these kinds of character
data: numbers are usually in upright font, identifiers in italics, and operators have extra space around them. In conte
markup, there are only three tokers,, cn and csymbol, for identifiers, numbers and new symbols introduced in
the document itself, respectively. In content markup, separate elements are provided for commonly used functions a
operators. Th&n element is provided for user-defined extensions to the base set.

In terms of markup, most MathML elements are denotestlay tag and arend tag, which enclose the markup for their
contents. In the case of tokens, the content is character data, and in most other cases, the content is the markup for ¢
elements. A third category of elements, called canonically empty elements, don’t require any contents, and denoted |
a single tag of the formname/>. An example of this kind of markup isplus/> in content markup.

Returning to the example o & b)?, we can now see how the principles discussed above play out in practice. One form
of presentation markup for this example is:

<msup>
<mfenced>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
</mfenced>
<mn>2</mn>

16

</msup>

This example demonstrates a number of presentation elements. The first element, one that is used a gteatwdeal is
This element is used to denote a row of horizontally aligned material. The material contained betweerothe
and</mrow> tags is considered to be an argument tonthew element. Thus the whole expression here is contained

in anmrow element. As previously noted, almost all mathematical expressions decompose into subexpressions. The
subexpressions can can, in turn, also be containediirainelement. For example, a+b is also contained imasw.

Themfenced element is used to provide fences (braces, brackets, and parentheses) around formula material. It defau
to using parentheses.

Note the use of thai element for displaying the variables a and b andiifielement for marking the + operator.

Themsup element is for expressions involving superscripts and takes two arguments, in order, the base expression (he
(atb)) and the exponent expression (here, 2).

The content markup for the same example is:

<apply>
<power/>
<apply>
<plus/>
<ci>a</ci>
<ci>b</ci>
</apply>
<cn>2</cn>
</apply>

Here, theapply content element means apply an operation to an expression. In this exampleyétreelement (for
exponentiation), which requires no body, and the sinplats element (for addition) are botlipplied. Observe that
both operators take two arguments, the order being particularly significant in the case of the power operator.

Note the use of thei element to denote the variables a and b, and:thelement for denoting the number 2.

2.1.2 Presentation Markup

MathML presentation markup consists of about 30 elements which accept over 50 attributes. Most of the elemen
correspond tdayout schemata, which contain other presentation elements. Each layout schema corresponds to a two-
dimensional notational device, such as a superscript or subscript, fraction or table. In addition, there are the presentati
token elementaii, mn andmo introduced above, as well as several other less commonly used token elements. The
remaining few presentation elements are empty elements, and are used mostly in connection with alignment.

The layout schemata fall into several classes. One group of elements is concerned with scripts, and contains e
ments such assub, munder, andmmultiscripts. Another group focuses on more general layout and includes,
mstyle, andmfrac. A third group deals with tables. Thection elementis in a category by itself, and allows coding

of various kinds of actions on notation, such as occur in an expression which toggles between two pieces of notation.

An important feature of many layout schemata is that the order of child schemata is significant. For example, the firs
child of anmfrac element is the numerator and the second child is the denominator. Since the order of child schemata |
not enforced at the XML level by the MathML DTD, the information added by ordering is only available to a MathML
processor, as opposed to a generic XML processor. When we want to emphasize that a MathML elemenitfsach as
requires children in a specific order, we will refer to thena@siments, and think of thenfrac element as a notational
‘constructor’.

17

2.1.3 Content Markup

Content markup consists of about 100 elements accepting roughly a dozen attributes. The majority of these elemel
are empty elements corresponding to a wide variety of operators, relations and named functions. Examples of this s
includepartialdiff, leq andtan. Others such asatrix andset are used to encode various mathematical data
types, and a third, important category of content elements sueps are used to apply operations to expressions
and also to make new mathematical objects from others.

The apply element is perhaps the single most important content element. It is used to apply a function or operatior
to a collection of arguments. The positions of the child schemata are again significant, with the first child denoting th
function to be applied, and the remaining children denoting the arguments of the function in order. Notedppl the
construct always uses prefix notation, like the programming language LISP. In particular, even binary operations lik
subtraction are marked up by applying a prefix subtraction operator to two arguments. For exasniplgould be
marked up as

<apply>

<minus/>

<ci>a</ci>

<ci>b</ci>
</apply>
A number of functions and operations require one or more quantifiers to be well-defined. For example, in addition t
an integrand, a definite integral must specify the limits of integration and the bound variable. For this reason, there al
severalqualifier schemata such asrar andlowlimit. They are used with operators suchdasf andint.

The declare construct is especially important for content markup that might be evaluated by a computer algebra
system. Theleclare element provides a basic assignment mechanism, where a variable can be declared to be of
certain type, with a certain value.

2.1.4 Mixing Presentation and Content

Different kinds of markup will be found most appropriate for different kinds of tasks. Documents written before the
world-wide web became important were most often intended only for visual communication of information, so that
legacy data is probably best translated into pure presentation markup, since semantic information about what the autt
meant can only be guessed at heuristically. By contrast, some mathematical applications and pedagogically-orient
authoring tools will likely choose to be entirely content-based. The majority of applications fall somewhere in betweer
these extremes. For these applications, the most appropriate markup is a mixture of both presentation and cont
markup.

The rules for mixing presentation and content markup derive from the general principle that mixed content shoul
only be allowed in places where it makes sense. For content markup embedded in presentation markup this basice
means that any content fragments should be semantically meaningful, and should not require additional argumer
or quantifiers to be fully specified. For presentation markup embedded in content markup, this usually means th
presentation markup must be contained in a content token element, so that it will be treated as an indivisible notation
unit used as a variable or function name.

Another option is to use semantics element. Thaemantics elementis used to bind MathML expressions to various
kinds of annotations. One common use for #wmantics element is to bind a piece of content markup to some
presentation markup as a semantic annotation. In this way, an author can specify a non-standard notation to be u:
when displaying a particular content expression. Another use afdhentics element is to bind some other kind of
semantic specification, such as an OpenMath expression, to a MathML expression. In this weayathd cs element

can be used to extend the scope of MathML content markup.

18

2.2 Some MathML Examples
2.2.1 Presentation Examples
Notation:x? + 4x + 4 = 0.

Markup:

<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>x</mi>
</mrow>
<mo>+</mo>
<mn>4</mn>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>

The mfrac and msqrt elements are used for generating fractions and square roots, respectively.

Note the use of nestattow elements to denote terms, for example, the left-hand side of the equation functioning as an
operand of ‘=", Marking terms greatly facilitates spacing for visual rendering, voice rendering, and line breaking. The
InvisibleTimes MathML character entity is used here to indicate to a renderer that there are special spacing rule:
between the 4 and the x, and that the 4 and the x should not be broken onto separate lines. In fact, this use of an entit
now explicitly deprecateih favor of the use ofmchar name="InvisibleTimes" /> butwas introduced in MathML

1.0. The new version, which was mentioned above, will be used in the examples below, and is explcitly discussed i
Section4.4.1

Notation:x = ~B=vb—4ac,

Markup:

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>-</mo>
<mi>b</mi>
</mrow>
<mo><mchar name="PlusMinus"/></mo>
<msqrt>

19

<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
<mo>-</mo>
<mrow>
<mn>4</mn>
<mo><mchar name="InvisibleTimes"/></mo>
<mi>a</mi>
<mo><mchar name="InvisibleTimes"/></mo>
<mi>c</mi>
</mrow>
</mrow>
</msqrt>
</mrow>
<mrow>
<mn>2</mn>
<mo><mchar name="InvisibleTimes"/></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>

Notice that the ‘plus or minus’ sign is given by a special element used for specific symbol rRaaes name=
"PlusMinus" />. Then the same construction is used wAtlicthar name="InvisibleTimes" />, instead of the

old form in the previous example. MathML provides a very comprehensive list of character names for mathematica
symbols. In addition to the mathematical symbols needed for screen and print rendering, MathML provides symbols t
facilitate audio rendering. For audio rendering, it is important to be able to automatically determine whether

<mrow>
<mi>z</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
</mrow>
</mfenced>
</mrow>

should be read agtimes the quantitx plusy’ or ‘ zof x plusy’. The markup elementsnchar name="InvisibleTimes"
/>and<mchar name="ApplyFunction" /> provide away for authors to directly encode the distinction for audio ren-
derers. For instance, in the first caazhar name="InvisibleTimes" /> should be inserted after the line containing
thez MathML also introduces entities likenchar name="dd" /> which represents a ‘differential d’ which renders

with slightly different spacing in print, and can be rendered as ‘d’ or ‘with respect to’ in speech. Unless content tags, o
some other mechanism, are used to eliminate the ambiguity, authors should always use these entities, in order to m:
their documents more accessible.

Notation:A = [Xy }
zZ W

Markup:

20

<mrow>
<mi>A</mi>
<mo>=</mo>
<mfenced open="[" close="]">
<mtable>
<mtr>
<mtd><mi>x</mi></mtd>
<mtd><mi>y</mi></mtd>
</mtr>
<mtr>
<mtd><mi>z</mi></mtd>
<mtd><mi>w</mi></mtd>
</mtr>
</mtable>
</mfenced>
</mrow>

Most elements have a number of attributes that control the details of their screen and print rendering. For example, the
are several attributes for thefenced element that controls what delimiters should be used at the beginning and the
end of the grouped expression above. The attributes for operator elements giverndsiraye set to default values
determined by a dictionary. For the suggested MathML operator dictionary, see Apfendix

2.2.2 Content Examples
Notation:x? + 4x + 4 = 0.

Markup:

<apply>
<eq/>
<apply>
<plus/>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>
</apply>
<apply>
<times/>
<cn>4</cn>
<ci>x</ci>
</apply>
<cn>4</cn>
</apply>
<cn>0</cn>
</apply>
Note that theapply element is used for relations, operators and functions.

Notation:x = ~b=vb=4ac,

21

Markup:

<apply>
<eq/>
<ci>x</ci>
<apply>
<divide/>
<apply>
<fn><mo><mchar name=’PlusMinus’/></mo></fn>
<apply>
<minus/>
<ci>b</ci>
</apply>
<apply>
<root/>
<apply>
<minus/>
<apply>
<power/>
<ci>b</ci>
<cn>2</cn>
</apply>
<apply>
<times/>
<cn>4</cn>
<ci>a</ci>
<ci>c</ci>
</apply>
</apply>
<cn>2</cn>
</apply>
</apply>
<apply>
<times/>
<cn>2</cn>
<ci>a</ci>
</apply>
</apply>
</apply>
MathML content markup does not directly contain an element for the ‘plus or minus’ operation. Therefore, we use the
fn element to declare that we want the presentation markup for this operator to act as a content operator. This is a sim|
example of how presentation and content markup can be mixed to extend content markup.

Notation:A = < Xy >
zZ W

Markup:

<apply>
<eq/>

22

<ci>A</ci>
<matrix>
<matrixrow>
<ci>x</ci>
<ci>y</ci>
</matrixrow>
<matrixrow>
<ci>z</ci>
<ci>w</ci>
</matrixrow>
</matrix>
</apply>
Note that, by default, the rendering of the content elemmentrix includes enclosing parentheses, so we need not
directly encode them. This is quite different from the presentation elememtle which may or may not refer to a
matrix, and hence requires explicit encoding of parentheses if they are desired.

2.2.3 Mixed Markup Examples
t dx
Notation:/—.
X
0
Markup:

<semantics>
<mrow>
<msubsup>
<mo><mchar name=’int’/></mo>
<mn>0</mn>
<mi>t</mi>
</msubsup>
<mfrac>
<mrow>
<mo><mchar name=’dd’/></mo>
<mi>x</mi>
</mrow>
<mi>x</mi>
</mfrac>
</mrow>
<annotation-xml encoding="MathML-Content">
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>
</apply>

23

</apply>
</annotation-xml>
</semantics>

In this example, we use theemantics element to provide a MathML content expression to serve as a ‘semantic
annotation’ for a presentation expression. Eeeantics element has as its first child the expression being annotated,
and the subsequent children are the annotations. There is no restriction on the kind of annotation that can be attact
using thesemantics element. For example, one might giveg<lencoding, or computer algebra input in an annotation.
The type of annotation is specified by thecoding attribute and thennotation andannotation-xml elements.

Another common use of theemantics element arises when one wants to use a content coding, and provide a sugges-
tion for its presentation. In such a case, applied to the formula above we would have the markup:

<semantics>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>
</apply>
</apply>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<msubsup>
<mo><mchar name=’int’/></mo>
<mn>0</mn>
<mi>t</mi>
</msubsup>
<mfrac>
<mrow>
<mo><mchar name=’dd’/></mo>
<mi>x</mi>
</mrow>
<mi>x</mi>
</mfrac>
</mrow>
</annotation-xml>
</semantics>

This kind of annotation is useful when something other than the default rendering of the content encoding is desired. F
example, by default, some renderers might layout the integrand something IiRedX1/Specifying that the integrand
should by preference render as/xl instead can be accomplished with the use of a MathML Presentation annotation
as shown. Be aware, however, that renderers are not required to take into account information contained in annotatio
and what use is made of them, if any, will depend on the renderer.

24

2.3 MathML Syntax and Grammar
231 MathML Syntax and Grammar

r

MathML is an application of XML, or Extensible Markup Languad&d], and as such its syntax is governed

by the rules of XML syntax, and its grammar is in part specified by a DTD, or Document Type Definition. In other
words, the details of using tags, attributes, entity references and so on are defined in the XML language specificatio
and the details about MathML element and attribute names, which elements can be nested inside each other, and sc

are specified in the MathML DTD. This is in Appendix

The W3C in seeking to increase the flexibility of the use of XML for the Web, and to encourage modularization of
applications built with XML, has found that the basic form of a DTD is not ideally suited. Therefore a W3C Working
Group was created to develop a specification for XML Schen{as. | } which are specification documents

that will eventually supersede DTDs. MathML 2.0 is consciously designed so that math may take advantage of th
latest in the evolving Web technology. Thus there is to be a Schema for MathML. For further information on a MathML
Schema see Appendix and the MathML Home Pagé. (

However, MathML also specifies some syntax and grammar rules in addition to the general rules it inherits as an XMI
application. These rules allow MathML to encode a great deal more information than would ordinarily be possible
with pure XML, without introducing many more elements, and using a substantially more complex DTD or schema. A
grammar for content markup expressions is given in AppeBdi®f course, one drawback to using MathML specific
rules is that they are invisible to generic XML processors and validators.

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional
criteria on attribute values. For example, it is not possible in pure XML to require that an attribute value be a positive
integer. The second kind of rule specifies more detailed restrictions on the child elements (for example on ordering
than are given in the DTD or even a schema. For example, it is not possible in XML to specify that the first child be
interpreted one way, and the second in another.

The following sections discuss features both of XML syntax and grammar in general, and of MathML in particular.
Throughout the remainder of the MathML specification, we will usually take care to distinguish between usage requiret
by XML syntax and the MathML DTD (and schema) and usage required by MathML specific rules. However, we will

frequently allude to ‘MathML errors’ without identifying which part of the specification is being violated.

2.3.2 An XML Syntax Primer

Since MathML is an application of XML, the MathML Specification uses the terminology of XML to describe it.
Briefly, XML data is composed of Unicode characters (which include ordinary ASCII characters), ‘entity references’
(informally called ‘entities’) such a< which usually represent ‘extended characters’, and ‘elements’ suchias
fontstyle="normal"> x </mi>.

An element quite often encloses other XML data called its ‘content’, or ‘body’, between a ‘start tag’ (sometimes called
a ‘begin tag’) and an ‘end tag’, much as in HTML. There are also ‘empty elements’ sugbilas/>, whose start

tag ends withy> to indicate that the element has no content or end tag. The start tag can contain hamed paramete
called ‘attributes’, such agontstyle="normal" in the example above. For further details on XML, consult the XML
specification .

As XML is case-sensitive, MathML element and attribute names are case-sensitive. For reasons of legibility, the
MathML defines them almost all in lowercase.

In formal discussions of XML markup a distinction is maintained between an element, sucmasweglement, and

the tagxmrow> and</mrow> marking it. What is between thenrow> start tag and the/mrow> end tag is the content

or body of thenrow element. An ‘empty element’ such asne is defined to have no body and so has a single tag of the
form <none/>. Usually, the distinction between elements and tags will not be so finely drawn in this specification. For

25

http://www.w3.org/Math

instance, we will sometimes refer to therow> and<none/> elements, really meaning the elements whose tags these
are, in order that references to elements are visually distinguishable from references to attributes. However, the wor
‘element’ and ‘tag’ themselves will be used strictly in accordance with XML terminology.

2.3.3 Children versus Arguments

Many MathML elements require a specific number of child elements or attach additional meanings to children in certail
positions. As noted above, these kinds of requirements are MathML specific, and cannot be given entirely using XMl
syntax and grammar. When the children of a given MathML element are subject to these kinds of additional conditions
we will often refer to them aarguments instead of merely as children in order to emphasize their MathML specific
usage. Note that especially in Chap8eathe term ‘argument’ is usually used in this technical sense, unless otherwise
noted, and therefore refers to a child element.

In the detailed discussions of element syntax given with each element throughout the MathML specification, the numbe
of required arguments and their order is implicitly indicated by giving hames for the arguments at various positions
This information is also given for presentation elements in the table of argument requirements in $éci@md for
content elements in Appendik

A few elements have other requirements on the number or type of arguments. These additional requirements are (
scribed together with the individual elements.

2.3.4 MathML Attribute Values

According to the XML language specification, attributes given to elements must have one of the forms

attribute—-name = "value"

or

attribute—-name ’value’

where whitespace around the '=" is optional.

Attribute names are generally shown imenospaced font within descriptive text in this specification, just as the
monospaced font is used for examples.

An attribute’s value, which in general in MathML can be a string of arbitrary characters, must be surrounded by a pai
of either double quotes'] or single quotes’(). The kind of quotes not used to surround the value may be included
within it.

MathML uses a more complicated syntax for attribute values than the generic XML syntax required by the MathML
DTD. These additional rules are intended for use by MathML applications, and it is a MathML error to violate them,
though they cannot be enforced by XML processing. The MathML syntax of each attribute value is specified in the tabl
of attributes provided with the description of each element, using a notation described below. In MathML applications
these attribute values should be further processed as follows, unless otherwise specified: whitespace is to be igno
except to separate letter and digit sequences into individual words or numbers; and the numerical Unicode referenc
(listed in Chaptel) which can be used within token elements to represent characters can be used to represent tho:
characters in attribute values (whenever those characters would be permitted by that attribute value’s syntax). Note tt
the use of entity references for most synbols is mimprecatedn MathML 2. Thus the use of a numerical Unicode
character reference is better, if the input encoding does not allow you to use it directly.

In particular, the characters ’, & and< can be included in MathML attribute values (when permitted by the attribute
value syntax) using the entity referenéemot ;, ', & and<, respectively.

26

The MathML DTD provided in AppendiX declares most attribute value types@aTA strings. This permits increased
interoperability with existing SGML and XML software and allows extension to the lists of predefined values. Similar
sorts of considerations apply with schemas.

2.3.4.1 Syntax notations used in the MathML specification

To describe the MathML-specific syntax of permissible attribute values, the following conventions and notations are
used for most attributes in the present document.

Notation What it matches

number decimal integer or rational number (a string of digits with one decimal point), optionally starting
with ’-’

unsigned-number decimal integer or real number, no sign

integer decimal integer, optionally starting with *-’

positive-integer decimal integer, unsigned, not 0

string arbitrary string (always the entire attribute value)

character single non-whitespace character, or MathML entity reference; whitespace separation is options

#rrggbb RGB color value; the three pairs of hexadecimal digits in the example #5599dd define propor-
tions of red, green and blue on a scale of x00 through xFF, which gives a strong sky blue.

h-unit unit of horizontal length (allowable units are listed below)

V-unit unit of vertical length (allowable units are listed below)

css-fontfamily explained in CSS subsection, below

css-color-name explained in CSS subsection, below

other italicized words explained in the text for each attribute

form + one or more instances of 'form’

form * zero or more instances of 'form’

fl1f2...fn one instance of each form, in sequence, perhaps separated by whitespace

fl|f2]...]fn any one of the specified forms

[form] an optional instance of 'form’

(form) same as form

word in plain text that word, literally present in the attribute value (unless it is obviously part of an explanatory
phrase)

guoted symbol that symbol, literally present in attribute value (e.g. "+" or '+)

The order of precedence of the syntax notation operators is, from highest to lowest precedence:

. form + or form *
f1f2 ... fn (sequence of forms)
f1|f2]... | fn (alternative forms)

A string can contain arbitrary characters which are specifiable within XAATA attribute values; it must use entity
references for certain characters, as described earlier. It can contain XML-format entity or character references for al
of the characters listed in Chapt&mNo syntax rule in MathML includes &tring as only part of an attribute value, only

as the entire value.

A character is a single non-whitespace Unicode character, or a character entity reference, or an expression using t
mchar and giving a name character. Examples of this last form are given by the hundreds in Ghapter

As a simple example, the permissible values of boolean attributes are specifiedeag false, meaning that the
entire attribute value should be eithatue or false.

Adjacent keywords and numbers must be separated by whitespace in the actual attribute values, except for unit ide
tifiers (denoted by-unit or v-unit syntax symbols) following numbers. Whitespace is not otherwise required, but

27

is permitted between any of the tokens listed above, except (for compatibility with CSS1) immediately before unit
identifiers, between the ’-’ signs and digits of negative numbers, or bet#veenrggbb andrgb

Numerical attribute values for dimensions that should depend upon the current font can be given in font-related unit:
or in named absolute units (described in a separate subsection below). Horizontal dimensions are conventionally giv
in em’s, and vertical dimensions kx’s, by immediately following a number by one of the unit identifiessor ex. For
example, the horizontal spacing around an operator such as ‘+’ is conventionally gases) though other units can be
used. Using font-related units is usually preferable to using absolute units, since it allows renderings to grow or shrin
in proportion to the current font size.

For most numerical attributes, only those in a subset of the expressible values are sensible; values outside this suk
are not errors, unless otherwise specified, but rather are rounded up or down (at the discretion of the renderer) to t
closest value within the allowed subset. The set of allowed values may depend on the renderer, and is not specified
MathML.

If a numerical value within an attribute value syntax description is declared to allow a minus sign (-hugbgr or
integer, it is not a syntax error when one is provided in cases where a negative value is not sensible. Instead, the vall
should be handled by the processing application as described in the preceding paragraph. An explicit plus sign ('+') |
not allowed as part of a numerical value except when it is specifically listed in the syntax (as a quoted '+’ or "+"), and
its presence can change the meaning of the attribute value (as documented with each attribute which permits it).

The symbols-unit, v-unit, css-fontfamily, andcss-color-name are explained in the following subsections.

2.3.4.2 Attributes with units

Some attributes accept horizontal or vertical lengths as numbers followed by a ‘unit identifier’ (often just called a ‘unit’).
The syntax symbols-unit andv-unit refer to a unit for horizontal or vertical length, respectively. The possible units
and the lengths they refer to are shown in the table below; they are the same for horizontal and vertical lengths, but tl
syntax symbols are distinguished in attribute syntaxes as a reminder of the direction each is used in.

The unit identifiers and meanings are taken from CSS1. However, the syntax of numbers followed by unit identifiers it
MathML is not identical to the syntax of length values with units in CSS style sheets, since numbers in CSS cannot en
with decimal points, and are allowed to start with '+’ signs.

The possible horizontal or vertical units in MathML are:

Unit identifier Unit description

em em (font-relative unit traditionally used for horizontal lengths)
ex ex (font-relative unit traditionally used for vertical lengths)

04 pixels, or pixel size of the current display

in inches (1 inch = 2.54 centimeters)

cm centimeters

mm millimeters

pt points (1 point = 1/72 inch)

pc picas (1 pica = 12 points)

% percentage of default value

The typesetting unitsm andex are defined in Appendik, and discussed further under ‘Additional notes’ below.

% is a ‘relative unit’; when an attribute value is givenms(for any numerical value), the value being specified is the
default value for the property being controlled multipliedbgivided by 100. The default value (or the way in which

it is obtained, when it is not constant) is listed in the table of attributes for each element, and its meaning is described
the subsequent documentation about that attribute. ffheéded element has its own syntax fgrand does not allow

it as a unit identifier.)

28

For consistency with CSS, length units in MathML are rarely optional. When they are, the unit symbol is enclosec
in square brackets in the attribute syntax, following the number to which it appliesygger [h-unit 1. The
meaning of specifying no unit is given in the documentation for each attribute; in general it is that the number given is
multiplier for the default value of the attribute. (In such cases, specifying the numhavithout a unit is equivalent to
specifying the numbeinn times 100 followed by,. For examplesmo maxsize="2"> (</mo> is equivalent tamo
maxsize="200%"> (</mo>.)

As a special exception (also consistent with CSS), a numerical value equal to 0 need not be followed by a unit identifie
even if the syntax specified here requires one. In such cases, the unit identifier (or lack of one) would not matter, sinc
0 times any unit is 0.

For most attributes, the typical unit which would be used to describe them in typesetting is chosen as the one used
that attribute’s default value in this specification; when a specific default value is not given, the typical unit is usually
mentioned in the syntax table or in the documentation for that attribute. The most common uait®ase. However,

any unit can be used, unless otherwise specified for a specific attribute.

Additional notes about units

Note that some attributes, eframespacing on a<mtable>, can contain more than one numerical value, each fol-
lowed by its own unit.

It is conventional to use the font-relative uait mainly for vertical lengths, anem mainly for horizontal lengths, but

this is not required. These units are relative to the font and fontsize which would be used for rendering the element i
whose attribute value they are specified, which means they should be intergfiteteattributes such asontfamily
andfontsize are processed, if those occur on the same element, since changing the current font or fontsize can chan
the length of one of these units.

The definition of the length of each unit (but not the MathML syntax for length values) is as specified in CSS1, excep
that if a font provides specific values fem andex which differ from the values defined by CSS1 (the font size and
‘X’-height respectively), those values should be used.

2.3.4.3 CSS-compatible attributes

Several MathML attributes, listed below, correspond closely to text rendering properties defined by Cascading Styl
Sheets, Level 1 (CSS1).

The names and acceptable values of these attributes have been aligned with the CSS1 recommendation where poss
In general, the MathML syntax for each attribute is intended to be a subset of the CSS syntax for the correspondir
property. Differences of detail, where they exist, are explained with the documentation about each attribute, in th
sections of this specification listed in the table above.

The syntax of certain attributes is partially specified, in the tables of attribute syntax in this specification, using one o
the symbolsss-fontfamily or css-color-name, as shown in the following table. These symbols refer to syntaxes
from other W3C Recommendations, and are explained in the sections of this specification referred to in the table.

MathML attribute CSS property syntax symbol MathML elements refer to

fontsize font-size - presentation tokenstyle Section3.2.1
fontweight font-weight - presentation tokemsstyle Section3.2.1
fontstyle font-style - presentation tokemsstyle Section3.2.1
fontfamily font-family css-fontfamily presentation tokemsstyle Section3.2.1
color color css-color-name presentation tokens;yle Section3.3.4
background background css-color-name mstyle Section3.3.4

See also Sectioh.3.5below for a discussion of thelass, style andid attributes for use with style sheets.

29

Order of processing attributes versus style sheets

CSS or analogous style sheets can specify changes to rendering properties of selected MathML elements; the selec
of the elements can happen in various ways). Either the properties listed above, or other MathML rendering attribute
or properties supported by a style sheet mechanism, can be affected, in principle, for any element. Since renderi
properties can also be changed by attributes on an element or automatically it is necessary to specify the order in whi
changes from various sources occur. An example of automatic adjustment is what happensdate, as explained

in the discussion oacriptlevel in Section3.3.4 In the case of ‘absolute’ changes, i.e. setting a new property value
independent of the old value (as opposed to ‘relative’ changes, such as increments or multiplications by a factor), tt
absolute change performed last will be the only absolute change which is effective, so the sources of changes whi
should have the highest priority must be processed last.

In the case of CSS1, the order of processing of changes from various sources which affect one MathML element
rendering properties should be as follows:

(first changes; lowest priority)

° automatic changes to properties or attributes based on the type of the parent element, and this elemen
position in the parent, as for the changegéatsize in relation toscriptlevel mentioned above; such
changes will usually be implemented by the parent element itself before it passes a set of rendering propertie
to this element

from a style sheet from the reader: styles whichmredeclared ‘important’

explicit attribute settings on this MathML element

from a style sheet from the author: styles which msedeclared ‘important’

from a style sheet from the reader: styles whiehdeclared ‘important’

from a style sheet from the author: styles whigh declared ‘important’

(last changes; highest priority)

Note that the order of the changes derived from CSS style sheets is specified by CSS itself. The following rationale
related only to the issue of where in this pre-existing order the changes caused by explicit MathML attribute setting
should be inserted.

Rationale: MathML rendering attributes are analogous to HTML rendering attributes sathgs which the CSS1
section on cascading order specifies should be processed with the same priority. Furthermore, this choice of priori
permits readers, by declaring certain CSS styles as ‘important’, to decide which of their style preferences should overric
explicit attribute settings in MathML. Since MathML expressions, whether composed of ‘presentation’ or ‘content’
elements, are primarily intended to convey meaning, with their ‘graphic design’ (if any) intended mainly to aid in that
purpose but not to be essential in it, it is likely that readers will often want their own style preferences to have priority;
the main exception will be when a rendering attribute is intended to alter the meaning conveyed by an expression, whi
is generally discouraged in the presentation attributes of MathML.

2.3.4.4 Deftault values of attributes

Default values for MathML attributes are in general given along with the detailed descriptions of specific elements ir
the text. Default values shown in plain text in the tables of attributes for an element are literal (unless they are obviousl
explanatory phrases), but when italicized are descriptions of how default values can be computed.

Default values described asherited are taken from the rendering environment, as described wdegil e, or in some

cases (described individually) from the values of other attributes of surrounding elements, or from certain parts of thos
values. The value used will always be one which could have been specified explicitly, had it been known; it will never
depend on the content or attributes of the same element, only on its environment. (What it means when used me
however, depend on those attributes or the content.)

30

Default values described astomatic should be computed by a MathML renderer in a way which will produce a high-
quality rendering; how to do this is not usually specified by the MathML specification. The value computed will always
be one which could have been specified explicitly, had it been known, but it will usually depend on the element conter
and possibly on the rendering environment.

Other italicized descriptions of default values which appear in the tables of attributes are explained for each attribut
individually.

The single or double quotes which are required around attribute values in an XML start tag are not shown in the table
of attribute value syntax for each element, but are shown around example attribute values in the text.

Note that, in general, there is no value which can be given explicitly for a MathML attribute which will simulate the
effect of not specifying the attribute at all for attributes which mierited or automatic. Giving the words ‘inherited’

or ‘automatic’ explicitly will not work, and is not generally allowed. Furthermore, even for presentation attributes for
which a specific default value is documented heremifigyle element (Sectio.3.4) can be used to change this for

the elements it contains. Therefore, the MathML DTD declares most presentation attribute default values 2ED,

which prevents XML preprocessors from adding them with any specific default value. This point of view is carried
through to the MathML schema

2.3.4.5 Attribute values in the MathML DTD

Inan XML DTD, allowed attribute values can be declared as general strings, or they can be constrained in various way
either by enumerating the possible values, or by declaring them to be certain special data types. The choice of an XM
attribute type affects the extent to which validity checks can be performed using a DTD.

The MathML DTD specifies formal XML attribute types for all MathML attributges, including enumerations of legiti-
mate values in some cases. In general, however, the MathML DTD is relatively permissive, frequently declaring attribut
values as strings; this is done to provide for interoperability with SGML parsers while allowing multiple attributes on
one MathML element to accept the same values (sudras andfalse), and also to allow extension to the lists of
predefined values.

At the same time, even though an attribute value may be declared as a string in the DTD, only certain values ai
legitimate in MathML, as described above and in the rest of this specification. For example, many attributes expec
numerical values. In the sections which follow, the allowed attribute values are described for each element. To determit
when these constraints are actually enforced in the MathML DTD, consult Appéndieowever, lack of enforcement

of a requirement in the DTD doemt imply that the requirement is not part of the MathML language itself, or that it
will not be enforced by a particular MathML renderer. (See Secti@for a description of how MathML renderers
should respond to MathML errors.)

Furthermore, the MathML DTD is provided for convenience; although it is intended to be fully compatible with the
text of the specification, the text should be taken as definitive if there is a contradiction. (Any contradictions which may
exist between various chapters of the text should be resolved by favoring Chdpstr then ChapteB, Chapter4,

then Sectior?.3, and then other parts of the text.) For the MathML Schema the situation will be the same: the publishec
Recommendation text takes precedence. Though this is what is intended to happen, there is a practical difficulty. If tf
system processing the MathML uses a validating parser, whether it be based on a DTD or on a Schema, the process \
probably simply stop when it hits something held to be incorrect syntax, whether or not further MathML processing in
full harmony with the specification would have processed the piece correctly.

2.35 Attributes Shared by all MathML Elements

In order to facilitate compatibility with Cascading Style Sheets, Level 1 (CSS1), all MathML elements ateept
style, andid attributes in addition to the attributes described specifically for each element. MathML renderers not

31

supporting CSS may ignore these attributes. MathML specifies these attribute values as general strings, even if sty
sheet mechanisms have more restrictive syntaxes for them. That is, any value for them is valid in MathML.

Renderers supporting CSS (or analogous style sheet mechanisms) may use these attributes to help determine wi
MathML elements should be subject to which style sheet-induced changes to various rendering properties. The prop:
ties that can be affected, and how these changes affect them, are discussed in2Sétigabove.

Every MathML element, because of a legacy from MathML 1.0, also acceptsethescatedattribute other (Sec-

tion 7.2.3 which was conceived for passing non-standard attributes without violating the MathML DTD. MathML
renderers are only required to process this attribute if they respond to any attributes which are not standard in MathM
However, the use afther is strongly deprecated when there are already other ways within MathML of passing specific
information.

See also Sectiod.2.1for a list of MathML attributes which can be used on most presentation token elements.

2.3.6 Collapsing Whitespace in Input

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whit
pace occurring within the content of token elements is ‘trimmed’ from the ends, i.e. all whitespace at the beginning an:
end of the content is removed. Whitespace internal to content of MathML elements is ‘collapsed’ canonically, i.e. eac
sequence of 1 or more whitespace characters is replaced with one space character (sometimes called a blank charac

In MathML, as in XML, ‘whitespace’ means simple spaces, tabs, newlines, or carriage returns, i.e. characters witl
hexadecimal Unicode cod&$0020, U+0009, U+000a, or U+0004, respectively.

For examplegmo> (</mo> is equivalent tamo> (</mo>, and

<mtext>
Theorem
1:

</mtext>

is equivalent toxmtext>Theorem 1:</mtext>.

Authors wishing to encode whitespace characters at the start or end of the content of a token, or in sequences other tl
a single space, without having them ignored, mustisesp; or other ‘whitespace’ non-marking entities as described
in Section6.1.4 For example, compare

<mtext>
Theorem
1:
</mtext>

with

<mtext>
 Theorem
 1:
</mtext>

When the first example is rendered, there is no whitespace before ‘Theorem’, one space between ‘Theorem’ and ‘1
and no whitespace after ‘1:". In the second example, a single space is rendered before ‘Theorem’, a new line is plac
after “‘Theorem’, two spaces are rendered before ‘1:’, and there is no whitespace after the ‘1:".

Note that thexml : space attribute does not apply in this situation since XML processors pass whitespace in tokens to a
MathML processor; it is the MathML processing rules which specify that whitespace is trimmed and collapsed.

32

For whitespace occurring outside the content of the token elemé&nts, mo, ms, mtext, ci, cn andannotation, an
mspace element should be used, as opposed tataxt element containing only ‘whitespace’ entities.

33

Chapter 3

Presentation Markup

3.1 Introduction

This chapter specifies the ‘presentation’ elements of MathML, which can be used to describe the layout structure c
mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the ‘constructors’ of traditional mathematical notation - that is, to the basic kinc
of symbols and expression-building structures out of which any particular piece of traditional mathematical notation i
built. Because of the importance of traditional visual notation, the descriptions of the notational constructs the elemen
represent are usually given here in visual terms. However, the elements are medium-independent in the sense t
they have been designed to contain enough information for good spoken renderings as well. Some attributes of the
elements may make sense only for visual media, but most attributes can be treated in an analogous way in audio as v
(for example, by a correspondence between time duration and horizontal extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order to allow for
medium-dependent rendering and for individual preferences of style. This specification describes suggested visual re
dering rules in some detail, but a particular MathML renderer is free to use its own rules as long as its renderings al
intelligible.

The presentation elements are meant to express the syntactic structure of mathematical notation in much the same v
as titles, sections, and paragraphs capture the higher level syntactic structure of a textual document. Because of this,
example, a single row of identifiers and operators, suckx asd / b, will often be represented not just by oaeow
element (which renders as a horizontal row of its arguments), but by multiple nestedlements corresponding to

the nested sub-expressions of which one mathematical expression is composed - in this case,

<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>
<mi> a </mi>
<mo> / </mo>
<mi> b </mi>
</mrow>
</mrow>

Similarly, superscripts are attached not just to the preceding character, but to the full expression constituting their bas
This structure allows for better-quality rendering of mathematics, especially when details of the rendering environmer

34

such as display widths are not known to the document author; it also greatly eases automatic interpretation of tf
mathematical structures being represented.

Certain MathML characters are used to name operators or identifiers that in traditional notation render the same as ott
symbols, such agDifferentialD;, ⅇ, or &Imaginaryl;, or operators that usually render invisibly,
such askInvisibleTimes;, ⁡, Or ⁣. These are distinct notational symbols or
objects, as evidenced by their distinct spoken renderings and in some cases by their effects on linebreaking and spac
in visual rendering, and as such should be represented by the appropriate specific entity references. For example,
expression represented visually d¢x)’ would usually be spoken in English a$ bf X' rather than just f X’; this is
expressible in MathML by the use of tlpplyFunction; operator after thef’, which (in this case) can be aurally
rendered as ‘of’.

The complete list of MathML entities is described in Chafiter

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read 3ettbanMathML syntax and
grammar, which contains important information on MathML notations and conventions. In particular, in this chapter it
is assumed that the reader has an understanding of basic XML terminology described in&Sa8diamd the attribute

value notations and conventions described in Se@idni

The remainder of this section introduces MathML-specific terminology and conventions used in this chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two clasBgen elements represent individual symbols, names, numbers,
labels, etcetera. In general, tokens can have only charactetghad elements as content. The only exceptions are the
vertical alignment elementalignmark, and entity references. (Note, however, that entity referencedesmecated

in favor of themchar element in MathML 2.0 .JLayout schemata build expressions out of parts, and can have only
elements as content (except for whitespace, which they ignore). There are also a few empty elements used only
conjunction with certain layout schemata.

All individual ‘symbols’ in a mathematical expression should be represented by MathML token elements. The primary
MathML token element types are identifiers (e.g. variables or function names), humbers, and operators (includin
fences, such as parentheses, and separators, such as commas). There are also token elements for representing t
whitespace that has more aesthetic than mathematical significance, and for representing ‘string literals’ for compatibilit
with computer algebra systems. Note that although a token element represents a single meaningful ‘symbol’ (nam
number, label, mathematical symbol, etcetera), such symbols may be comprised of more than one character. For exanr
sin and24 are represented by the single tokens >sin</mi> and<mn>24</mn> respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller expressions, and ultimate
out of single symbols, with the parts grouped and positioned using one of a small set of notational structures, which ce
be thought of as ‘expression constructors’. In MathML, expressions are constructed in the same way, with the layol
schemata playing the role of the expression constructors. The layout schemata specify the way in which sub-expressic
are builtinto larger expressions. The terminology derives from the fact that each layout schema corresponds to a differe
way of ‘laying out’ its sub-expressions to form a larger expression in traditional mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships between elements, is
follows: The presentation elements are the MathML elements defined in this chapter. These elements are listed in

35

Section3.1.5 Thecontent elements are the MathML elements defined in Chapteilhe content elements are listed in
Section4 4.

A MathML expression is a single instance of any of the presentation elements with the exception of the empty elements
none Ormprescripts, Oris a single instance of any of the content elements which are allowed as content of presentatior
elements (listed in Sectioh.2.4). The intuition behind the definition of an expression is that it is an element with an
unambiguous rendering without some larger, enclosing construeib£&xpression of an expressiok is any MathML
expression that is part of the contentgfwhetherdirectly or indirectly, i.e. whether it is a ‘child’ o or not.

Since layout schemata attach special meaning to the number and/or positions of their children, a child of a layout scher
is also called aargument of that element. As a consequence of the above definitions, the content of a layout scheme
consists exactly of a sequence of zero or more non-overlapping elements that are its arguments.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In the detailed d
scriptions of element syntax given below, the number of required arguments is implicitly indicated by giving hames
for the arguments at various positions. A few elements have additional requirements on the number or type of argt
ments, which are described with the individual element. For example, some elements accept sequences of zero or m
arguments - that is, they are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered spiaceount as arguments of the elements in which they appear. See
Section3.2.6for a discussion of the proper use of such space-like elements.

3.1.3.1 Inferred mrows

The elements listed in the following table as requiring 1* argumesg{t, mstyle, merror, menclose, mpadded,
mphantom, andmtd) actually accept any number of arguments. However, if the number of arguments is 0, or is more
than 1, they treat their contents as a singlerred mrow formed from all their arguments.

For example,

<mtd>
</mtd>

is treated as if it were

<mtd>
<mrow>
</mrow>

</mtd>

and

<msqrt>
<mo> - </mo>
<mn> 1 </mn>
</msqrt>

is treated as if it were

<msqrt>
<mrow>

36

<mo> - </mo>

<mn> 1 </mn>
</mrow>
</msqrt>

This feature allows MathML data not to contain (and its authors to leave out) mramyelements that would otherwise
be necessary.

In the descriptions in this chapter of the above-listed elements’ rendering behaviors, their content can be assumed
consist of exactly one expression, which may be#sw element formed from their arguments in this manner. However,
their argument counts are shown in the following table as 1*, since they are most naturally understood as acting on
single expression.

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element’s argument count requirements, and the roles of individual argume
when these are distinguished. An argument count of 1* indicates an infersadas described above.

Element Required argument count Argument roles (when these differ by position)
mrow 0 or more

mfrac 2 numerator denominator

msqrt 1*

mroot 2 base index

mstyle 1*

merror 1*

mpadded 1*

mphantom 1*

mfenced 0 or more

menclose 1*

msub 2 base subscript

msup 2 base superscript

msubsup 3 base subscript superscript

munder 2 base underscript

mover 2 base overscript

munderover 3 base underscript overscript
mmultiscripts 1 or more base (subscript superscript)* [<mprescripts/> (presubscript presuperscript)*
mtable 0 or more rows 0 or moretr ormlabeledtr elements
mlabeledtr 1 or more a label and O or moeed elements
mtr 0 or more 0 or morextd elements

mtd 1*

maction 1 or more depend oactiontype attribute
3.14 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special behaviors are di
cussed in the detailed element descriptions below. However, for convenience, some of the most important classes
special behavior are listed here.

Certain elements are considered space-like; these are defined in SegtiThis definition affects some of the sug-
gested rendering rules fab elements (Sectiof.2.4).

37

Certain elements, e.gsup, are able to embellish operators that are their first argument. These elements are listed ir
Section3.2.4 which precisely defines an ‘embellished operator’ and explains how this affects the suggested renderin

rules for stretchy operators.

Certain elements treat their arguments as the arguments of an ‘infewedf they are not given exactly one argument,

as explained in Sectioh 1.3

In MathML 1.x, themtable element could infentr elements around its arguments, andile element could infer
mtd elements. In MathML 2.(ptr andmtd elements must be explicit. However, for backward compatibility renderers
may wish to continue supporting inferredr andmtd elements.

3.1.5 Summary of Presentation Elements

3.1.5.1 Token Elements

mi identifier

mn number

mo operator, fence, or separator

mtext text

mspace space

ms string literal

mchar referring to non-ASCII characters
mglyph adding new character glyphs to MathML

3.1.5.2 General Layout Schemata

mrow group any number of sub-expressions horizontally

mfrac form a fraction from two sub-expressions

msqrt form a square root sign (radical without an index)

mroot form a radical with specified index

mstyle style change

merror enclose a syntax error message from a preprocessor

mpadded adjust space around content

mphantom make content invisible but preserve its size

mfenced surround content with a pair of fences

menclose enclose content with a stretching symbol such as a long division sign.

3.1.5.3 Script and Limit Schemata

msub attach a subscript to a base

msup attach a superscript to a base

msubsup attach a subscript-superscript pair to a base
munder attach an underscript to a base

mover attach an overscript to a base

munderover attach an underscript-overscript pair to a base
mmultiscripts attach prescripts and tensor indices to a base

38

3.1.54 Tables and Matrices

mtable table or matrix

mlabeledtr row in a table or matrix with a label or equation number
mtr row in a table or matrix

mtd one entry in a table or matrix

maligngroup andmalignmark alignment markers

3.1.5.5 Enlivening Expressions

maction bind actions to a sub-expression

3.2 Token Elements

Token elements can contain any sequence of zero or more MathML characters. In particular, tokens with empty conte
are allowed, and should typically render invisibly, with no width except for the normal extra spacing for that kind of
token element.

The complete set of MathML characters described in Cha&ptargeneral, MathML characters can be either represented
directly as Unicode character data, or indirectly via&hehar; element (see Sectiah2.9. MathML characters can
also be represented via entity references, although this practiepiscateih MathML 2.0. New MathML characters,

or non-standard glyphs for existing MathML characters, may be represented by mean&mgflifigh ; element.

MathML characters are only allowed to occur as part of the content of a token element. The only exception is whitespac
between elements, which is ignored.

Apart from the&mchar; and&mglyph; elements, thealignmark element is the only other element allowed in the
content of tokens. See Sectidrb.5for details.

3.2.1 Attributes common to token elements

Several attributes related to text formatting are provided on all presentation token elementa.gxseptmchar and
mglyph, and on no other elements exceptyle. These are:

Name values default

fontsize number v-unit inherited

fontweight normal | bold inherited

fontstyle normal | italic normalkfcept on <mi>)
fontfamily string | css-fontfamily inherited

color #rgb | #rrggbb | html-color-name inherited

(See Sectiorz.3.4for terminology and notation used in attribute value descriptions.)

Token elements (other thatspace) should be rendered as their content (i.e. in the visual case, as a closely-spaced
horizontal row of standard glyphs for the characters in their content) using the attributes listed above, with surroundin
spacing modified by rules or attributes specific to each type of token element. Some of the individual attributes ar
further discussed below.

Recall that all MathML elements, including tokens, accelpiss, style, andid attributes for compatibility with style
sheet mechanisms, as described in Se@iBrh In general, the font properties controlled by the attributes listed above
are better handled using CSS or XSL style sheets depending on the context.

MathML expressions are often embedded in a textual data format such as HTML, and their renderings are likewis
embedded in a rendering of the surrounding text. The renderer of the surrounding text (e.g. a browser) should provic

39

the MathML renderer with information about the rendering environment, including attributes of the surrounding text
such as its font size, so that the MathML can be rendered in a compatible style. For this reason, most attribute valu
affecting text rendering are inherited from the rendering environment, as shown in the ‘default’ column in the table
above. (Note that it is also important for the rendering environment to provide the renderer with additional information,
such as the baseline position of surrounding text, which is not specified by any MathML attributes.)

The exception to the general pattern of inheritance isftecstyle attribute, whose default value i®rmal (non-
slanted) for most tokens, but fat depends on the content in a way described in the section ahp&ection3.2.2

Note thatfontstyle is notinherited in MathML, even though the corresponding CSS1 property ‘font-style’ is inherited
in CSS.

Thefontsize attribute specifies the desired font sizeunit represents a unit of vertical length (see Secfidh4.3.
The most common unit for specifying font sizes in typesettingtigpoints).

If the requested size of the current font is not available, the renderer should approximate it in the manner likely to lea
to the most intelligible, highest quality rendering.

Many MathML elements automatically chanfyentsize in some of their children; see the discussiogefiptlevel
in the section omstyle, Section3.3.4

The value of thefontfamily attribute should be the name of a font that may be available to a MathML renderer,

or information that permits the renderer to select a font in some manner; acceptable values and their meanings ¢
dependent on the specific renderer and rendering environment in use, and are not specified by MathML (but see the n
aboutcss-fontfamily below). (Note that the renderer’s mechanism for finding fonts by name may be case-sensitive.)

If the value offontfamily is not recognized by a particular MathML renderer, this should never be interpreted as a
MathML error; rather, the renderer should either use a font that it considers to be a suitable substitute for the request
font, or ignore the attribute and act as if no value had been given.

Note that any use of thontfamily attribute is unlikely to be portable across all MathML renderers. In particular, it
should never be used to try to achieve the effect of a reference to an non-ASCII MathML character (for example, b
using a reference to a character in some symbol font that maps ordinary characters to glyphs for non-ASCII character:
As a corollary to this principle, MathML renderers should attempt to always produce intelligible renderings for the
MathML characters listed in Chaptéreven when these characters are not available in the font family indicated. Such
a rendering is always possible - as a last resort, a character can be rendered to appear as an XML-style entity refere
using one of the entity names given for the same character in Cttapter

The symbolcss-fontfamily refers to a legal value for theont-family property in CSS1, which is a comma-
separated list of alternative font family names or generic font types in order of preference, as documented in more det:
in CSS1. MathML renderers are encouraged to make use of the CSS syntax for specifying fonts when this is practic
in their rendering environment, even if they do not otherwise support CSS. (See also the subsection CSS-compatit
attributes within Sectio2.3.4.3

The syntax and meaning of tkelor attribute are as described for the same attributenetyle> (Section3.3.4).

3.2.2 Identifier (mi)
3.2.2.1 Description

An mi element represents a symbolic name or arbitrary text that should be rendered as an identifier. Identifiers ce
include variables, function names, and symbolic constants.

Not all ‘mathematical identifiers’ are representeddiyelements - for example, subscripted or primed variables should
be represented usimgub or msup respectively. Conversely, arbitrary text playing the role of a ‘term’ (such as an ellipsis
in a summed series) can be represented using @aement, as shown in an example in SecBadh5.4

40

It should be stressed that is a presentation element, and as such, it only indicates that its content should be renderec
as an identifier. In the majority of cases, the contents afiawill actually represent a mathematical identifier such as

a variable or function name. However, as the preceding paragraph indicates, the correspondence between notations
should render like identifiers and notations that are actually intended to represent mathematical identifiers is not perfe
For an element whose semantics is guaranteed to be that of an identifier, see the descrptiarChfapters.

3.2.2.2 Attributes
mi elements accept the attributes listed in Seciéhl, but in one case with a different default value:

Name values default
fontstyle normal | italic (depends on content; described below)

A typical graphical renderer would render an element as the characters in its content, with no extra spacing around
the characters (except spacing associated with neighboring elements). The fiefasiiyle would (typically) be
normal (non-slanted) unless the content is a single character, in which case it woiddhiec. Note that this rule for
fontstyle is specific tani elements; the default value for tientstyle attribute of other MathML token elements
ISnormal.

3.2.2.3 Examples

<mi> x </mi>

<mi> D </mi>

<mi> sin </mi>

<mi></mi>

Anmi element with no content is allowedni></mi> might, for example, be used by an ‘expression editor’ to represent

a location in a MathML expression which requires a ‘term’ (according to conventional syntax for mathematics) but doe:
not yet contain one.

Identifiers include function names such as ‘sin’. Expressions such ag Siould be written using theApplyFunc-
tion; operator (which also has the short nadng ;) as shown below; see also the discussion of invisible operators in
Section3.2.4

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

Miscellaneous text that should be treated as a ‘term’ can also be representedibglament, as in:

<mrow>
<mn> 1 </mn>
<mo> + </mo>
<mi> ... </mi>
<mo> + </mo>
<mi> n </mi>
</mrow>
When ammi is used in such exceptional situations, explicitly settingfibetstyle attribute may give better results
than the default behavior of some renderers.

The names of symbolic constants should be represented elsments:

41

<mi> π </mi>

<mi> &Imaginaryl; </mi>

<mi> ⅇ </mi>

Use of special entity references for such constants can simplify the interpretation of MathML presentation element:
See Chaptes for a complete list of character entity references in MathML.

3.2.3 Number @n)
3.2.3.1 Description

An mn element represents a ‘numeric literal’ or other data that should be rendered as a numeric literal. Generall
speaking, a numeric literal is a sequence of digits, perhaps including a decimal point, representing an unsigned intec
or real number.

The concept of a mathematical ‘number’ depends on the context, and is not well-defined in the abstract. As a cons
guence, not all mathematical numbers should be representedmusiagamples of mathematical numbers that should

be represented differently are shown below, and include negative numbers, complex numbers, ratios of numbers sho
as fractions, and names of numeric constants.

Conversely, sincen is a presentation element, there are a few situations where it may desirable to include arbitrary
text in the content of amn that should merely render as a numeric literal, even though that content may not be unam-
biguously interpretable as a number according to any particular standard encoding of numbers as character sequen
As a general rule, however, tha element should be reserved for situations where its content is actually intended to
represent a numeric quantity in some fashion. For an element whose semantics are guaranteed to be that of a partic
kind of mathematical number, see the descriptionmoin Chapterd.

3.2.3.2 Attributes
mn elements accept the attributes listed in SecBidhl

A typical graphical renderer would render am element as the characters of its content, with no extra spacing around
them (except spacing from neighboring elements suatiofisUnlike mi, mn elements are (typically) rendered in an
unslanted font by default, regardless of their content.

3.2.3.3 Examples

<mn> 2 </mn>

<mn> 0.123 </mn>

<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> OxFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>

3.2.3.4 Numbers that should not be written using mn alone

Many mathematical numbers should be represented using presentation elements other alwne; this includes
complex numbers, ratios of numbers shown as fractions, and names of numeric constants. Examples of MathML repr
sentations of such numbers include:

42

<mrow>
<mn> 2 </mn>
<mo> + </mo>
<mrow>
<mn> 3 </mn>
<mo> ⁢ </mo>
<mi> &ImaginaryIl; </mi>
</mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> π </mi>
<mi> ⅇ </mi>

3.24 Operator, Fence, Separator or Accentro)
3.24.1 Description

An mo element represents an operator or anything that should be rendered as an operator. In general, the notatio
conventions for mathematical operators are quite complicated, and therefore MathML provides a relatively sophisticate
mechanism for specifying the rendering behavior olmarelement. As a consequence, in MathML the list of things
that should ‘render as an operator’ includes a number of notations that are not mathematical operators in the ordina
sense. Besides ordinary operators with infix, prefix, or postfix forms, these include fence characters such as brac
parentheses, and ‘absolute value’ bars, separators such as comma and semicolon, and mathematical accents suct
bar or tilde over a symbol.

The term ‘operator’ as used in the present chapter means any symbol or notation that should render as an operal
and that is therefore representable bynarelement. That is, the term ‘operator’ includes any ordinary operator, fence,
separator, or accent unless otherwise specified or clear from the context.

All such symbols are represented in MathML with elements since they are subject to essentially the same rendering
attributes and rules; subtle distinctions in the rendering of these classes of symbols, when they exist, are supported us
the boolean attributegence, separator andaccent, which can be used to distinguish these cases.

A key feature of theno element is that its default attribute values are set on a case-by-case basis from an ‘operato
dictionary’ as explained below. In particular, default valuesffaice, separator andaccent can usually be found in
the operator dictionary and therefore need not be specified ormeagbment.

Note that some mathematical operators are represented nat elements alone, but byo elements ‘embellished’

with (for example) surrounding superscripts; this is further described below. Conversely, as presentation elements,
elements can contain arbitrary text, even when that text has no standard interpretation as an operator; for an example,
the discussion ‘Mixing text and mathematics’ in Sectif.5 See also Chapter for definitions of MathML content
elements that are guaranteed to have the semantics of specific mathematical operators.

3.2.4.2 Attributes

mo elements accept the attributes listed in Seclidn], and the additional attributes listed here. Most attributes get their
default values from the Sectidh2.4.7 as described later in this section. When a dictionary entry is not found for a
givenmo element, the default value shown here in parentheses is used.

43

Name values default

form prefix | infix | postfix set by position of operator in anow (rule given
below); used withno content to index operator dic-
tionary

fence true | false set by dictionary (false)

separator true | false set by dictionary (false)

Ispace number h-unit | namedspace set by dictionary (thickmathspace)

rspace number h-unit | namedspace set by dictionary (thickmathspace)

stretchy true | false set by dictionary (false)

symmetric true | false set by dictionary (true)

maxsize number [v-unit | h-unit] | namedspace | infinity set by dictionary (infinity)

minsize number [v-unit | h-unit] | namedspace set by dictionary (1)

largeop true | false set by dictionary (false)

movablelimits true | false set by dictionary (false)

accent true | false set by dictionary (false)

h-unit represents a unit of horizontal length, ancinit represents a unit of vertical length (see Sectich4.).
namedspace IS One ofveryverythinmathspace, verythinmathspace, thinmathspace, mediummathspace, thick-
mathspace, verythickmathspace, Or veryverythickmathspace. These values are settable by itayle element
which is discussed in Sectidh3.4 The default values oferyverythinmathspace... veryverythickmathspace
are 1/18em...7/18em, respectively.

If no unit is given withmaxsize or minsize, the number is a multiplier of the normal size of the operator in the
direction (or directions) in which it stretches. These attributes are further explained below.

Typical graphical renderers show alh elements as the characters of their content, with additional spacing around the
element determined from the attributes listed above. Detailed rules for determining operator spacing in visual renderin
are described in a subsection below. As always, MathML does not require a specific rendering, and these rules ¢
provided as suggestions for the convenience of implementors.

Renderers without access to complete fonts for the MathML character set may choose not to redelearent as
precisely the characters in its content in some cases. For exataple,≤ </mo> might be rendered as= to a
terminal. However, as a general rule, renderers should attempt to render the conteabcflament as literally as
possible. That isgmo> &le </mo> and<mo> &1t;= </mo> should render differently. (The first one should render as
a single character representing a less-than-or-equal-to sign, and the second one as the two-charactes=sg¢quence

3.2.4.3 Examples with ordinary operators

<mo> + </mo>

<mo> < </mo>

<mo> ≤ </mo>

<mo> <= </mo>

<mo> ++ </mo>

<mo> ∑ </mo>

<mo> .NOT. </mo>

<mo> and </mo>

<mo> ⁢ </mo>

3.2.4.4 Examples with fences and separators

Note that theno elements in these examples don’t need expfigiice or separator attributes, since these can be found
using the operator dictionary as described below. Some of these examples could also be encodednsingdhe

44

element described in Secti@n3.8
(at+b)

<mrow>
<mo> (</mo>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>
</mrow>
<mo>) </mo>
</mrow>

[0,1)

<mrow>
<mo> [</mo>
<mrow>
<mn> 0 </mn>
<mo> , </mo>
<mn> 1 </mn>
</mrow>
<mo>) </mo>
</mrow>

fxy)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>
</mrow>
<mo>) </mo>
</mrow>
</mrow>

3.2.4.5 Invisible operators

Certain operators that are ‘invisible’ in traditional mathematical notation should be represented using specific entit
references withimo elements, rather than simply by nothing. The entity references used for these ‘invisible operators’
are:

Full name Short name Examples of use
⁢ ⁢ Xy
⁡ ⁡ f(x) sinx
⁣ ⁣ m_ 12

45

The MathML representations of the examples in the above table are:

<mrow>
<mi> x </mi>
<mo> ⁢ </mo>
<mi> y </mi>
</mrow>
<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>
</mrow>
</mrow>
<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>
</mrow>
<msub>
<mi> m </mi>
<mrow>
<mn> 1 </mn>
<mo> ⁣ </mo>
<mn> 2 </mn>
</mrow>
</msub>

The reasons for using specifie elements for invisible operators include:

° such operators should often have specific effects on visual rendering (particularly spacing and linebreakin
rules) that are not the same as either the lack of any operator, or spacing represeiipddayor mtext
elements;

° these operators should often have specific audio renderings different than that of the lack of any operator;

. automatic semantic interpretation of MathML presentation elements is made easier by the explicit specifica

tion of such operators.

For example, an audio renderer might rendéx) (represented as in the above examples) by speaking ‘f of x’, but
use the word ‘times’ in its rendering ofy. Although its rendering must still be different depending on the structure

of neighboring elements (sometimes leaving out ‘of’ or ‘times’ entirely), its task is made much easier by the use of ¢
differentmo element for each invisible operator.

3.2.4.6 Names for other special operators

MathML also includesDifferentialD; for use in amo element representing the differential operator symbol usually
denoted by ‘d’. The reasons for explicitly using this special entity are similar to those for using the special entities for
invisible operators described in the preceding section.

46

3.24.7 Detailed rendering rules for mo elements

Typical visual rendering behaviors fas elements are more complex than for the other MathML token elements, so the
rules for rendering them are described in this separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements. Furthermore, r
attempt is made to specify the rendering completely; rather, enough information is given to make the intended effect «
the various rendering attributes as clear as possible.

The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-established, predictal
traditional notational usage. Typically, this usage amounts to certain default attribute valuesements with specific
contents and a specifitorm attribute. Since these defaults vary from symbol to symbol, MathML anticipates that
renderers will have an ‘operator dictionary’ of default attributesrforelements (see Append®) indexed by each

mo element’s content antlorm attribute. If anmo element is not listed in the dictionary, the default values shown in
parentheses in the table of attributes forshould be used, since these values are typically acceptable for a generic
operator.

Some operators are ‘overloaded’, in the sense that they can occur in more than one form (prefix, infix, or postfix)
with possibly different rendering properties for each form. For example, ‘+’ can be either a prefix or an infix operator.
Typically, a visual renderer would add space around both sides of an infix operator, while only on the left of a prefix
operator. Theform attribute allows specification of which form to use, in case more than one form is possible according
to the operator dictionary and the default value described below is not suitable.

Deftault value of the form attribute

The form attribute does not usually have to be specified explicitly, since there are effective heuristic rules for inferring
the value of theform attribute from the context. If it is not specified, and there is more than one possible form in the
dictionary for ammo element with given content, the renderer should choose which form to use as follows (but see the
exception for embellished operators, described later):

. If the operator is the first argument in anow of length (i.e. number of arguments) greater than one (ignoring
all space-like arguments (see Sectii.g in the determination of both the length and the first argument),
the prefix form is used,;

° if it is the last argument in anrow of length greater than one (ignoring all space-like arguments), the postfix
form is used;
° in all other cases, including when the operator is not part afrawr, the infix form is used.

Note that these rules make reference torthew in which themo element lies. In some situations, thisow might be
an inferrednrow implicitly present around the arguments of an element suefz@st or mtd.

Opening (left) fences should haverm="prefix", and closing (right) fences should haierm="postfix"; separators are
usually ‘infix’, but not always, depending on their surroundings. As with ordinary operators, these values do not usuall
need to be specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should use one of the forms the
is available there, in the order of preference: infix, postfix, prefix; if no forms are available for thengivelament
content, the renderer should use the defaults given in parentheses in the table of attrilmstes for

Exception for embellished operators

There is one exception to the above rules for choosingcaelement’s defaulform attribute. Anmo element that is
‘embellished’ by one or more nested subscripts, superscripts, surrounding text or whitespace, or style changes beha

47

differently. It is the embellished operator as a whole (this is defined precisely, below) whose positionriowais
examined by the above rules and whose surrounding spacing is affected by its form, notaleenent at its core;
however, the attributes influencing this surrounding spacing are taken frofio telement at the core (or from that
element’s dictionary entry).

For example, the ‘# in a+4b should be considered an infix operator as a whole, due to its position in the middle of
anmrow, but its rendering attributes should be taken fromidheslement representing the ‘+’, or when those are not
specified explicitly, from the operator dictionary entry fato form="infix"> + </mo>. The precise definition of an
‘embellished operator’ is:

° anmo element;

° or one of the elementssub, msup, msubsup, munder, mover, munderover, mmultiscripts, mfrac, or
semantics (Sectiond.2.6, whose first argument exists and is an embellished operator;

° or one of the elemenisstyle, mphantom, or mpadded, such that amrow containing the same arguments
would be an embellished operator;

° or anmaction element whose selected sub-expression exists and is an embellished operator;

° or anmrow wWhose arguments consist (in any order) of one embellished operator and zero or more space-lik
elements.

Note that this definition permits nested embellishment only when there are no intervening enclosing elements not in tf
above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in all ordinary cas
it will not be necessary for the author to specif§an attribute.

Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions, but should not be importal
for most users of MathML.

Anmfrac is included as an ‘embellisher’ because of the common notation for a differential operator:

<mfrac>
<mo> ⅆ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>
</mrow>
</mfrac>

Since the definition of embellished operator affects the use of the attributes related to stretching, it is important that
includes embellished fences as well as ordinary operators; thus it appliesiie algment.

Note that amrow containing a single argument is an embellished operator if and only if its argument is an embellished
operator. This is because anow with a single argument must be equivalent in all respects to that argument alone (as
discussed in Sectiagh 3.1). This means that at element that is the sole argument ofiaow will determine its default

form attribute based on thatow’s position in a surrounding, perhaps inferradow (if there is one), rather than based

on its own position in therow in which it is the sole argument.

Note that the above definition defines eveky element to be ‘embellished’ - that is, ‘embellished operator’ can be
considered (and implemented in renderers) as a special class of MathML expressions, afonbialspecific case.

48

Spacing around an operator

The amount of space added around an operator (or embellished operator), when it occursdn, @an be directly
specified by thé space andrspace attributes. These values are in ems if no units are given. By convention, operators
that tend to bind tightly to their arguments have smaller values for spacing than operators that tend to bind less tightl
This convention should be followed in the operator dictionary included with a MathML renderggX|rihese values

can only be one of three values; typically they are 3/18em, 4/18em, and 5/18em. MathML does not impose this limit.

Some renderers may choose to use no space around most operators appearing within subscripts or superscripts,
done in EX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here, in analogous w
for their rendering medium.

3.2.4.8 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches the size of ot
elementssstretchy, symmetric, maxsize, andminsize. If an operator has the attributeretchy=true, then it

(that is, each character in its content) obeys the stretching rules listed below, given the constraints imposed by the for
and font rendering system. In practice, typical renderers will only be able to stretch a small set of characters, and qui
possibly will only be able to generate a discrete set of character sizes.

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a specific character
or operator; rather, whestretchy=true it should be stretched in each direction for which stretching is possible. It is
up to the renderer to know in which directions it is able to stretch each character. (Most characters can be stretched in
most one direction by typical renderers, but some renderers may be able to stretch certain characters, such as diagc
arrows, in both directions independently.)

Theminsize andmaxsize attributes limit the amount of stretching (in either direction). These two attributes are given
as multipliers of the operator’'s normal size in the direction or directions of stretching, or as absolute sizes using unit:
For example, if a character hasxsize="3", then it can grow to be no more than three times its normal (unstretched)
size.

Thesymmetric attribute governs whether the height and depth above and belowithef the character are forced to

be equal (by forcing both height and depth to become the maximum of the two). An example of a situation where on
might setsymmetric=false arises with parentheses around a matrix not aligned on the axis, which frequently occurs
when multiplying non-square matrices. In this case, one wants the parentheses to stretch to cover the matrix, where
stretching the parentheses symmetrically would cause them to protrude beyond one edge of the mafrixeftra c
attribute only applies to characters that stretch vertically (otherwise it is ignored).

If a stretchymo element is embellished (as defined earlier in this section)pshelement at its core is stretched to a
size based on the context of the embellished operator as a whole, i.e. to the same size as if the embellishments w
not present. For example, the parentheses in the following example (which would typically be set to be stretchy by th
operator dictionary) will be stretched to the same size as each other, and the same size they would have if they were |
underlined and overlined, and furthermore will cover the same vertical interval:

<mrow>
<munder>
<mo> (</mo>
<mo> _ </mo>
</munder>
<mfrac>

49

<mi> a </mi>

<mi> b </mi>
</mfrac>
<mover>

<mo>) </mo>

<mo> ‾ </mo>
</mover>

</mrow>

Note that this means that the stretching rules given below must refer to the context of the embellished operator as
whole, not just to thewo element itself.

Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its default value
stretchy=true.

<mrow>
<mo maxsize="1"> (</mo>
<mfrac>
<mi> a </mi> <mi> b </mi>
</mfrac>
<mo maxsize="1">) </mo>
</mrow>

The above should render &%) as opposed to the default renderi(r@.

Note that each parenthesis is sized independently; if only one of themdiad ze="1", they would render with
different sizes.

Vertical Stretching Rules

° If a stretchy operator is a direct sub-expression afiasw element, or is the sole direct sub-expression of an
mtd element in some row of a table, then it should stretch to cover the height and depth (above and below
the axis) of the non-stretchy direct sub-expressions iniiew element or table row, unless stretching is
constrained byinsize ormaxsize attributes.

° In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its cor

° If symmetric=true, then the maximum of the height and depth is used to determine the size, before appli-
cation of theminsize ormaxsize attributes.

. The preceding rules also apply in situations whererth@s element is inferred.

Most common opening and closing fences are defined in the operator dictionary to stretch by default; and they stret
vertically. Also, operators such @asum;, ∫, /, and vertical arrows stretch vertically by default.

In the case of a stretchy operator in a table cell (i.e. withim&d element), the above rules assume each cell of the
table row containing the stretchy operator covers exactly one row. (Equivalently, the valuerofithyen attribute is
assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) When this is not the
case, the operator should only be stretched vertically to cover those table cells that are entirely within the set of tab
rows that the operator’s cell covers. Table cells that extend into rows not covered by the stretchy operator’s table ce
should be ignored. See Sectidrb.4.2for details about the theowspan attribute.

50

Horizontal Stretching Rules

° If a stretchy operator, or an embellished stretchy operator, is a direct sub-expressiamafian, mover,
or munderover element, or if it is the sole direct sub-expression ofmad element in some column of a
table (seantable), then it, or themo element at its core, should stretch to cover the width of the other direct
sub-expressions in the given element (or in the same table column), given the constraints mentioned above

. If a stretchy operator is a direct sub-expression ofiander, mover, or munderover element, or if it is
the sole direct sub-expression of mtd element in some column of a table, then it should stretch to cover
the width of the other direct sub-expressions in the given element (or in the same table column), given the
constraints mentioned above.

. In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its cor

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. withim&h element), the above rules assume each cell of the
table column containing the stretchy operator covers exactly one column. (Equivalently, the value cfiifiespan
attribute is assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) Wher
this is not the case, the operator should only be stretched horizontally to cover those table cells that are entirely with
the set of table columns that the operator’s cell covers. Table cells that extend into columns not covered by the stretcl
operator’s table cell should be ignored. See Se@ién.2for details about the theowspan attribute.

The rules for horizontal stretching included elements to allow arrows to stretch for use in commutative diagrams
laid out usingntable. The rules for the horizontal stretchiness include scripts to make examples such as the following
work:

<mrow>
<mi> x </mi>
<munder>
<mo> → </mo>
<mtext> maps to </mtext>
</munder>
<mi> y </mi>
</mrow>

This displays ag m y.

Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above, or if there are nc
other expressions whose size it should stretch to match), then it has the standard (unstretched) size determined by
font and current fontsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element or object (as describe
above) are also stretchy, all elements that can stretch should grow to the maximum of the normal unstretched sizes
all elements in the containing object, if they can grow that large. If the valnémfize ormaxsize prevents this then

that (min or max) size is used.

For example, in amrow containing nothing but vertically stretchy operators, each of the operators should stretch to the
maximum of all of their normal unstretched sizes, provided no other attributes are set that override this behavior. C
course, limitations in fonts or font rendering may result in the final, stretched sizes being only approximately the same

3.2.4.9 Other attributes of mo

Thelargeop attribute specifies whether the operator should be drawn larger than nordiabpifaystyle=true in
the current rendering environment. This roughly correspondgXts \displaystyle style setting. MathML uses

51

two attributesdisplaystyle andscriptlevel, to control orthogonal presentation features th@f €ncodes into
one ‘style’ attribute with value§displaystyle, \textstyle, \scriptstyle, and\scriptscriptstyle. These
attributes are discussed further in Sectio®4describing thestyle element. Note that these attributes can be specified
directly on ammstyle element’s begin tag, but not on most other elements. Examples of large operators éricltugle
and∏.

Themovablelimits attribute specifies whether underscripts and overscripts attached taotleiement should be
drawn as subscripts and superscripts whegplaystyle=false. movablelimits=false means that underscripts

and overscripts should never be drawn as subscripts and superscripts. In gerglaystyle is true for displayed
mathematics andalse for inline mathematics. Alsadisplaystyle is false by default within tables, scripts and
fractions, and a few other exceptional situations detailed in Se8tibA Thus, operators withovablelimits=true

will display with limits (i.e. underscripts and overscripts) in displayed mathematics, and with subscripts and superscript
in inline mathematics, tables, scripts and so on. Examples of operators that typicallydvav@ elimits=true are

sum, prod, andlim.

The accent attribute determines whether this operator should be treated by default as an accent (diacritical mark
when used as an underscript or overscript; s&sder, mover, andmunderover (Section3.4.4 Section3.4.5and
Section3.4.6.

The separator attribute may affect automatic linebreaking in renderers that position ordinary infix operators at the
beginnings of broken lines rather than at the ends (that is, which avoid linebreaking just after such operators), sinc
linebreaking should be avoided just before separators, but is acceptable just after them.

The fence attribute has no effect in the suggested visual rendering rules given here; it is not needed for properly
rendering traditional notation using these rules. It is provided so that specific MathML renderers, especially non-visue
renderers, have the option of using this information.

3.25 Text ptext)
3.2.5.1 Description

An mtext element is used to represent arbitrary text that should be rendered as itself. In generadxthelement
is intended to denote commentary text that is not central to the mathematical meaning or notational structure of tf
expression it is contained in.

Note that some text with a clearly defined notational role might be more appropriately marked upiusing; this
is discussed further below.

An mtext element can be used to contain ‘renderable whitespace’, i.e. invisible characters that are intended to alter tt
positioning of surrounding elements. In non-graphical media, such characters are intended to have an analogous effe
such as introducing positive or negative time delays or affecting rhythm in an audio renderer. This is not related to an
whitespace in the source MathML consisting of blanks, newlines, tabs, or carriage returns; whitespace present direc
in the source is trimmed and collapsed, as described in Seztbf Whitespace that is intended to be rendered as
part of an element’s content must be represented by entity references (unless it consists only of single blanks betwe
non-whitespace characters).

Renderable whitespace can have a positive or negative widthg@ainSpace; and​, Or zero
width, as inkZeroWidthSpace ;. The complete list of such characters is given in ChafitBlote that there is no formal
distinction in MathML between renderable whitespace characters and any other class of charactess, or in any
other element.

Renderable whitespace can also include characters that affect alignment or linebreaking. Some of these characters ¢

52

Entity name Purpose (rough description)

NewLine start a new line and do not indent

IndentingNewLine start a new line and do indent

NoBreak do not allow a linebreak here

GoodBreak if a linebreak is needed on the line, here is a good spot
BadBreak if a linebreak is needed on the line, try to avoid breaking here

For the complete list of MathML entities, consult Chagier

3.2.5.2 Attributes
mtext elements accept the attributes listed in Secfidhl

See also the warnings about the legal grouping of ‘space-like elements’ in S8&i@nand about the use of such
elements for ‘tweaking’ or conveying meaning in Secti8.a

3.2.5.3 Examples

<mtext> Theorem 1: </mtext>

<mtext>   </mtext>

<mtext>      </mtext>
<mtext> /* a comment */ </mtext>

3.2.54 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented osinigelements. For
example, the expression ‘there exidts 0 such thaff (x) <1’ is equivalenttald > 0> f(x) < 1 and could be represented
as:

<mrow>
<mo> there exists </mo>
<mrow>
<mrow>
<mi> δ </mi>
<mo> > </mo>
<mn> 0 </mn>
</mrow>
<mo> such that </mo>
<mrow>
<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>
</mrow>
</mrow>
<mo> < </mo>

53

<mn> 1 </mn>
</mrow>
</mrow>
</mrow>

An example involving ami element isx+x2+---+x". In this example, ellipsis should be represented usingiaiement,

since it takes the place of a term in the sum (see Se&tida, mi).

On the other hand, expository text within MathML is best represented wiitt exit element. An example of this is:
Theorem 1: ifx > 1, thenx? > x.

However, when MathML is embedded in HTML, or another document markup language, the example is probably bes
rendered with only the two inequalities represented as MathML at all, letting the text be part of the surrounding HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text encloseatbielament is
unlikely to be found in a renderer’s operator dictionary, so it will be rendered with the format and spacing appropriate
for an ‘unrecognized operator’, which may or may not be better than the format and spacing for ‘text’ obtained by usinc
anmtext element. An ellipsis entity in ani element is apt to be spaced more appropriately for taking the place of a
term within a series than if it appeared in®text element.

3.2.6 Spacenfspace)
3.2.6.1 Description

An mspace empty element represents a blank space of any desired size, as set by its attributes. It can also be used
make linebreaking suggestions to a visual renderer. Note that the default values for attributes have been chosen so 1
they typically will have no effect on rendering. Thus, tispace element is generally used with one or more attribute
values explicitly specified.

3.2.6.2 Attributes

Name values default
width number h-unit | namedspace Oem
height number v-unit Oex
depth number v-unit Oex
linebreak auto | NewLine | IndentingNewLine | NoBreak | GoodBreak | BadBreak auto

h-unit andv-unit represent units of horizontal or vertical length, respectively (see Settiof.).

The linebreak attribute is used to give a linebreaking hint to a visual renderer. The default vatue ds which
indicates that a renderer should use whatever default linebreaking algorithm it would normally use. The meaning of th
other possible values for theinebreak attribute are described above in the discussion on renderable whitespace in the
mtext element. See Sectidh2.5for details.

In the case when both dimensional attributes and a linebreaking attribute are set, the linebreaking attribute is ignored

Note the warning about the legal grouping of ‘space-like elements’ given below, and the warning about the use o
such elements for ‘tweaking’ or conveying meaning in SecBdhG See also the other elements that can render as
whitespace, namelytext, mphantom, andmaligngroup.

3.2.6.3 Definition of space-like elements

A number of MathML presentation elements are ‘space-like’ in the sense that they typically render as whitespace, ar
do not affect the mathematical meaning of the expressions in which they appear. As a consequence, these elements o

54

function in somewhat exceptional ways in other MathML expressions. For example, space-like elements are handle
specially in the suggested rendering rulesrfoigiven in SectiorB.2.4 The following MathML elements are defined to

be ‘space-like’:

anmtext, mspace, maligngroup, Ormalignmark element;

anmstyle, mphantom, ormpadded element, all of whose direct sub-expressions are space-like;

anmaction element whose selected sub-expression exists and is space-like;

anmrow all of whose direct sub-expressions are space-like.

Note that amphantom iS not automatically defined to be space-like, unless its content is space-like. This is because
operator spacing is affected by whether adjacent elements are space-like. Sinpadireom element is primarily
intended as an aid in aligning expressions, operators adjacenifthantom should behave as if they were adjacent to

the contents of themphantom, rather than to an equivalently sized area of whitespace.

3.2.6.4 Legal grouping of space-like elements

Authors who insert space-like elementsmphantom elements into an existing MathML expression should note that
such elementare counted as arguments, in elements that require a specific number of arguments, or that interpre
different argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neighboring argume
of that element by introducing airow for that purpose. For example, to allow for vertical alignment on the right edge
of the base of a superscript, the expression

<msup> <mi> x </mi> <malignmark edge="right"/> <mn> 2 </mn> </msup>
is illegal, becausasup must have exactly 2 arguments; the correct expression would be:

<msup>
<mrow>
<mi> x </mi>
<malignmark edge="right"/>
</mrow>
<mn> 2 </mn>
</msup>

See also the warning about ‘tweaking’ in Sectif.6

3.2.7 String Literal (ms)
3.2.7.1 Description

Thems element is used to represent ‘string literals’ in expressions meant to be interpreted by computer algebra syster
or other systems containing ‘programming languages’. By default, string literals are displayed surrounded by doubl
guotes. As explained in Secti@?2.5 ordinary text embedded in a mathematical expression should be marked up with
mtext, Or in Some caseaso Or mi, but never withns.

Note that the string literals encoded lay are ‘Unicode strings’ rather than ‘ASCII strings’. In practice, non-ASCI|
characters will typically be represented byhar elements. For exampl&ns><mchar name="amp"/></ms> repre-
sents a string literal containing a single charagegnd<ms><mchar name="amp"/>amp;</ms> represents a string
literal containing 5 characters, the first one of whick.is

Like all token elementsys does trim and collapse whitespace in its content according to the rules of Sec8dihso
whitespace intended to remain in the content should be encoded as described in that section.

55

3.2.7.2 Attributes

ms elements accept the attributes listed in Secfidhl, and additionally:

Name values default
Iquote string "
rquote string "

In visual renderers, the content of aa element is typically rendered with no extra spacing added around the string,
and a quote character at the beginning and the end of the string. By default, the left and right quote characters are b
the standard double quote charadtguot ;. However, these characters can be changed withdhete andrquote
attributes respectively.

The content ofhs elements should be rendered with visible ‘escaping’ of certain characters in the content, including
at least ‘double quote’ itself, and preferably whitespace other than individual space characters. The intent is for th
viewer to see that the expression is a string literal, and to see exactly which characters form its content. For exampl

nn

<ms>double quote is "</ms> might be rendered as "double quote is\"".

3.2.8 Referring to non-ASCII characters fachar)
3.2.8.1 Description

Themchar element is used to reference characters. This provides an alternative to using entity references. Charact
entities aredeprecatedor MathML 2.0 because they are not a part of the current proposal for schemas, and document:
containing entities are not well-formed XML in the absence of the MathML DTD.

Numeric character references (e.g#1234;) are not deprecated because they do not have the problems listed above.

mchar is valid content in any MathML token element listed in Sectioh.5(mi, etc.) or Sectiont.2.2(ci, etc.) unless
otherwise restricted by an attribute (ebgse="2" to <cn>).

3.2.8.2 Attributes of mchar

Name values default
name string required

Thename attribute must be one of the names specified in Chaptiéis an error to use a name that is not in that list.

3.2.8.3 Examples

In MathML 1.x expressions involving entity references such as <mi> α1 </mi> were common. In MathML 2.0,
the equivalent construction usimghar is preferred:

<mi> <mchar name=’alpha’/>1 </mi>

3.2.9 Adding new character glyphs to MathML (mglyph)
3.2.9.1 Description

Unicode defines a large number of characters used in mathematics, and in most all cases, glyphs representing th
characters are widely available in a variety of fonts. Although these characters should meet almost all users neec
MathML recognizes that Mathematics is not static and that new characters are added when convenient. Characters t
become well accepted will likely be eventually incorporated by the Unicode Consortium or other standards bodies, bt

56

that is often a lengthy process. In the mean time, a mechanism is necessary for accessing glyphs from non-stand
fonts representing these characters.

Themglyph element is the means by which users can directly access glyphs for characters that are not defined
Unicode. Similarly, thenglyph element can also be used to select glyph variants for existing Unicode characters, as
might be desirable when a glyph variant has begun to differentiate itself as a new character by taking on a distinguishe
mathematical meaning.

Themglyph element names a specific character glyph, and is valid inside any MathML leaf content listed in Sec-
tion 3.1.5(mi, etc.) or Sectiod.2.2(c1i, etc.) unless otherwise restricted by an attribute {gge=2 to<cn>). In order

for a visually-oriented renderer to render the character, the renderer must be told what font to use and what index with
that font to use.

3.2.9.2 Attributes

Name values default
alt string required
fontfamily string | css-fontfamily required
index integer required

The alt attribute provides an alternate name for the glyph. If the specified font can't be found, the renderer may ust
this name in a warning message or some unknown glyph notation. The name might also be used by an audio renderel
symbol processing system and should be chosen to be descriptivéorititamily andindex uniquely identify the
mglyph; two mglyphs with the same values fdontfamily andindex should be considered identical by applications
that must determine whether two characters/glyphs are identicalaTthattribute should not be part of the identity

test.

Thefontfamily andindex attributes name a font and position within that font. All font properties apart froimm -
family are inherited. Variants of the font (e.g., bold) that may be inherited may be ignored if the variant of the font is
not present.

Authors should be aware that rendering requires the fonts referenaggl pyh, which the MathML renderer may not
have access to or may be not be supported by the system on which the renderer runs. For these reasons, authors
encouraged to usgglyph only when absolutely necessary, and not for stylistic purposes.

3.2.9.3 Example

The following example illustrates how a researcher might useghgph construct with an experimental font to work
with braid group notation.

<mrow>
<mi><mglyph fontfamily="my-braid-font" index="2" alt="23braid"/></mi>
<mo>+</mo>
<mi><mglyph fontfamily="my-braid-font" index="5" alt="132braid"/></mi>
<mo>=</mo>
<mi><mglyph fontfamily="my-braid-font" index="3" alt="13braid"/></mi>
</mrow>

This might render as:
IR+ IR

57

3.3 General Layout Schemata

Besides tokens there are several families of MathML presentation elements. One family of elements deals with variol
‘scripting’ notations, such as subscript and superscript. Another family is concerned with matrices and tables. Th
remainder of the elements, discussed in this section, describe other basic notations such as fractions and radicals
deal with general functions such as setting style properties and error handling.

3.3.1 Horizontally Group Sub-Expressionsirow)
3.3.1.1 Description

An mrow element is used to group together any number of sub-expressions, usually consisting of one @6 more
elements acting as ‘operators’ on one or more other expressions that are their ‘operands’.

Several elements automatically treat their arguments as if they were containedriowa@lement. See the discussion
of inferredmrows in Sectior3.1.3 See alsamfenced (Section3.3.8, which can effectively form amrow containing its
arguments separated by commas.

3.3.1.2 Attributes
None (except the attributes allowed for all MathML elements, listed in Se2ti®g).

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the order in which
the arguments occur, or audibly as a sequence of renderings of the arguments. The description irB3ettibn
suggested rendering rules fos elements assumes that all horizontal spacing between operators and their operands i
added by the rendering ab elements (or, more generally, embellished operators), not by the renderingnafotie

they are contained in.

MathML is designed to allow renderers to automaticaihebreak expressions (that is, to break excessively long ex-
pressions into several lines), without requiring authors to specify explicitly how this should be done. This is becaus
linebreaking positions can’t be chosen well without knowing the width of the display device and the current font size,
which for many uses of MathML will not be known except by the renderer at the time of each rendering.

Determining good positions for linebreaks is complex, and rules for this are not described here; whether and how
is done is up to each MathML renderer. Typically, linebreaking will involve selection of ‘good’ points for insertion of
linebreaks between successive argumenigof elements.

Although MathML does not require linebreaking or specify a particular linebreaking algorithm, it has several features
designed to allow such algorithms to produce good results. These include the use of special entities for certain operatc
including invisible operators (see SectiBr.4), or for providing hints related to linebreaking when necessary (see
Section3.2.5, and the ability to use nestedtows to describe sub-expression structure (see below).

mrow of one argument

MathML renderers are required to treat mrow element containing exactly one argument as equivalent in all ways
to the single argument occurring alone, provided there are no attributes andhelement’s begin tag. If there are
attributes on therrow element’s begin tag, no requirement of equivalence is imposed. This equivalence condition is
intended to simplify the implementation of MathML-generating software such as template-based authoring tools. |
directly affects the definitions of embellished operator and space-like element and the rules for determining the defat
value of theform attribute of armo element; see sections Secti®r2.4and Sectior8.2.6 See also the discussion of
equivalence of MathML expressions in Chapter

58

3.3.1.3 Proper grouping of sub-expressions using mrow

Sub-Expressions should be grouped by the document author in the same way as they are grouped in the mathemat
interpretation of the expression; that is, according to the underlying ‘syntax tree’ of the expression. Specifically, opere
tors and their mathematical arguments should occur in a single; more than one operator should occur directly in
onemrow only when they can be considered (in a syntactic sense) to act together on the interleaved arguments, e.g.
a single parenthesized term and its parentheses, for chains of relational operators, or for sequences of terms separ
by + and-. A precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for more intelligen
linebreaking and indentation; and it simplifies possible semantic interpretation of presentation elements by comput
algebra systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often make interpretation other
than pure visual rendering difficult orimpossible, any grouping of expressionsmisiads allowed in MathML syntax;
that is, renderers should not assume the rules for proper grouping will be followed.

Precise rule for proper grouping

A precise rule for when and how to nest sub-expressions usiog is especially desirable when generating MathML
automatically by conversion from other formats for displayed mathematics, sugXaw/fich don't always specify
how sub-expressions nest. When a precise rule for grouping is desired, the following rule should be used:

Two adjacent operators (o elements, possibly embellished), possibly separated by operands (i.e. anything other thar
operators), should occur in the saamsow only when the left operator has an infix or prefix form (perhaps inferred),
the right operator has an infix or postfix form, and the operators are listed in the same group of entries in the operat
dictionary provided in Appendi®. In all other cases, nestegtows should be used.

When forming a nestegirow (during generation of MathML) that includes just one of two successive operators with the
forms mentioned above (which mean that either operator could in principle act on the intervening operand or operand:
it is necessary to decide which operator acts on those operands directly (or would do so, if they were present). Ideal
this should be determined from the original expression; for example, in conversion from an operator-precedence-bas
format, it would be the operator with the higher precedence. If this cannot be determined directly from the original
expression, the operator that occurs later in the suggested operator dictionary (Afdpeoadixbe assumed to have a
higher precedence for this purpose.

Note that the above rule has no effect on whether any MathML expression is valid, only on the recommended way ¢
generating MathML from other formats for displayed mathematics or directly from written notation.

(Some of the terminology used in stating the above rule in defined in Sexfich)

3.3.1.4 Examples

As an example, 2+y-z should be written as:

<mrow>
<mrow>
<mn> 2 </mn>
<mo> ⁢ </mo>
<mi> x </mi>
</mrow>
<mo> + </mo>

59

<mi> y </mi>

<mo> - </mo>

<mi> z </mi>
</mrow>

The proper encoding ok(y) furnishes a less obvious example of nestitrgws:

<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>
</mrow>
<mo>) </mo>
</mrow>

In this case, a nestetkow is required inside the parentheses, since parentheses and commas, thought of as fence al
separator ‘operators’, do not act together on their arguments.

3.3.2 Fractions fafrac)
3.3.2.1 Description

Themfrac elementis used for fractions. It can also be used to mark up fraction-like objects such as binomial coefficient:
and Legendre symbols. The syntax fdirac is

<mfrac> numerator denominator </mfrac>

3.3.2.2 Attributes of mfrac

Name values default
linethickness number [v-unit] | thin | medium | thick 1 (rule thickness)
numalign left | center | right center
denomalign left | center | right center

bevelled true | false false

Thelinethickness attribute indicates the thickness of the horizontal ‘fraction bar’, or ‘rule’, typically used to render
fractions. A fraction withLinethickness="0" renders without the bar, and might be used within binomial coefficients.
A linethickness greater than one might be used with nested fractions. These cases are shown below:

a a

(6) B

C

d
In general, the value dfinethickness can be a number, as a multiplier of the default thickness of the fraction bar
(the default thickness is not specified by MathML), or a number with a unit of vertical length (see Seétibg, or

one of the keywordaedium (same as 1)thin (thinner than 1, otherwise up to the renderer)tiotck (thicker than 1,
otherwise up to the renderer).

The numalign and denomalign attributes control the horizontal alignment of the numerator and denominator re-
spectively. Typically, numerators and denominators are centered, but a very long numerator or denominator might &
displayed on several lines and a left alignment might be more appropriate for displaying them.

60

Thebevelled attribute determines whether the fraction is displayed with the numerator above the denominator sep
arated by a horizontal line or whether a diagonal line is used to separate a slightly raised numerator from a slightl
lowered denominator. The later form corresponds to the attribute value beirgand provides for a more compact
form for simple numerator and denominators. An example illustrating the bevelled form is show below:

1 1
$BHX X+ 3

Themfrac element setglisplaystyle to false, or if it was already false incremengeriptlevel by 1, within
numerator anddenominator. These attributes are inherited by every element from its rendering environment, but can be
set explicitly only on thexstyle element. (See Sectidh3.4)

3.3.2.3 Examples

The examples shown above can be represented in MathML as:

<mrow>
<mo> (</mo>
<mfrac linethickness="0">
<mi> a </mi>
<mi> b </mi>
</mfrac>
<mo>) </mo>
</mrow>
<mfrac linethickness="2">
<mfrac>
<mi> a </mi>
<mi> b </mi>
</mfrac>
<mfrac>
<mi> ¢ </mi>
<mi> d </mi>
</mfrac>
</mfrac>

<mfrac>
<mn> 1 </mn>
<mrow>
<msup>
<mi> x </mi>
<mn> 3 </mn>
</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>
</mfrac>
</mrow>
</mfrac>
<mo> = </mo>

61

<mfrac bevelled="true">
<mn> 1 </mn>
<mrow>
<msup>
<mi> x </mi>
<mn> 3 </mn>
</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>
</mfrac>
</mrow>
</mfrac>

A more generic example is:

<mfrac>
<mrow>
<mn> 1 </mn>
<mo> + </mo>
<msqrt>
<mn> 5 </mn>
</msqrt>
</mrow>
<mn> 2 </mn>
</mfrac>

3.3.3 Radicals fisqrt, mroot)
3.3.3.1 Description

These elements construct radicals. Thgrt element is used for square roots, whiletfreot element is used to draw
radicals with indices, e.g. a cube root. The syntax for these elements is:

<msqrt> base </msqrt>
<mroot> base index </mroot>

Themroot element requires exactly 2 arguments. Howewegrt accepts any number of arguments; if this number is
not 1, its contents are treated as a single ‘infetresk’ containing its arguments, as described in Sec8dn3

3.3.3.2 Attributes
None (except the attributes allowed for all MathML elements, listed in Se2ti®f).

Themroot element incrementscriptlevel by 2, and setslisplaystyle to false, within index, but leaves both
attributes unchanged withibase. Themsqrt element leaves both attributes unchanged within all its arguments. These
attributes are inherited by every element from its rendering environment, but can be set explicitly nstyoa. (See
Section3.3.4)

62

3.34 Style Changer{style)
3.3.4.1 Description

Themstyle element is used to make style changes that affect the rendering of its comtanytse can be given any
attribute accepted by any MathML presentation element provided that the attribute value is inherited, computed or hz
a default value; presentation element attributes whose values are required are not acceptedtyl thelement. In
additionmstyle can also be given certain special attributes listed below.

Themstyle element accepts any number of arguments. If this number is not 1, its contents are treated as a sing
‘inferredmrow’ formed from all its arguments, as described in Sec8ah3

Loosely speaking, the effect of thestyle element is to change the default value of an attribute for the elements it
contains. Style changes work in one of several ways, depending on the way in which default values are specified for :
attribute. The cases are:

. Some attributes, such a&dsplaystyle or scriptlevel (explained below), are inherited from the sur-
rounding context when they are not explicitly set. Specifying such an attribute antane element sets
the value that will be inherited by its child elements. Unless a child element overrides this inherited value, it
will pass it on to its children, and they will pass it to their children, and so on. But if a child element does
override it, either by an explicit attribute setting or automatically (as is commaschoiptlevel), the new
(overriding) value will be passed on to that element’s children, and then to their children, etc, until it is again
overridden.

. Other attributes, such asnethickness onmfrac, have default values that are not normally inherited. That
is, if the Llinethickness attribute is not set on the begin tag of mfrac element, it will normally use the
default value ofi, even if it was contained in a largef rac element that set this attribute to a different value.
For attributes like this, specifying a value withmasityle element has the effect of changing the default value
for all elements within its scope. The net effect is that setting the attribute valuastiffie propagates the
change to all the elements it contains directly or indirectly, except for the individual elements on which the
value is overridden. Unlike in the case of inherited attributes, elements that explicitly override this attribute
have no effect on this attribute’s value in their children.

° Another group of attributes, such sisretchy andform, are computed from operator dictionary information,
position in the enclosingrow, and other similar data. For these attributes, a value specified by an enclosing
mstyle overrides the value that would normally be computed.

Note that attribute values inherited fromastyle in any manner affect a given element in tiretyle’s content only

if that attribute is not given a value in that element’s begin tag. On any element for which the attribute is set explicitly,
the value specified on the begin tag overrides the inherited value. The only exception to this rule is when the value give
on the begin tag is documented as specifying an incremental change to the value inherited from that element’s conte
or rendering environment.

Note also that the difference between inherited and non-inherited attributessetiiy, explained above, only matters
when the attribute is set on some element withinutheyle's contents that has children also setting it. Thus it never
matters for attributes, such aslor, which can only be set on token elements (omenyle itself).

There is one exceptional elemempadded, whose attributes cannot be set withityle. When the attributegidth,
height anddepth are specified on afistyle element, they apply only to thespace element. Similarly, whemspace
is set withmstyle, it applies only to theno element.

3.3.4.2 Attributes

As stated aboveystyle accepts all attributes of all MathML presentation elements which do not have required values.
That s, all attributes which have an explicit default value or a default value which is inherited or computed are accepte

63

by themstyle element. Additionallymstyle can be given the following special attributes that are implicitly inherited

by every MathML element as part of its rendering environment:

Name values default
scriptlevel [+'] -] unsigned-integer inherited
displaystyle true | false inherited
scriptsizemultiplier number 0.71
scriptminsize number v-unit 8pt

color #rgb | #rrggbb | html-color-name inherited
background #rgb | #rrggbb | transparent | html-color-name transparent
veryverythinmathspace number h-unit 0.0555556em
verythinmathspace number h-unit 0.111111em
thinmathspace number h-unit 0.166667em
mediummathspace number h-unit 0.222222em
thickmathspace number h-unit 0.277778em
verythickmathspace number h-unit 0.333333em
veryverythickmathspace number h-unit 0.388889%em

scriptlevel and displaystyle

MathML uses two attributesiisplaystyle andscriptlevel, to control orthogonal presentation features the¢ T
encodes into ongtyle attribute with values \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle. The correspond-
ing values odisplaystyle andscriptlevel for those EX styles would becrue and0, false ando, false and1,
andfalse and2, respectively.

The main effect of theisplaystyle attribute is that it determines the effect of other attributes such aa#peop and
movablescripts attributes ofno. The main effect of thecriptlevel attribute is to control the font size. Typically,

the higher thecriptlevel, the smaller the font size. (Non-visual renderers can respond to the font size in an analogous
way for their medium.) More sophisticated renderers may also choose to use these attributes in other ways, such
rendering expressions withisplaystyle=false in a more vertically compressed manner.

These attributes are given initial values for the outermost expression of an instance of MathML based on its renderir
environment. A short list of layout schemata described below modify these values for some of their sub-expression
Otherwise, values are determined by inheritance whenever they are not directly specified on a given element’s start t

For an instance of MathML embedded in a textual data format (such as HTML) in ‘display’ mode, i.e. in place of a
paragraphdisplaystyle = true andscriptlevel = 0 for the outermost expression of the embedded MathML; if
the MathML is embedded in ‘inline’ mode, i.e. in place of a charactegplaystyle = false andscriptlevel =

0 for the outermost expression. See Chagtéwr further discussion of the distinction between ‘display’ and ‘inline’
embedding of MathML and how this can be specified in particular instances. In general, a MathML renderer may
determine these initial values in whatever manner is appropriate for the location and context of the specific instance
MathML it is rendering, or if it has no way to determine this, based on the way it is most likely to be used; as a last
resort it is suggested that it use the most generic valigglaystyle = "true" andscriptlevel ="0".

The MathML layout schemata that typically display some of their arguments in smaller type or with less vertical spacing
namely the elements for scripts, fractions, radicals, and tables or matricédsspetystyle to false, and in some
cases increasecriptlevel, for those arguments. The new values are inherited by all sub-expressions within those
arguments, unless they are overridden.

The specific rules by which each element modifiesplaystyle and/orscriptlevel are given in the specifica-

tion for each element that does so; the complete list of elements that modify either attribute are: the ‘scripting’ ele
mentsmsub, msup, msubsup, munder, mover, munderover, andmmultiscripts; and the elementsfrac, mroot,
andmtable.

64

Whenmstyle is given ascriptlevel attribute with no sign, it sets the valuesdfriptlevel within its contents to the

value given, which must be a nonnegative integer. When the attribute value consists of a sign followed by an integer, tt
value ofscriptlevel is incremented (for '+’) or decremented (for '-’) by the amount given. The incremental syntax
for this attribute is an exception to the general rules for setting inherited attributesnssinge, and is not allowed by

any other attribute omastyle.

Whenever thescriptlevel is changed, either automatically or by being explicitly incremented, decremented, or set,
the current font size is multiplied by the valuesafriptsizemultiplier to the power of the change #itriptlevel.
For example, ifscriptlevel is increased by 2, the font size is multiplied &yriptsizemultiplier twice in suc-
cession; ifscriptlevel is explicitly set to 2 when it had been 3, the font size is divided&yiptsizemultiplier.

The default value okcriptsizemultiplier is less than one (in fact, it is approximately the square root of 1/2),
resulting in a smaller font size with increasiagriptlevel. To prevent scripts from becoming unreadably small, the
font size is never allowed to go below the valuesetiptminsize as a result of a change seriptlevel, though it

can be set to a lower value using thentsize attribute (Sectior3.2.1) onmstyle or on token elements. If a change to
scriptlevel would cause the font size to become lower tBaniptminsize using the above formula, the font size
is instead set equal tcriptminsize within the sub-expression for whidtriptlevel was changed.

In the syntax forscriptminsize, v-unit represents a unit of vertical length (as described in Seéignt.9. The
most common unit for specifying font sizes in typesettingtigpoints).

Explicit changes to théontsize attribute have no effect on the valuesafriptlevel.

Further details on scriptlevel for renderers

For MathML renderers that support CSS1 style sheets, or some other analogous style sheet mechanism, absolute
relative changes téontsize (or other attributes) may occur implicitly on any element in response to a style sheet.
Changes tfontsize of this kind also have no effect asxriptlevel. A style sheet-induced changefontsize
overridesscriptminsize in the same way as for an explicit changefimtsize in the element’s begin tag (dis-
cussed above), whether it is specified in the style sheet as an absolute or a relative change. (However, any subseqt
scriptlevel-induced change tfontsize will still be affected by it.) As is required for inherited attributes in CSS1,

the style sheet-modifietbntsize is inherited by child elements.

If the same element is subject to both a style sheet-induced and an autoseatipt(level-related) change to its
ownfontsize, thescriptlevel-related change is done first - in fact, in the simplest implementation of the element-
specific rules foscriptlevel, this change would be done by the element’s parent as part of producing the rendering
properties it passes to the given element, since it is the parent element that knows wheipen evel should be
changed for each of its child elements.

If the element’s owrfontsize is changed by a style sheet and it also chargesptlevel (and thusfontsize) for

one of its children, the style sheet-induced change is done first, followed by the change inherited by that child. If mor
than one child'sscriptlevel is changed, the change inherited by each child has no effect on the other children. (As
a mnemonic rule that applies to a ‘parse tree’ of elements and their children, style sheet-induced chzviges i@

can be associated to nodes of the tree, i.e. to MathML elementscan@tlevel-related changes can be associated

to the edges between parent and child elements; then the order of the associated changes corresponds to the orde
nodes and edges in each path down the tree.) For general information on the relative order of processing of propert
set by style sheets versus by attributes, see the appropriate subsection of CSS-compatible attributes 23S&6tion

If scriptlevel is changed incrementally by aiztyle element that also sets certain other attributes, the overall effect
of the changes may depend on the order in which they are processed. In such cases, the attributes in the following |
should be processed in the following order, regardless of the order in which they occur in the XML-format attribute list
of themstyle begin tagscriptsizemultiplier, scriptminsize, scriptlevel, fontsize.

65

Note thatscriptlevel can, in principle, attain any integral value by being decremented sufficiently, even though it can
only be explicitly set to nonnegative values. Negative valuesefiptlevel generated in this way are legal and should
work as described, generating font sizes larger than those of the surrounding expressiascSipeeevel is initially

0 and never decreases automatically, it will always be nonnegative unless it is decremented pasi€tysing

Explicit decrements ofcriptlevel after the font size has been limited byriptminsize as described above would
produce undesirable results. This might occur, for example, in a representation of a continued fraction, in which th
scriptlevel was decremented for part of the denominator back to its value for the fraction as a whole, if the continue
fraction itself was located in a place that had a higliptlevel. To prevent this problem, MathML renderers should,
when decrementingcriptlevel, use as the initial font size the value the font size would have had if it had never
been limited byscriptminsize. They should not, however, ignore the effects of explicit settingg&oatsize, even

to values belovscriptminsize.

Since MathML renderers may be unable to make use of arbitrary font sizes with good results, they may wish to modif
the mapping from scriptlevel to fontsize to produce better renderings in their judgment. In particular, if fontsizes have
to be rounded to available values, or limited to values within a range, the details of how this is done are up to the
renderer. Renderers should, however, ensure that a series of incremental changégtevel resulting in its return

to the same value for some sub-expression that it had in a surrounding expression results in the same fontsize for tl
sub-expression as for the surrounding expression.

Color and background attributes

The color attribute controls the color in which the content of tokens is rendered. Additionally, when inherited from
mstyle or from a MathML expression’s rendering environment, it controls the color of all other drawing by MathML
elements, including the lines or radical signs that can be drawtt byc, mtable, ormsqrt.

Note that thebackground attribute, though not inherited, has the default value ‘transparent’ (as in CSS1), which
effectively allows an element’s parent to control its background.

The values otolor andbackground can be specified as a string consisting of '#' followed without intervening whites-
pace by either 1-digit or 2-digit hexadecimal values for the red, green, and blue components, respectively, of the desir
color, with the same number of digits used for each component (or as the keyword ‘transpareatidgtound).

The hexadecimal digits are not case-sensitive. The possible 1-digit values range from 0 (component not present) to
(component fully present), and the possible 2-digit values range from 00 (component not present) to FF (compone
fully present), with the 1-digit valug being equivalent to the 2-digit value (rather tharx0). % x0 would be a more
strictly correct notation, but renders terribly in some browsers.

These attributes can also be specified astafl-color-name, which is defined in the following subsection.

CSS compatibility of color attributes

The color syntax described above is a subset of the syntax @bther andbackground-color properties of CSS1.
(Thebackground-color syntax is in turn a subset of the full CS84ckground property syntax, which also permits
specification of (for example) background images with optional repeats. The more general attribute clagreund

is used in MathML to facilitate possible extensions to the attribute’s scope in future versions of MathML.)

Color values on either attribute can also be specified asab-color-name, that is, as one of the color-name key-
words defined inlf]. The list of allowed color names includes most of the commonest English color words,
though notorange, brown, or pink, and also includes a number of less-common color words; see the reference for
the complete list and the equivalent RGB values. Note that the color name keywords are not case-sensitive, unlike mc
keywords in MathML attribute values. (The same color name keywords are defined for thec€&S1property, but

with unspecified RGB values. See also Secfidh4.3)

66

Precise background region not specified

The suggested MathML visual rendering rules do not define the precise extent of the region whose background
affected by using the&ackground attribute onmstyle, except that, whemastyle’'s content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this regic
should lie behind all the drawing done to render the content afighgle, but should not lie behind any of the drawing
done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on t
extent of the region affected by theckground attribute is not defined by these rules.

Meaning of named mathspaces

The spacing between operators is often one of a small number of potential values. MathML names these values a
allows their values to be changed. Because the default values for spacing around operators that are given in the oper:
dictionary AppendixD are defined using these named spaces, changing their values will produce tighter or loosel
spacing. These values can be used anywharaiait or v—unit unit is allowed Sectior2.3.4.2

The predefinedamedspaces arewveryverythinmathspace, verythinmathspace, thinmathspace, mediummath-
space, thickmathspace, verythickmathspace, Of veryverythickmathspace. The default values oferyvery-
thinmathspace... veryverythickmathspace are 1/18em...7/18em, respectively.

3.3.4.3 Examples

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>
<mo maxsize="1"> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo maxsize="1">) </mo>

</mrow>

can be rewritten usingstyle as:

<mstyle maxsize="1">
<mrow>
<mo> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo>) </mo>
</mrow>
</mstyle>

3.35 Error Message fierror)
3.3.5.1 Description

Themerror element displays its contents as an ‘error message’. This might be done, for example, by displaying the cor
tents in red, flashing the contents, or changing the background color. The contents can be any expression or express
sequence.

merror accepts any number of arguments; if this number is not 1, its contents are treated as a single ninéerrad
described in Sectiof.1.3

The intent of this element is to provide a standard way for programgtiatate MathML from other input to report
syntax errors in their input. Since it is anticipated that preprocessors that parse input syntaxes designed for easy he

67

entry will be developed to generate MathML, it is important that they have the ability to indicate that a syntax error
occurred at a certain point. See Sectioh.2

The suggested use mérror for reporting syntax errors is for a preprocessor to replace the erroneous part of its input
with anmerror element containing a description of the error, while processing the surrounding expressions normally
as far as possible. By this means, the error message will be rendered where the erroneous input would have appea
had it been correct; this makes it easier for an author to determine from the rendered output what portion of the inpt
was in error.

No specific error message format is suggested here, but as with error messages from any program, the format shoulc
designed to make as clear as possible (to a human viewer of the rendered error message) what was wrong with the in
and how it can be fixed. If the erroneous input contains correctly formatted subsections, it may be useful for these to t
preprocessed normally and included in the error message (within the contentsi@ftle element), taking advantage

of the ability ofmerror to contain arbitrary MathML expressions rather than only text.

3.3.5.2 Attributes

None (except the attributes allowed for all MathML elements, listed in Se2ti®).

3.3.5.3 Example

If a MathML syntax-checking preprocessor received the input

<mfraction>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mn> 2 </mn>

</mfraction>

which contains the non-MathML elemenfraction (presumably in place of the MathML elemeinirac), it might
generate the error message

<merror>
<mtext> Unrecognized element: mfraction;
arguments were: </mtext>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mtext> and </mtext>
<mn> 2 </mn>
</merror>

Note that the preprocessor’s input is not, in this case, valid MathML, but the error message it outputs is valid MathML

3.3.6 Adjust Space Around Content fipadded)
3.3.6.1 Description

An mpadded element renders the same as its content, but with its overall size and other dimensions (such as baselil
position) modified according to its attributes. Tiyeadded element does not rescale (stretch or shrink) its content; its
only effect is to modify the apparent size and position of the ‘bounding box’ around its content, so as to affect the
relative position of the content with respect to the surrounding elements. The name of the element reflects the use
mpadded to effectively add ‘padding’, or extra space, around its content. If the ‘padding’ is negative, it is possible for
the content olpadded to be rendered outside thmpadded element’s bounding box; see below for warnings about
several potential pitfalls of this effect.

68

The mpadded element accepts any number of arguments; if this number is not 1, its contents are treated as a sing|
‘inferredmrow’ as described in Sectioh.1.3

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing horizontal sp
(width andlspace).

3.3.6.2 Attributes

Name values default

width [+]| -] unsigned-number (% [pseudo-unit | | pseudo-unit | h-unit | namedspace) same as content
Ispace [+ |- Junsigned-number (% [pseudo-unit | | pseudo-unit | h-unit) 0

height [+ |- Junsigned-number (% [pseudo-unit | | pseudo-unit | v-unit) same as content
depth [+ | - Junsigned-number (% [pseudo-unit | | pseudo-unit | v-unit) same as content

(The pseudo-unit syntax symbol is described below.)

These attributes modify the dimensions of the ‘bounding box’ ofribeided element. The dimensions (which have

the same names as the attributes) are defined in the next subsection. Depending on the format of the attribute val
a dimension may be set to a new value, or to an incremented or decremented version of the content’s correspondi
dimension. Values may be specified as multiples or percentages of any of the dimensions of the normal rendering of t
element’s content (using so-called ‘pseudo-units’), or they can be set directly using standard units2S&étian

If an attribute value begins with-aor - sign, it specifies an increment or decrement of the corresponding dimension
by the following length value (interpreted as explained below). Otherwise, the corresponding dimension is set directl
to the following length value. Note that theand- do not mean that the following value is positive or negative, even
when an explicit length unith-unit or v-unit) is given. In particular, these attributes cannot directly set a dimension to

a negative value.

Length values (after the optional sign, which is not part of the length value) can be specified in several formats. Eac
format begins with amnsigned-number, which may be followed by & sign and an optional ‘pseudo-unit’ (denoted by
pseudo-unit in the attribute syntaxes above), by a pseudo-unit alone, or by one of the length units (denbtedity

or v-unit) specified in Sectio2.3.4.2 not including’. The possible pseudo-units are the keywordldth, 1space,
height, anddepth; they each represent the length of the same-named dimension mpdheed element’'s content

(not of thempadded element itself). The lengths representedhbynit or v-unit are described in Sectidh3.4.2

In any of these formats, the length value specified is the product of the specified number the length represented by t
unit or pseudo-unit, and multiplied by 0.01%fis given. If no pseudo-unit is given aftér the one with the same name
as the attribute being specified is assumed.

Some examples of attribute formats using pseudo-units (explicit or default) are as falkgyed="1007% height"
anddepth="1.0 height" both set the depth of thepadded element to the height of its contedepth="105%" sets
the depth to 1.05 times the content’s depth, and eilegeth="+100%" or depth="200%" sets the depth to twice the
content’s depth.

Dimensions that would be positive if the content was rendered normally cannot be made negativepadieg;

a positive dimension is set to 0 if it would otherwise become negative. Dimensions that are initially 0 can be made
negative, but this should generally be avoided. See the warnings below on the use of negative spacing for ‘tweaking’
conveying meaning.

The rules given above imply that all of the following attribute settings have the same effect, which is to leave the
content’'s dimensions unchanged:

<mpadded width="+0em"> ... </mpadded>
<mpadded width="+07%"> ... </mpadded>

69

<mpadded width="-0Oem"> ... </mpadded>

<mpadded width="- 0 height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100% width"> ... </mpadded>
<mpadded width="1 width"> ... </mpadded>
<mpadded width="1.0 width"> ... </mpadded>
<mpadded> ... </mpadded>

3.3.6.3 Meanings of dimension attributes
See Appendi¥ for further information about some of the typesetting terms used here.

The width attribute refers to the overall horizontal width of a bounding box. By default (i.e. vilkgace is not
modified), the bounding box of the content of sgrdded element should be rendered flush with the left edge of the
mpadded element’s bounding box. Thus, increasingith alone effectively adds space on the right edge of the box.

Thelspace attribute refers to the amount of space between the left edge of a bounding box and where the rendering «
its contents’ bounding box actually begins. Unlike the other dimensiansce does not correspond to a real property

of a bounding box, but exists only transiently during the computations done by each instapeadd. It is provided

so that there is a way to add space on the left edge of a bounding box.

The rationale behind usingidth andlspace to control horizontal padding instead of more symmetric attributes, such
as a hypotheticatspace andlspace, is that it is desirable to have a ‘width’ pseudo unit, in part because ‘width’ is an
actual property of a bounding box.

Theheight attribute refers to the amount of vertical space between the baseline (the line along the bottom of mos
letter glyphs in normal text rendering) and the top of the bounding box.

Thedepth attribute refers to the amount of vertical space between the bottom of the bounding box and the baseline.

MathML renderers should ensure that, except for the effects of the attributes, relative spacing between the contents
mpadded and surrounding MathML elements is not modified by replacinggided element with amrow element

with the same content. This holds even if linebreaking occurs withimplagided element. However, if ampadded
element with non-default attribute values is subjected to linebreaking, MathML does not define how its attributes o
rendering interact with the linebreaking algorithm.

3.3.6.4 Warning: nonportability of ‘tweaking’

A likely temptation for the use of thepadded andmspace elements (and perhaps alsghantom andmtext) will be
for an author to improve the spacing generated by a specific renderer by slightly modifying it in specific expressions
i.e. to ‘tweak’ the rendering.

Authors are strongly warned thaifferent MathML renderers may use different spacing rules for computing the relative
positions of rendered symbols in expressions that have no explicit modifications to their spacing; if renderer B improve
upon renderer A's spacing rules, explicit spacing added to improve the output quality of renderer A may produce ver
poor results in renderer B, very likely worse than without any ‘tweaking’ at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in successive versions
that the effect of tweaking in a given MathML document may grow worse with time. Also, when style sheet mechanisms
are extended to MathML, even one version of a renderer may use different spacing rules for users with different styl
sheets.

Therefore, it is suggested that MathML markup never msedded or mspace elements to tweak the rendering of
specific expressions, unless the MathML is generated solely to be viewed using one specific version of one MathM
renderer, using one specific style sheet (if style sheets are available in that renderer).

70

In cases where the temptation to improve spacing proves too strong, carefuhpad@$d, mphantom, or the alignment
elements (SectioB.5.5 may give more portable results than the direct insertion of extra spacensgiage ormtext.
Advice given to the implementors of MathML renderers might be still more productive, in the long run.

3.3.6.5 Warning: spacing should not be used to convey meaning

MathML elements that permit ‘negative spacing’, namedpace, mpadded, andmtext, could in theory be used to
simulate new notations or ‘overstruck’ characters by the visual overlap of the renderings of more than one MathML
sub-expression.

This practice istrongly discouraged in all situations, for the following reasons:

° it will give different results in different MathML renderers (so the warning about ‘tweaking’ applies);
. it is likely to appear much worse than a more standard construct supported by good renderers;
° such expressions are almost certain to be uninterpretable by audio renderers, computer algebra systems, t

searches for standard symbols, or other processors of MathML input.

More generally, any construct that uses spacing to convey mathematical meaning, rather than simply as an aid to viewi
expression structure, is discouraged. That is, the constructs that are discouraged are those that would be interpre
differently by a human viewer of rendered MathML if all explicit spacing was removed.

If such constructs are used in spite of this warning, they should be enclosedriazt: ics element that also provides
an additional MathML expression that can be interpreted in a standard way.

For example, the MathML expression

<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>

forms an overstruck symbol in violation of the policy stated above; it might be intended to represent the set of comple:
numbers for a MathML renderer that lacks support for the standard symbol used for this purpose. This kind of constru
should always be avoided in MathML, for the reasons stated above; indeed, it should never be necessary for stand:
symbols, since a MathML renderer with no better method of rendering them is free to use overstriking internally, so tha
it can still support general MathML input.

However, if for whatever reason such a construct is used in MathML, it should always be encloseemimaics
element such as

<semantics>
<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>
</mrow>
<annotation-xml encoding="MathML-Presentation">
<mi> ℂ </mi>
</annotation-xml>
</semantics>

71

which provides an alternative, standard encoding for the desired symbol, which is much more easily interpreted the
the construct using negative spacing. (The alternative encoding in this example uses MathML presentation elemen
the content elements described in Chapgtehould also be considered.)

(The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by an expressi
with the exception of attributes ari (such agontweight) used to distinguish one variable from another.)

3.3.7 Making Content Invisible @phantom)
3.3.7.1 Description

The mphantom element renders invisibly, but with the same size and other dimensions, including baseline position,
that its contents would have if they were rendered normagiyantom can be used to align parts of an expression by
invisibly duplicating sub-expressions.

Themphantom element accepts any number of arguments; if this number is not 1, its contents are treated as a sing|
‘inferredmrow’ formed from all its arguments, as described in Sec8ah3

It is suggested that audio renderers rensigitantom elements in an analogous way for their medium, by rendering
them as silence of the same duration as the normal rendering of their contents.

3.3.7.2 Attributes
None (except the attributes allowed for all MathML elements, listed in Se2ti®).

Note that it is possible to wrap both aphantom and anmpadded element around one MathML expression, as in
<mphantom><mpadded attribute-settings> ... </mpadded></mphantom>, to change its size and make it in-
visible at the same time.

MathML renderers should ensure that the relative spacing between the contentspphbhanom element and the sur-
rounding MathML elements is the same as it would be ifitheantom element were replaced by anow element with
the same content. This holds even if linebreaking occurs withinphentom element.

For the above reasomphantom is not considered space-like (Secti@r2.6 unless its content is space-like, since the
suggested rendering rules for operators are affected by whether nearby elements are space-like. Even so, the warr
about the legal grouping of space-like elements may apply to usgshahton.

There is one situation where the preceding rule for renderingphantom may not give the desired effect. When
anmphantom iS wrapped around a subsequence of the arguments of@n the default determination of thiorm
attribute for amo element within the subsequence can change. (See the default valuef otihattribute described in
Section3.2.4) It may be necessary to add an expligitrm attribute to such amo in these cases. This is illustrated in
the following example.

3.3.7.3 Examples

In this examplemphantom is used to ensure alignment of corresponding parts of the numerator and denominator of a
fraction:

<mfrac>

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>

72

<mo> + </mo>
<mi> z </mi>
</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo form="infix"> + </mo>
<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>
</mrow>
</mfrac>

This would render as something like

X+y+z
X 4z

rather than as

X+y+z
X+2Z

The explicit attribute settingorm="infix" on the mo element inside thephantom sets theform attribute to what it
would have been in the absence of the surroundisighntom. This is necessary since otherwise, theign would be
interpreted as a prefix operator, which might have slightly different spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each of the arguments
<mo>+</mo> and<mi>y</mi> in its ownmphantom element, i.e.

<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
+ </mo>
z </mi>

<mo>
<mi>
</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo> + </mo>
</mphantom>
<mphantom>
<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>
</mrow>
</mfrac>

73

3.3.8 Content Inside Pair of Fencesnfenced)
3.3.8.1 Description

Themfenced element provides a convenient form in which to express common constructs involving fences (i.e. braces
brackets, and parentheses), possibly including separators (such as comma) between the arguments.

For examplesmfenced> <mi>x</mi> </mfenced> renders as ¥)’and is equivalent to

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>

and<mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as X, y)’ and is equivalent to

<mrow>
<mo> (</mo>
<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
<mo>) </mo>

</mrow>

Individual fences or separators are represented ugsingiements, as described in Secti®2.4 Thus, anynfenced
element is completely equivalent to an expanded form described below; either form can be used in MathML, at th
convenience of an author or of a MathML-generating program. A MathML renderer is required to render either of thes
forms in exactly the same way.

In general, amfenced element can contain zero or more arguments, and will enclose them between fencesdn;an

if there is more than one argument, it will insert separators between adjacent arguments, using an additionabwested
around the arguments and separators for proper grouping (S&ctidh The general expanded form is shown below.
The fences and separators will be parentheses and comma by default, but can be changed using attributes, as show
the following table.

3.3.8.2 Attributes

Name values default
open string (

close string)
separators character * ,

A genericmfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
close="closing-fence"
separators="sep#l sep#2 ... sep#(n-1)" >
arg#l

arg#n
</mfenced>

Theopening-fence andclosing-fence are arbitrary strings. (Since they are used as the content@kements, any
whitespace they contain will be trimmed and collapsed as described in SB@&ian

The value okeparators is a sequence of zero or more separator characters (or entity references), optionally separate
by whitespace. Eackep#i consists of exactly one character or entity reference. Tdugmrators=", ;" is equivalent
{0 separators=" , ; ".

The generahfenced element shown above is equivalent to the following expanded form:

74

<mrow>
<mo fence="true"> opening-fence </mo>
<mrow>
arg#l
<mo separator="true"> sep#l </mo>

<mo separator="true"> sep#(n-1) </mo>
arg#n
</mrow>
<mo fence="true"> closing-fence </mo>
</mrow>

Each argument except the last is followed by a separator. Thermeris added for proper grouping, as described in
Section3.3.1

When there is only one argument, the above form has no separatorsgsirwe arg#l </mrow> iS equivalent to
arg#l (as described in Sectidh3.]), this case is also equivalent to:

<mrow>
<mo fence="true"> opening-fence </mo>
arg#l
<mo fence="true"> closing-fence </mo>
</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given, but there
too few, the last one is repeated as necessary. Thus, the default valapaghtors="," is equivalent tosepara-
tors=",", separators=",,", etcetera. If there are no separator characters provided but some are needed, for exampl
if separators=""or "™ and there is more than one argument, then no separator elements are inserted at all - that is
the elementsmo separator="true"> sep#i </mo> are left out entirely. Note that this is different from inserting
separators consisting @b elements with empty content.

Finally, for the case with no arguments, i.e.

<mfenced open="opening-fence"
close="closing-fence"
separators="anything" >
</mfenced>

the equivalent expanded form is defined to include just the fences withinan

<mrow>
<mo fence="true"> opening-fence </mo>
<mo fence="true"> closing-fence </mo>
</mrow>

Note that not all ‘fenced expressions’ can be encoded hyfenced element. Such exceptional expressions include
those with an ‘embellished’ separator or fence or one enclosedunz@fle element, a missing or extra separator or
fence, or a separator with multiple content characters. In these cases, it is hecessary to encode the expression usin
appropriately modified version of an expanded form. As discussed above, it is always permissible to use the expand
form directly, even when it is not necessary. In particular, authors cannot be guaranteed that MathML preprocesso
won't replace occurrences afenced with equivalent expanded forms.

75

Note that the equivalent expanded forms shown above include attributes aio #lements that identify them as
fences or separators. Since the most common choices of fences and separators already occur in the operator dictior
with those attributes, authors would not normally need to specify those attributes explicitly when using the expande
form directly. Also, the rules for the defaulbrm attribute (Sectior8.2.4 cause the opening and closing fences to be
effectively given the valuesorm="prefix" andform="postfix" respectively, and the separators to be given the value
form="infix".

Note that it would be incorrect to usgenced with a separator of, for instance, ‘+’, as an abbreviation for an expression
using ‘+’ as an ordinary operator, e.g.

<mrow>
<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>
</mrow>

This is because the signs would be treated as separators, not infix operators. That is, it would render as if they were
marked up agmo separator="true">+</mo>, which might therefore render inappropriately.

3.3.8.3 Examples
(at+b)

<mfenced>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>
</mrow>
</mfenced>

Note that the aboverow is necessary so that the€enced has just one argument. Without it, this would render incor-
rectly as ‘@, +,b)’.

[0,1)

<mfenced open="[">
<mn> 0 </mn>
<mn> 1 </mn>

</mfenced>

fxy)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mfenced>
<mi> x </mi>
<mi> y </mi>
</mfenced>
</mrow>

76

3.3.9 Enclose Content Inside Notationm{enclose)
3.3.9.1 Description

Themenclose element renders its content inside the enclosing notation specifieddwtision attribute menclose
accepts any number of arguments; if this number is not 1, its contents are treated as a single fintasrredntaining
its arguments, as described in Sectibh.3

3.3.9.2 Attributes

Name values default
notation longdiv | actuarial | radical longdiv

Whennotation has the valu@ongdiv, the contents are drawn enclosed by a long division symbol. A complete exam-
ple of long division is accomplished by also usifigeble andmalign. Whennotation is specified asctuarial,

the contents are drawn enclosed by an actuarial symbol. The caseaffion=radical is equivalent to thesqrt
schema.

3.3.9.3 Examples

The following markup might be used to encode an elementary US-style long division problem.

<mtable columnspacing=’0’ rowspacing=’0’>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>10</mn></mtd>
</mtr>
<mtr>
<mtd columnalign=’right’><mn>131</mn></mtd>
<mtd columnalign=’right’>
<menclose notation=’longdiv’><mn>1413</mn></menclose>
</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’>
<mrow>
<munder>
<mn>131</mn>
<mo>&UnderBar ; </mo>
</munder>
<mphantom><mn>3</mn></mphantom>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>103</mn></mtd>
</mtr>
</mtable>

77

This might be rendered roughly as:
10

131)1413
131

103
An example of usingienclose for actuarial notation is

<msub>
<mi>a</mi>
<mrow>
<menclose notation=’actuarial’>
<mi>n</mi>
</menclose>
<mo>&it ;</mo>
<mi>i</mi>
</mrow>
</msub>

which renders roughly as

a
nj i

3.4 Script and Limit Schemata

The elements described in this section position one or more scripts around a base. Attaching various kinds of scrif
and embellishments to symbols is a very common notational device in mathematics. For purely visual layout, a singl
general-purpose element could suffice for positioning scripts and embellishments in any of the traditional script locatior
around a given base. However, in order to capture the abstract structure of common notation better, MathML provide
several more specialized scripting elements.

In addition to sub/superscript elements, MathML has overscript and underscript elements that place scripts above a
below the base. These elements can be used to place limits on large operators, or for placing accents and lines abov
below the base. The rules for rendering accents differ from those for overscripts and underscripts, and this differenc
can be controlled with theccent andaccentunder attributes, as described in the appropriate sections below.

Rendering of scripts is affected by theriptlevel anddisplaystyle attributes, which are part of the environment
inherited by the rendering process of every MathML expression, and are describedstyder (Section3.3.4). These
attributes cannot be given explicitly on a scripting element, but can be specified on the start tag of a surseuydiag
element if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from ordinary subscript
and superscripts in that they must align in vertical columns. Tensor indices can also occur in prescript positions.

Because presentation elements should be used to describe the abstract notational structure of expressions, it is impor
that the base expression in all ‘scripting’ elements (i.e. the first argument expression) should be the entire expressi
that is being scripted, not just the rightmost character. For examxpig?2(should be written as:

<msup>
<mrow>
<mo> (</mo>

78

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
</mrow>
<mo>) </mo>
</mrow>
<mn> 2 </mn>
</msup>

3.4.1 Subscript fisub)
3.4.1.1 Description

The syntax for theassub element is:

<msub> base subscript </msub>

3.4.1.2 Attributes

Name values default
subscriptshift number v-unit automatic (typical unit is ex)

Thesubscriptshift attribute specifies the minimum amount to shift the baselineibdcript down.
v-unit represents a unit of vertical length (see Secfidh4.2).

Themsub element incrementscriptlevel by 1, and setdisplaystyle to false, within subscript, but leaves both
attributes unchanged withibase. (These attributes are inherited by every element through its rendering environment,
but can be set explicitly only onistyle; see Sectior3.3.4)

3.4.2 Superscript fusup)
3.4.2.1 Description

The syntax for thexsup element is:

<msub> base superscript </msub>

3.4.2.2 Attributes

Name values default
superscriptshift number v-unit automatic (typical unit is ex)

Thesuperscriptshift attribute specifies the minimum amount to shift the baselineydrscript up.
v-unit represents a unit of vertical length (see Secfidh4.2.

Themsup elementincrementscriptlevel by 1, and setdisplaystyle to false, within superscript, but leaves both
attributes unchanged withibase. (These attributes are inherited by every element through its rendering environment,
but can be set explicitly only ofistyle; see Sectior3.3.4)

79

3.4.3 Subscript-superscript Pair fusubsup)
3.4.3.1 Description

Themsubsup element is used to attach both a subscript and superscript to a base expression. Note that both scripts
positioned tight against the basg? versusx.

The syntax for thesubsup element is:

<msubsup> base subscript superscript </msubsup>

3.4.3.2 Attributes

Name values default
subscriptshift number v-unit automatic (typical unit is ex)
superscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baselineubscript down. Thesuper-
scriptshift attribute specifies the minimum amount to shift the baseline@drscript up.

v-unit represents a unit of vertical length (see Secfidh4.2).

Themsubsup element incrementscriptlevel by 1, and setdisplaystyle to false, within subscript andsuper-
script, but leaves both attributes unchanged withire. (These attributes are inherited by every element through its
rendering environment, but can be set explicitly onlymsfiyle; see Sectiod.3.4)

3.4.3.3 Examples

The msubsup is most commonly used for adding sub/superscript pairs to identifiers as illustrated above. However,
another important use is placing limits on certain large operators whose limits are traditionally displayed in the scrip
positions even when rendered in display style. The most common of these is the integral. For example,

1
0/e"dx

would be represented as

<mrow>
<msubsup>
<mo> ∫ </mo>
<mn> 0 </mn>
<mn> 1 </mn>
</msubsup>
<mrow>
<msup>
<mi> ⅇ </mi>
<mi> x </mi>
</msup>
<mo> ⁢ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>
</mrow>

80

</mrow>
</mrow>

3.4.4 Underscript fnunder)
3.4.4.1 Description

The syntax for thewunder element is:

<munder> base underscript </munder>

3.4.4.2 Attributes

Name values default
accentunder true | false automatic

The accentunder attribute controls whethetnderscript is drawn as an ‘accent’ or as a limit. The main difference
between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as the base. A sec
difference is that the accent is drawn closer to the base.

The default value ofccentunder is false, unlessinderscript is anmo element or an embellished operator (see Sec-
tion 3.2.4). If underscript is anmo element, the value of itsccent attribute is used as the default valueotentunder.

If underscript is an embellished operator, thecent attribute of theno element at its core is used as the default value.
As with all attributes, an explicitly given value overrides the default.

Here is an example (accent versus underscript)y 4+ z versusx+ y+ z. The MathML representation for this example
N——

. N——
is shown below.

If the base is an operator witlbvablelimits=true (or an embellished operator whose element core hasov-
ablelimits=true), anddisplaystyle=false, thenunderscript is drawn in a subscript position. In this case, the
accentunder attribute is ignored. This is often used for limits on symbols suctsas ;.

Within underscript, munder always setslisplaystyle to false, but incrementscriptlevel by 1 only whenac-
centunder is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every
element through its rendering environment, but can be set explicitly ontgoyile; see Sectior?.3.4)

3.4.4.3 Examples

The MathML representation for the example shown above is:

<mrow>
<munder accentunder="true">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> ⏟ </mo>
</munder>

<mtext> versus </mtext>

81

<munder accentunder="false">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> ⏟ </mo>
</munder>
</mrow>

3.45 Overscript fnover)
3.4.5.1 Description

The syntax for thewover element is:

<mover> base overscript </mover>

3.4.5.2 Attributes

Name values default
accent true | false automatic

The accent attribute controls whethesverscript is drawn as an ‘accent’ (diacritical mark) or as a limit. The main
difference between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as
base. A second difference is that the accent is drawn closer to the base. This is shown below (accent versus limit);
Versusx.

These differences also apply to ‘mathematical accents’ such as bars over expréssipnsz versusx+y+z. The
MathML representation for each of these examples is shown below.

The default value ofccent is false, unlessverscript is anmo element or an embellished operator (see Se@iary).
If overscript is anmo element, the value of itsccent attribute is used as the default valuea@fcent for mover. If
overscript is an embellished operator, thecent attribute of theno element at its core is used as the default value.

If the base is an operator witlbvablelimits=true (or an embellished operator whose element core hasov-
ablelimits=true), anddisplaystyle=false, thenoverscript is drawn in a superscript position. In this case, the
accent attribute is ignored. This is often used for limits on symbols sudbsas ;.

Within overscript, mover always setglisplaystyle to false, but incrementscriptlevel by 1 only whenaccent
is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every elemen
through its rendering environment, but can be set explicitly onlystyle; see Sectio.3.4)

3.4.5.3 Examples

The MathML representation for the examples shown above is:

<mrow>
<mover accent="true">

82

<mi> x </mi>
<mo> ^ </mo>
</mover>
<mtext> versus </mtext>
<mover accent="false">
<mi> x </mi>
<mo> ^ </mo>
</mover>
</mrow>

<mrow>
<mover accent="true">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> ‾ </mo>
</mover>

<mtext> versus </mtext>
<mover accent="false">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> ‾ </mo>
</mover>
</mrow>
3.4.6 Underscript-overscript Pair (nunderover)

3.4.6.1 Description

The syntax for th@underover element is:

<munderover> base underscript overscript </munderover>

3.4.6.2 Attributes

Name values default
accent true | false automatic
accentunder true | false automatic

83

Themunderover element is used so that the underscript and overscript are vertically spaced equally in relation to the
base and so that they follow the slant of the base as in the second expression shown below:

00
0
VEersus

00

/

0
The MathML representation for this example is shown below.

The difference in the vertical spacing is too small to be noticed on a low resolution display at a normal font size, bu
is noticeable on a higher resolution device such as a printer and when using large font sizes. In addition to the visu
differences, attaching both the underscript and overscript to the same base more accurately reflects the semantics of
expression.

The accent andaccentunder attributes have the same effect as the attributes with the same namesean(Sec-

tion 3.4.5 andmunder (Section3.4.4), respectively. Their default values are also computed in the same manner as
described for those elements, with the default valueafent depending oroverscript and the default value afc-
centunder depending omnderscript.

If the base is an operator wittbvablelimits=true (or an embellished operator whaseelement core hasovable-
limits=true), anddisplaystyle=false, thenunderscript andoverscript are drawn in a subscript and superscript
position, respectively. In this case, thecent andaccentunder attributes are ignored. This is often used for limits on
symbols such agsum;.

Within underscript, munderover always setdlisplaystyle to false, but incrementscriptlevel by 1 only when
accentunder is false. Within overscript, munderover always setdisplaystyle tofalse, butincrementscriptlevel
by 1 only wheraccent is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited
by every element through its rendering environment, but can be set explicitly oakytgie; see Sectior3.3.4).

3.4.6.3 Examples

The MathML representation for the example shown above with the first expression made using semekateand
mover elements, and the second one usingramderover element, is:

<mrow>
<mover>
<munder>
<mo> ∫ </mo>
<mn> 0 </mn>
</munder>
<mi> ∞ </mi>
</mover>
<mtext> versus </mtext>
<munderover>
<mo> ∫ </mo>
<mn> 0 </mn>
<mi> ∞ </mi>
</munderover>
</mrow>

84

3.4.7 Prescripts and Tensor Indicesnnultiscripts)
3.4.7.1 Description

The syntax for themultiscripts elementis:

<mmultiscripts>

base

(subscript superscript)x*

[<mprescripts/> (presubscript presuperscript)*]
</mmultiscripts>

Presubscripts and tensor notations are represented by a single element,scripts. This element allows the rep-
resentation of any number of vertically-aligned pairs of subscripts and superscripts, attached to one base expressi
It supports both postscripts (to the right of the base in visual notation) and prescripts (to the left of the base in visue
notation). Missing scripts can be represented by the empty eletoaat

The prescripts are optional, and when present are gifien the postscripts, because prescripts are relatively rare
compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned subscripts and sup
scripts (in that order) that represent all of the postscripts. This list is optionally followed by an empty elgment
scripts and a list of zero or more pairs of vertically-aligned presubscripts and presuperscripts that represent all of th
prescripts. The pair lists for postscripts and prescripts are given in a left-to-right order. If no subscript or superscrip
should be rendered in a given position, then the empty elemwerrt should be used in that position.

The base, subscripts, superscripts, the optional separator eleprericripts, the presubscripts, and the presuper-
scripts, are all direct sub-expressions oftheltiscripts element, i.e. they are all at the same level of the expression
tree. Whether a script argument is a subscript or a superscript, or whether it is a presubscript or a presuperscript is det
mined by whether it occurs in an even-numbered or odd-numbered argument position, respectively, ignoring the emp
elemenmprescripts itself when determining the position. The first argument, the base, is considered to be in position
1. The total number of arguments must be oddpifescripts is not given, or even, if it is.

The empty elemenisprescripts andnone are only allowed as direct sub-expressionamiltiscripts.

3.4.7.2 Attributes
Same as the attributes @§ubsup.

Themmultiscripts element incrementscriptlevel by 1, and setglisplaystyle to false, within each of its
arguments excepiase, but leaves both attributes unchanged withigse. (These attributes are inherited by every element
through its rendering environment, but can be set explicitly onlystyle; see Sectio.3.4)

3.4.7.3 Examples
Two examples of the use @fwltiscripts are:
oF1(;a2).
<mrow>
<mmultiscripts>
<mi> F </mi>

<mn> 1 </mn>
<none/>

85

<mprescripts/>
<mn> 0 </mn>
<none/>
</mmultiscripts>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mo> ; </mo>
<mi> a </mi>
<mo> ; </mo>
<mi> z </mi>
</mrow>
<mo>) </mo>
</mrow>
</mrow>

R, (wherek and| are different indices)

<mmultiscripts>
<mi> R </mi>
<mi> i </mi>
<none/>
<none/>
<mi> j </mi>
<mi> k </mi>
<none/>
<mi> 1 </mi>
<none/>
</mmultiscripts>

35 Tables and Matrices

Matrices, arrays and other table-like mathematical notation are marked upnitsibfe, mtr, mlabeledtr andmtd
elements. These elements are similar toTthLE, TR andTD elements of HTML, except that they provide specialized
attributes for the fine layout control necessary for commutative diagrams, block matrices and so on.

Themlabeledtr element represents a labeled row of a table and can be used for numbered equadiosisedtr
first child is the label. A label is somewhat special in that it is not considered an expression in the matrix and is no
counted when determining the number of columns in that row.

3.5.1 Table or Matrix (mtable)
3.5.1.1 Description

A matrix or table is specified using thecable element. Inside of thetable element, onlymtr or mlabeledtr
elements may appear.

In MathML 1.x, themtable element could infemtr elements around its arguments, andile element could infer
mtd elements. In other words, if some argument tanaable was not amtr element, a MathML application was to

86

assume a row with a single column (i.e. the argument was effectively wrapped with an infer)e&imilarly, if some
argument to a (possibly inferredyr element was not antd element, that argument was to be treated as a table entry
by wrapping it with an inferredtd element.

In MathML 2.0,mtr andmtd elements are required, and may no longer be inferred. However, for backward compatibil-
ity renderers may wish to continue supporting infersead andmtd elements. In this case, however, renderers should
make an effort to notify users that inferredr andmtd elements are not valid in MathML 2.0.

Table rows that have fewer columns than other rows of the same table (whether the other rows precede or follow ther
are effectively padded on the right with emptyd elements so that the number of columns in each row equals the
maximum number of columns in any row of the table. Note that the ugsed®lements with non-default values of
therowspan or columnspan attributes may affect the numbermwid elements that should be given in subsequemt
elements to cover a given number of columns. Note also that the labehitlabeledtr element is not considered a
column in the table.

3.5.1.2 Attributes

Name values default
align (top | bottom | center | baseline | axis) [rownumber] axis
rowalign (top | bottom | center | baseline | axis) + baseline
columnalign (left | center | right) + center
groupalign group-alignment-list-list left
alignmentscope (true | false) + true
columnwidth (‘auto | number h-unit | namedspace | fit) + auto
width auto | number h-unit auto
rowspacing (number v-unit) + 1.0ex
columnspacing (number h-unit | namedspace) + 0.8em
rowlines (none | solid | dashed) + none
columnlines (none | solid | dashed) + none
frame none | solid | dashed none
framespacing (number h-unit | namedspace) (number v-unit | namedspace) 0.4em 0.5e)
equalrows true | false true
equalcolumns true | false true
displaystyle true | false false

side left | right | leftoverlap | rightoverlap right
minlabelspacing number h-unit 0.8em

Note that the default value for eachmfwlines, columnlines andframe is the literal string ‘none’, meaning that the
default is to render no lines, rather than that there is no default.

As described in Sectiof.3.4 the notation(x | y)+ means one or more occurrences of either y, separated by
whitespace. For example, possible valuestirumnalign areleft, left left,andleft right center center.

If there are more entries than are necessary (e.g. more entries than coluneeduenialign), then only the first
entries will be used. If there are fewer entries, then the last entry is repeated as often as necessary. For example
columnalign="right center" and the table has three columns, the first column will be right aligned and the second anc
third columns will be centered. The label imaabeledtr is not considered as a column in the table and the attribute
values that apply to columns do not apply to labels

Thealign attribute specifies where to align the table with respect to its environment. ‘axis’ means to align the centet
of the table on the environment’s axis. (The axis of an equation is an alignment line used by typesetters. It is the lin
on which a minus sign typically lies. The center of the table is the midpoint of the table’s vertical extent.) ‘center’ and

87

‘baseline’ both mean to align the center of the table on the environment’s baseline. ‘top’ or ‘bottom’ aligns the top or
bottom of the table on the environment’s baseline.

If the align attribute value ends with aownumber between 1 anch (for a table withn rows), the specified row is
aligned in the way described above, rather than the table as a whole; the top (first) row is numbered 1, and the bottc
(last) row is numbered. The same is true if the row number is negative, between -1grekeept that the bottom row

is referred to as -1 and the top row as Other values ofownumber are illegal.

Therowalign attribute specifies how the entries in each row should be aligned. For example, ‘top’ means that the top:
of each entry in each row should be aligned with the tops of the other entries in that rowo Tunmalign attribute
specifies how the entries in each column should be aligned.

Thegroupalign andalignmentscope attributes are described with the alignment elemeri$igngroup andma-
lignmark, in Section3.5.5

Thecolumnwidth attribute specifies how wide a column should be. 3tgo value means that the column should be as
wide as needed, which is the default. If an explicit value is given, then the column is exactly that wide and the content
of that column are made to fit in that width. The contents are linewrapped or clipped at the discretion of the rendere
If £it is given as a value, the remaining page width after subtracting the widths for columns specified asnd/or
specific widths is divided equally among tlet columns and this value is used for the column width. If insufficient
room remains to hold the contents of thiet columns, renderers may linewrap or clip the contents of tirecolumns.

When thecolumnwidth is specified as a percentage, the value is relative to the width of the table. That is, a renderel
should try to adjust the width of the column so that it covers the specified percentage of the entire table width.

Thewidth attribute specifies the desired width of the entire table and is intended for visual user agents. When the valu
is a percentage value, the value is relative to the horizontal space a MathML renderer has available for the table eleme
When the value iauto, the MathML renderer should calculate the table width from its contents using whatever layout
algorithm it chooses.

MathML 2.0 does not specify a table layout algorithm. In particular, it is the responsibility of a MathML renderer to
resolve conflicts between the dth attribute and other constraints on the width of a table, such as explicit values for
columnwidth attributes, and minimum sizes for table cell contents. For a discussion of table layout algorithms, see
Cascading Style Sheets, level 2

The rowspacing and columnspacing attributes specify how much space should be added between each row and
column. However, spacing before the first row and after the last row (i.e. at the top and bottom of the table) is given b
the second number in the value of theamespacing attribute, and spacing before the first column and after the last
column (i.e. on the left and on the right of the table) is given by the first number in the value tfdfhespacing
attribute.

In those attributes’ syntaxeB;unit or v-unit represents a unit of horizontal or vertical length, respectively (see Sec-
tion 2.3.4.9. The units shown in the attributes’ default values ¢r ex) are typically used.

Therowlines andcolumnlines attributes specify whether and what kind of lines should be added between each row
and column. Lines before the first row or column and after the last row or column are given ushigutleeattribute.

If a frame is desired around the table, theame attribute is used. If the attribute value is not ‘none’, thfatames-
pacing is used to add spacing between the lines of the frame and the first and last rows and columns of the table.
frame="none", then the&ramespacing attribute is ignored. Thérame andframespacing attributes are not part of
therowlines/columnlines, rowspacing/columnspacing options because having them be so would often require
thatrowlines andcolumnlines would need to be fully specified instead of just giving a single value. For example, if
a table had five columns and we wanted lines between the columns, but no frame, then we would have éawutite
lines="none solid solid solid solid none". By separating the frame from the internal lines, we only need to
write columnlines="solid".

88

http://www.w3.org/TR/CSS2/tables.html#width-layout

Theequalrows attribute forces the rows all to be the same total height when setu® Theequalcolumns attribute
forces the columns all to be the same width when settce.

Thedisplaystyle attribute specifies the value aisplaystyle (described undetistyle in Section3.3.4) within

each cell ftd element) of the table. Settinfiisplaystyle=true can be useful for tables whose elements are whole
mathematical expressions; the default valuezfse is appropriate when the table is part of an expression, for example,
when it represents a matrix. In either caseriptlevel (Section3.3.4) is not changed for the table cells.

Theside attribute specifies what side of a table a label for a table row should should be placed. This attribute is intende
to be used for labeled expressionsléfft or right is specified, the label is placed on the left or right side of the table
row respectively. The other two attribute values are variationsedit andright: if the labeled row fits within the

width allowed for the table without the label, but does not fit within the width if the label is included, then the label
overlaps the row and is displayed above the rowifalign for that row istop; otherwise the label is displayed below

the row.

If there are multiple labels in a table, the alignment of the labels within the virtual column that they form is left-aligned
for labels on the left side of the table, and right-aligned for labels on the right side of the table. The alignment can b
overridden by specifyingolumnalignment for amlabeltr element.

Theminlabelspacing attribute specifies the minimum space allowed between a label and the adjacent entry in the
row.

3.5.1.3 Examples

A 3 by 3 identity matrix could be represented as follows:

<mrow>
<mo> (</mo>
<mtable>
<mtr> <mn>1</mn> <mn>0</mn> <mn>0</mn> </mtr>
<mtr> <mn>0</mn> <mn>1</mn> <mn>0</mn> </mtr>
<mtr> <mn>0</mn> <mn>0</mn> <mn>1</mn> </mtr>
</mtable>
<mo>) </mo>
</mrow>

This might be rendered as:

1 00
010
0 01

Note that the parentheses must be represented explicitly; they are not parimxfaile element’s rendering. This
allows use of other surrounding fences, such as brackets, or none at all.

3.5.2 Row in Table or Matrix (mtr)
3.5.2.1 Description

An mtr element represents one row in a table or matrixm&n element is only allowed as a direct sub-expression of
anmtable element, and specifies that its contents should form one row of the table. Each argumanisgblaced in
a different column of the table, starting at the leftmost column.

As described in SectioB.5.1, mtr elements are effectively padded on the right witld elements when they are shorter
than other rows in a table.

89

3.5.2.2 Attributes

Name values default
rowalign top | bottom | center | baseline | axis inherited
columnalign (left | center | right) + inherited
groupalign group-alignment-list-list inherited

Therowalign andcolumnalign attributes allow a specific row to override the alignment specified by the same at-
tributes in the surroundingtable element.

As withmtable, if there are more entries than necessary in the valuebimnalign (i.e. more entries than columns
in the row), then the extra entries will be ignored. If there are fewer entries than columns, then the last entry will be
repeated as many times as needed.

Thegroupalign attribute is described with the alignment elements,igngroup andmalignmark, in Section3.5.5

3.5.3 Labeled Row in Table or Matrix (mlabeledtr)
3.5.3.1 Description

Anmlabeledtr element represents one row in a table that has a label on either the left or right side, as determined b
theside attribute. The label is the first child aflabeledtr. The rest of the children represent the contents of the row
and are identical to those used fair; all of the children except the first must hed elements.

An mlabeledtr element is only allowed as a direct sub-expression ofitaible element. Each argument afia-
beledtr except for the first argument (the label) is placed in a different column of the table, starting at the leftmost
column.

Note that the label element is not considered to be a cell in the table row. In particular, the label element is not take
into consideration in the table layout for purposes of width and alignment calculations. For example, in the case of a
mlabeledtr with a label and a single centeradd child, the child is first centered in the enclosifigable, and then

the label is placed. Specifically, the childrst centered in the space that remains in the table after placing the label.

While MathML 2.0 does not specify an algorithm for placing labels, implementors of visual renderers may find the
following formatting model useful. To place a label, an implementor might think in terms of creating a larger table, with
an extra column on both ends. Thelumnwidth attributes of both these border columns would be se&titoso that

they expand to fill whatever space remains after the inner columns have be laid out. Finally, depending on the value
of side andminlabelspacing, the label is placed in whatever border column is appropriate, possibly shifted down if
necessary.

3.5.3.2 Attributes

The attributes fomlabeledtr are the same as fartr. Unlike the attributes for thetable element, attributes of
mlabeledtr that apply to column elements also apply to the label. For example, in a one column table,

<mlabeledtr rowalign=’center baseline’>

means that the label is vertically centered on the row, and that the actual entry is baseline aligned.

3.5.3.3 Equation Numbering

One of the important uses miabeledtr is for numbered equations. Imaabeledtr, the label represents the equation
number and the elements in the row are the equation being numberedidéi@andminlabelspacing attributes of
of mtable determine the placement of the equation number.

90

In larger documents with many numbered equations, automatic numbering becomes important. While automatic equ
tion numbering and automatically resolving references to equation numbers is outside the scope of MathML, thes
problems can be addressed by the use of style sheets or other means. The mlabeledtr construction provides suppor
both of these functions in a way that is intended to facilitate XSL processingnlldi®ledtr element can be used to
indicate the presence of a numbered equation, and the first child can be changed to the current equation number, al
with incrementing the global equation number. For cross references, an id on either the mlabeledtr element or on t
first element itself could be used as a target of any link.

<mtable>
<mlabeledtr id=’e-is-m-c-square’>
<mtext> (2.1) </mtext>
<mtd>
<mrow>
<mi>E</mi>
<mo>=</mo>
<mrow>
<mi>m</mi>
<mo>&it ;</mo>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mtd>
</mlabeledtr>
</mtable>

This should be rendered as:

E=mc2 (2.2)

354 Entry in Table or Matrix (mtd)
3.54.1 Description

An mtd element represents one entry in a table or matrixméd element is only allowed as a direct sub-expression of
anmtr or anmlabeledtr element.

Themtd element accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferre
mrow’ formed from all its arguments, as described in Sec8dh3

3.54.2 Attributes

Name values default
rowspan number 1
columnspan number 1
rowalign top | bottom | center | baseline | axis inherited
columnalign left | center | right inherited
groupalign group-alignment-list inherited

91

The rowspan and columnspan attributes allow a specific matrix element to be treated as if it occupied the number
of rows or columns specified. The interpretation of how this larger element affects specifying subsequent rows an
columns is meant to correspond with the similar attributes for HTML 4.0 tables.

Therowspan andcolumnspan attributes can be used aroundretdl element that represents the label inlabeledtr
element. Also, the label oflabeledtr element is not considered to be part of a previntigspan andcolumnspan.

Therowalign andcolumnalign attributes allow a specific matrix element to override the alignment specified by a
surroundingntable or mtr element.

Thegroupalign attribute is described with the alignment elements,igngroup andmalignmark, in Section3.5.5

3.55 Alignment Markers
3.5.5.1 Description

These are space-like elements (see Se@iarf that can be used to vertically align specified points within a column
of MathML expressions, by the automatic insertion of the necessary amount of horizontal space between specifie
sub-expressions.

The discussion that follows will use the example of a set of simultaneous equations that should be rendered with vertic
alignment of the coefficients and variables of each term, by inserting spacing somewhat like that shown here:

8.44x + 55 y = 0

3.1x - 0.7y =-1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear as:

8.44x + b5y = 0

3.1x - 0.7y = -1.1
(For audio renderers, it is suggested that the alignment elements produce the analogous behavior of altering the rhyt
of pronunciation so that it is the same for several sub-expressions in a column, by the insertion of the appropriate tirr
delays in place of the extra horizontal spacing described here.)

The expressions whose parts are to be aligned (each equation, in the example above) must be given as the table elem
(i.e. as themtd elements) of one column of amtable. To avoid confusion, the term ‘table cell’ rather than ‘table
element’ will be used in the remainder of this section.

All interactions between alignment elements are limited tartwble column they arise in. That is, every column of

a table specified by amtable element acts as an ‘alignment scope’ that contains within it all alignment effects arising
from its contents. It also excludes any interaction between its own alignment elements and the alignment elements insi
any nested alignment scopes it might contain.

The reasomtable columns are used as alignment scopes is that they are the only general way in MathML to arrange
expressions into vertical columns. Future versions of MathML may provideeahgnscope element that allows an
alignment scope to be created around any MathML element, but even then, table columns would still sometimes ne
to act as alignment scopes, and since they are not elements themselves, but rather are made from corresponding par
the content of severaltr elements, they could not individually be the content of an alignment scope element.

An mtable element can be given the attribut®ignmentscope=false to cause its columns not to act as alignment
scopes. This is discussed further at the end of this section. Otherwise, the discussion in this section assumes that 1
attribute has its default value otue.

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the points to be aligned wi
corresponding points in other expressions, and the beginning ofagé@alment group of sub-expressions that can be

92

horizontally shifted as a unit to effect the alignment. Each alignment group must contain one alignment point. It is als
necessary to specify which expressions in the column have no alignment groups at all, but are affected only by tt
ordinary column alignment for that column of the table, i.e. bydbeumnalign attribute, described elsewhere.

The alignment groups start at the locations of invist®¥a igngroup elements, which are rendered with zero width
when they occur outside of an alignment scope, but within an alignment scope are rendered with just enough horizont
space to cause the desired alignment of the alignment group that follows them. A simple algorithm by which a MathML
application can achieve this is given later. In the example above, each equation would has@ Ggagroup element

before each coefficient, variable, and operator on the left-hand side, one befersigine and one before the constant

on the right-hand side.

In general, a table cell containimynaligngroup elements containg alignment groups, with thigh group consisting
of the elements entirely after thidh maligngroup element and before théHl)-th; no element within the table cell's
content should occur entirely before its fitstl igngroup element.

Note that the division into alignment groups does necessarily fit the nested expression structure of the MathML
expression containing the groups - that is, it is permissible for one alignment group to consist of the engrofioa#

of another one, and the beginning of a third one, for example. This can be seen in the MathML markup for the presel
example, given at the end of this section.

The nested expression structure formedhbyws and other layout schemata should reflect the mathematical structure of
the expression, not the alignment-group structure, to make possible optimal renderings and better automatic interpre
tions; see the discussion of proper grouping in section Segtibf Insertion of alignment elements (or other space-like
elements) should not alter the correspondence between the structure of a MathML expression and the structure of 1
mathematical expression it represents.

Although alignment groups need to coincide with the nested expression structure of layout schemata, there are nonet
less restrictions on where aaligngroup element is allowed within a table cell. Theligngroup element may only
be contained within elements of the following types (which are themselves contained in the table cell):

anmrow element, including an inferreti-ow such as the one formed by a multi-argumetd element;
anmstyle element;

anmphantom element;

anmfenced element;

anmaction element, though only its selected sub-expression is checked;

asemantics element.

These restrictions are intended to ensure that alignment can be unambiguously specified, while avoiding complexitit
involving things like overscripts, radical signs and fraction bars. They also ensure that a simple algorithm suffices
accomplish the desired alignment.

Note that some positions for araligngroup element, although legal, are not useful, such as fonanigngroup
element to be an argument of afienced element. When inserting araligngroup element before a given element

in pre-existing MathML, it will often be necessary, and always acceptable, to form annewelement to contain

just themaligngroup element and the element it is inserted before. In general, this will be necessary except wher
themaligngroup element is inserted directly into airow or into an element that can form an inferrecbw from its
contents. See the warning about the legal grouping of ‘space-like elements’ in Sketion

For the table cells that are divided into alignment groups, every element in their content must be part of exactly on
alignment group, except the elements from the above list that camaigngroup elements inside them, and the-
ligngroup elements themselves. This means that, within any table cell containing alignment groups, the first complet
element must be amligngroup element, though this may be preceded by the begin tags of other elements.

This requirement removes a potential confusion about how to align elements before thelfirghgroup element,
and makes it easy to identify table cells that are left out of their column’s alignment process entirely.

93

Note that it is not required that the table cells in a column that are divided into alignment groups each contain the san
number of groups. If they don't, zero-width alignment groups are effectively added on the right side of each table cel
that has fewer groups than other table cells in the same column.

3.5.5.3 Table cells that are not divided into alignment groups

Expressions in a column that are to have no alignment groups should contadn fgnhgroup elements. Expressions

with no alignment groups are aligned using only ¢eeéumnalign attribute that applies to the table column as a whole,
and are not affected by thgoupalign attribute described below. If such an expression is wider than the column width
needed for the table cells containing alignment groups, all the table cells containing alignment groups will be shifted a
a unit within the column as described by thelumnalign attribute for that column. For example, a column heading
with no internal alignment could be added to the column of two equations given above by preceding them with anothe
table row containing antext element for the heading, and using the defaultumnalign="center" for the table, to
produce:

equations with aligned variables
8.44x + 65 y = O
3.1x - 0.7y = -1.1

or, with a shorter heading,

some equations
8.44x + 55 y = 0
3.1x - 0.7y = -1.1

3.5.5.4 Specifying alignment points using malignmark

Each alignment group’s alignment point can either be specified by atgnmark element anywhere within the align-
ment group (except within another alignment scope wholly contained inside it), or it is determined automatically from
thegroupalign attribute. Thegroupalign attribute can be specified on the group’s precedisilii gngroup element

or on its surroundingitd, mtr, or mtable elements. In typical cases, using eoupalign attribute is sufficient to
describe the desired alignment points, samadignmark elements need to be provided.

Themalignmark element indicates that the alignment point should occur on the right edge of the preceding element
or the left edge of the following element or character, depending oadge attribute ofmalignmark. Note that it may

be necessary to introduce ahow to group amalignmark element with a neighboring element, in order not to alter
the argument count of the containing element. (See the warning about the legal grouping of ‘space-like elements’ i
Section3.2.6.

When anmalignmark element is provided within an alignment group, it can occur in an arbitrarily deeply nested
element within the group, as long as it is not within a nested alignment scope. It is not subject to the same restrictior
on location asnaligngroup elements. However, its immediate surroundings need to be such that the element to its
immediate right or left (depending on iégge attribute) can be unambiguously identified. If no such element is present,
renderers should behave as if a zero-width element had been inserted there.

For the purposes of alignment, an element X is considered to be to the immediate left of an element Y, and Y t
the immediate right of X, whenever X and Y are successive arguments of one (possibly inferedjement, with X
coming before Y. In the case af enced elements, MathML applications should evaluate this relation as iitheced
element had been replaced by the equivalent expanded form invalying Similarly, anmaction element should be
treated as if it were replaced by its currently selected sub-expression. In all other cases, no relation of ‘to the immedia
left or right’ is defined for two elements X and Y. However, in the case of content elements interspersed in presentatio

94

markup, MathML applications should attempt to evaluate this relation in a sensible way. For example, if a rendere
maintains an internal presentation structure for rendering content elements, the relation could be evaluated with resp
to that. (See Chaptdrand Chapteb for further details about mixing presentation and content markup.)

Unlike all other elements in MathMImalignmark elements are allowed to occur within the content of token elements,
such asmn, mi, or mtext. When this occurs, the character immediately before or aftendhegnmark element will

carry the alignment point; in all other cases, the element to its immediate left or right will carry the alignment point.
The rationale for this is that it is sometimes desirable to align on the edges of specific characters within multi-characte
token elements.

If there is more than onealignmark element in an alignment group, all but the first one will be ignored. MathML
applications may wish to provide a mode in which they will warn about this situation, but it is not an error, and should
trigger no warnings by default. (Rationale: it would be inconvenient to have to remove all unnecessatymark
elements from automatically generated data, in certain cases, such as when they are used to specify alignment
‘decimal points’ other than the ’.’ character.)

3.5.5.5 Attributes

Name values default
edge left | right left

malignmark has one attributesdge, which specifies whether the alignment point will be found on the left or right
edge of some element or character. The precise location meant by ‘left edge’ or ‘right edge’ is discussed below. |
edge="right", the alignment point is the right edge of the element or character to the immediate lefnafittygmark
element. Ifedge="left", the alignment point is the left edge of the element or character to the immediate right of the
malignmark element. Note that the attribute refers to the choice of edge rather than to the direction in which to look
for the element whose edge will be used.

Formalignmark elements that occur within the content of MathML token elements, the preceding or following charac-
ter in the token element’s content is used; if there is no such character, a zero-width character is effectively inserted f
the purpose of carrying the alignment point on its edge. For all ethietgnmark elements, the preceding or following
element is used; if there is no such element, a zero-width element is effectively inserted to carry the alignment point.

The precise definition of the ‘left edge’ or ‘right edge’ of a character or glyph (e.g. whether it should coincide with an
edge of the character’s bounding box) is not specified by MathML, but is at the discretion of the renderer; the rendere
is allowed to let the edge position depend on the character’'s context as well as on the character itself.

For proper alignment of columns of numbers (usitgupalign values ofleft, right, ordecimalpoint), itis likely

to be desirable for the effective width (i.e. the distance between the left and right edges) of decimal digits to be constar
even if their bounding box widths are not constant (e.qg. if ‘1’ is narrower than other digits). For other characters, sucl
as letters and operators, it may be desirable for the aligned edges to coincide with the bounding box.

The ‘left edge’ of a MathML element or alignment group refers to the left edge of the leftmost glyph drawn to render
the element or group, except that explicit space representesidaye ormtext elements should also count as ‘glyphs’

in this context, as should glyphs that would be drawn if notsfsitantom elements around them. The ‘right edge’ of an
element or alignment group is defined similarly.

3.5.5.6 Attributes

Name values default
groupalign left | center | right | decimalpoint inherited

maligngroup has one attributegroupalign, which is used to determine the position of its group’s alignment point
when nomalignmark element is present. The following discussion assumes thakhdgnmark element is found
within a group.

95

In the example given at the beginning of this section, there is one column of 2 table cells, with 7 alignment groups ir
each table cell; thus there are 7 columns of alignment groups, with 2 groups, one above the other, in each column. The
columns of alignment groups should be given thgrédupalign values ‘decimalpoint left left decimalpoint left left
decimalpoint’, in that order. How to specify this list of values for a table cell or table column as a whole, using attributes
on elements surrounding theligngroup element is described later.

If groupalignis ‘left’, ‘right’, or ‘center’, the alignment point is defined to be at the group’s left edge, at its right edge,
or halfway between these edges, respectively. The meanings of ‘left edge’ and ‘right edge’ are as discussed above
relation tomalignmark.

If groupalign is ‘decimalpoint’, the alignment point is the right edge of the last character before the decimal point.
The decimal point is the first *.” character (ASCII 0x2e) in the fitatelement found along the alignment group’s base-
line. More precisely, the alignment group is scanned recursively, depth-first, for thenfelgment, descending into all
arguments of each element of the typesw (including inferrednrows), mstyle, mpadded, mphantom, mfenced, or
msqrt, descending into only the first argument of each ‘scripting’ elemesil{, msup, msubsup, munder, mover,
munderover, mmultiscripts) or of eachmroot or semantics element, descending into only the selected sub-
expression of eachaction element, and skipping the content of all other elements. Theridirsto found always
contains the alignment point, which is the right edge of the last character before the first decimal point in the content c
themn element. If there is no decimal point in the element, the alignment point is the right edge of the last character
in the content. If the decimal point is the first character of sheslement’s content, the right edge of a zero-width
character inserted before the decimal point is used. lfimelement is found, the right edge of the entire alignment
group is used (as fggroupalign="right").

In order to permit alignment on decimal pointsdn elements, a MathML application can convert a content expression
into a presentation expression that renders the same way before searching for decimal points as described above.

If characters other than ‘.’ should be used as ‘decimal points’ for alignment, they should be precedad dymark
elements within then token’s content itself.

For any of thegroupalign values, if an explicihalignmark element is present anywhere within the group, the position
it specifies (described earlier) overrides the automatic determination of alignment point frgeothalign value.

3.5.5.7 Inheritance of groupalign values

It is not usually necessary to pugaoupalign attribute on everyaligngroup element. Since this attribute is usually

the same for every group in a column of alignment groups to be aligned, it can be inherited from an attribute on th
mtable that was used to set up the alignment scope as a whole, or fromtiher mtd elements surrounding the
alignment group. It is inherited via an ‘inheritance path’ that proceeds frosible through successively contained

mtr, mtd, andmaligngroup elements. There is exactly one element of each of these kinds in this path froyatare

to any alignment group inside it. In general, the valugodupalign will be inherited by any given alignment group

from the innermost element that surrounds the alignment group and provides an explicit setting for this attribute.

Note, however, that eachitd element needs, in general, a list @foupalign values, one for eachaligngroup
element inside it, rather than just a single value. Furthermonet aior mtable element needs, in general, a list of lists
of groupalign values, since it spans multipleeable columns, each potentially acting as an alignment scope. Such
lists of group-alignment values are specified using the following syntax rules:

group-alignment left | right | center | decimalpoint
group-alignment-list group-alignment +
group-alignment-list-list := (’{’ group-alignment-list ’}’) +

As described in SectioB.3.4 | separates alternatives;represents optional repetition (i.e. 1 or more copies of what
precedes it), with extra values ignored and the last value repeated if necessary to cover additional table columns

96

alignment group columns;’ and ’’ represent literal braces; arfdand) are used for grouping, but do not literally
appear in the attribute value.

The permissible values of the-oupalign attribute of the elements that have this attribute are specified using the above
syntax definitions as follows:

Element type groupalign attribute syntax default value

mtable group-alignment-list-list left

mtr group-alignment-list-list inherited fromtable attribute
mtd group-alignment-list inherited from withimtr attribute
maligngroup group-alignment inherited from withintd attribute

In the example near the beginning of this section, the group alignment values could be specified orté\edey
ment usinggroupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or on everyr element using
groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or (most conveniently) onitheble as a
whole usinggroupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, which provides a single braced
list of group-alignment values for the single column of expressions to be aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given near the start of this sectiol
To repeat the example, the desired rendering is:

8.44x + 55 y = 0
3.1x- 0.7y =-1.1

One way to represent that in MathML is:

<mtable groupalign="decimalpoint left left decimalpoint left left decimalpoint">
<mtd>
<mrow>
<mrow>
<maligngroup/>
<mn> 8.44 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>
</mrow>
<maligngroup/>
<mo> + </mo>
<mrow>
<maligngroup/>
<mn> 55 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>
</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>

97

<mn> 0 </mn>
</mtd>
<mtd>
<mrow>
<mrow>
<maligngroup/>
<mn> 3.1 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>
</mrow>
<maligngroup/>
<mo> - </mo>
<mrow>
<maligngroup/>
<mn> 0.7 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>
</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mrow>
<mo> - </mo>
<mn> 1.1 </mn>
</mrow>
</mtd>
</mtable>

3.5.5.9 Further details of alignment elements

The alignment elements:1igngroup andmalignmark can occur outside of alignment scopes, where they are ignored.
The rationale behind this is that in situations in which MathML is generated, or copied from another document, withou
knowing whether it will be placed inside an alignment scope, it would be inconvenient for this to be an error.

An mtable element can be given the attribui#ignmentscope=false to cause its columns not to act as alignment
scopes. In general, this attribute has the syiftadue | false) +;ifitsvalueis alist of boolean values, each boolean
value applies to one column, with the last value repeated if necessary to cover additional columns, or with extra value
ignored. Columns that are not alignment scopes are part of the alignment scope surrounditepifeeelement, if

there is one. Use aflignmentscope=false allows nested tables to contaialignmark elements for aligning the

inner table in the surrounding alignment scope.

As discussed above, processing of alignment for content elements is not well-defined, since MathML does not speci
how content elements should be rendered. However, many MathML applications are likely to find it convenient tc
internally convert content elements to presentation elements that render the same way. Thus, as a general rule, e
if a renderer does not perform such conversions internally, it is recommended that the alignment elements should |
processed as if it did perform them.

A particularly important case for renderers to handle gracefully is the interaction of alignment elements wih the

98

trix content element, since this element may or may not be internally converted to an expression contaitubd&n
element for rendering. To partially resolve this ambiguity, it is suggested, but not required, thaitafsthie: element

is converted to an expression involving atable element, that thatable element be given the attributd ign-
mentscope=false, which will make the interaction of theatrix element with the alignment elements no different
than that of a generic presentation element (in particular, it will allow it to comtain gnmark elements that operate
within the alignment scopes created by the columns oftaable that contains theatrix element in one of its table
cells).

The effect of alignment elements within table cells that have non-default values obihenspan or rowspan at-
tributes is not specified, except that such use of alignment elements is not an error. Future versions of MathML ma
specify the behavior of alignment elements in such table cells.

The effect of possible linebreaking of amable element on the alignment elements is not specified.

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML applications can perform the alignment specified in this section is given here.
Since the alignment specification is deterministic (except for the definition of the left and right edges of a character)
any correct MathML alignment algorithm will have the same behavior as this one.nfadhe column (alignment
scope) can be treated independently; the algorithm given here applies iz atsiee column, and takes into account

the alignment elements, thggoupalign attribute described in this section, and i umnalign attribute described
undemtable (Section3.5.1).

First, a rendering is computed for the contents of each table cell in the column, using zero widtm&righgroup
andmalignmark elements. The final rendering will be identical except for horizontal shifts applied to each alignment
group and/or table cell. The positions of alignment points specified byrahygnmark elements are noted, and the
remaining alignment points are determined usifgupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and right edge are noted, allowin
the width of the group on each side of the alignment point (left and right) to be determined. The sum of these twc
‘side-widths’, i.e. the sum of the widths to the left and right of the alignment point, will equal the width of the alignment

group.

Second, each column of alignment groups, from left to right, is scannedtiTeean covers thigh alignment group in
each table cell containing any alignment groups. Table cells with no alignment groups, or with fewealigament
groups, are ignored. Each scan computes two maximums over the alignment groups scanned: the maximum width to 1
left of the alignment point, and the maximum width to the right of the alignment point, of any alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups) gives one total width, which
will be the width of each table cell containing alignment groups. Call the maximum number of alignment groups in one
cell n; each such cell’s width is divided intonZadjacent sections, calledil.@nd R() for i from 1 ton, using the B
maximum side-widths computed above; for eactine width of all sections called L)(is the maximum width of any

cell's ith alignment group to the left of its alignment point, and the width of all sections callgdsRtie maximum

width of any cell'sith alignment group to the right of its alignment point.

The alignment groups are then positioned in the unique way that places the part afhegobup to the left of its
alignment point in a section calledil(and places the part of eadin group to the right of its alignment point in

a section called R). This results in the alignment point of eaith group being on the boundary between adjacent
sections Li) and R(), so that all alignment points dth groups have the same horizontal position.

The widths of the table cells that contain no alignment groups were computed as part of the initial rendering, and ma
be different for each cell, and different from the single width used for cells containing alignment groups. The maximum
of all the cell widths (for both kinds of cells) gives the width of the table column as a whole.

99

The position of each cell in the column is determined by the applicable part of the valueaefltirenal ign attribute

of the innermost surroundingtable, mtr, ormtd element that has an explicit value for it, as described in the sections
on those elements. This may mean that the cells containing alignment groups will be shifted within their column, ir
addition to their alignment groups having been shifted within the cells as described above, but since each such cell h
the same width, it will be shifted the same amount within the column, thus maintaining the vertical alignment of the
alignment points of the corresponding alignment groups in each cell.

3.6 Enlivening Expressions
3.6.1 Bind Action to Sub-Expressionfaction)

There are many ways in which it might be desirable to make mathematical content active. Adding a link to a MathML
sub-expressions is one basic kind of interactivity Sectidn4d However, many other kinds of interactivity cannot be
easily accommodated by generic linking mechanisms. For example, in lengthy mathematical expressions, the abili
to ‘fold’ expressions might be provided, i.e. a renderer might allow a reader to toggle between an ellipsis and a muc
longer expression that it represents.

To provide a mechanism for binding actions to expressions, MathML providesaitieion element. This element
accepts any number of sub-expressions as arguments, and the following attributes:

Name values default
actiontype (described below) (required attribute, no default value)
selection positive-integer 1

By default, MathML applications that do not recognize the specifietliontype should render the selected sub-
expression as defined below. If no selected sub-expression exists, it is a MathML error; the appropriate rendering in th
case is as described in Sectio2.2on the treatment of MathML errors.

Since a MathML-compliant application is not required to recognize any partieatarontypes, an application can be
fully MathML compliant just by implementing the above-described default behavior.

The selection attribute is provided for thosectiontypes that permit someone viewing a document to select one

of several sub-expressions for viewing. Its value should be a positive integer that indicates one of the sub-expressio
of themaction element, numbered from 1 to the number of children of the element. When this is the case, the sub
expression so indicated is defined to be the ‘selected sub-expression'nefdtizon element; otherwise the ‘selected
sub-expression’ does not exist, which is an error. Whers#lection attribute is not specified (including for action-
types for which it makes no sense), its default value is 1, so the selected sub-expression will be the first sub-expressic

Furthermore, as described in Chapieif a MathML application responds to a user command to copy a MathML sub-
expression to the environment’s ‘clipboard’, amgction elements present in what is copied should be given selection
attributes that correspond to their selection state in the MathML rendering at the time of the copy command.

A suggested list okctiontypes and their associated actions is given below. Keep in mind, however, that this list is
mainly for illustration, and recognized values and behaviors will vary from application to application.

<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)... </maction>
For this action type, a renderer would alternately display the given expressions, cycling through them wher
a reader clicked on the active expression, starting with the selected expression and updatingdheon
attribute value as described above. Typical uses would be for exercises in education, ellipses in long comput:
algebra output, or to illustrate alternate notations. Note that the expressions may be of significantly differen
size, so that size negotiation with the browser may be desirable. If size negotiation is not available, scrolling
elision, panning, or some other method may be necessary to allow full viewing.

100

<maction actiontype="statusline"> (expression) (message) </maction>
In this case, the renderer would display the expression in context on the screen. When a reader clicked on t
expression or moved the mouse over it, the renderer would send a rendering of the message to the brows
statusline. Since most browsers in the foreseeable future are likely to be limited to displaying text on their
statusline, authors would presumably use plain text imigxt element for the message in most circum-
stances. For nontext messages, renderers might provide a natural language translation of the markup, but
this is not required.

<maction actiontype="tooltip"> (expression) (message) </maction>
Here the renderer would also display the expression in context on the screen. When the mouse pauses over !
expression for a long enough delay time, the renderer displays a rendering of the message in a pop-up ‘tooltiy
box near the expression. These message boxes are also sometimes called ‘balloon help’ boxes. Presuma
authors would use plain text in artext element for the message in most circumstances. Fomnert
messages, renderers may provide a natural language translation of the markup if full MathML rendering is
not practical, but this is not required.

<maction actiontype="highlight" my:color="#ff0000"> expression </maction> <maction action-

type="highlight" my:background="#ff0000"> expression </maction>
In this case, a renderer might highlight the enclosed expression on a ‘mouse-over’ event. In the example give

above, non-standard attributes from another namespace are being used to pass additional information to re
derers that support them, without violating the MathML DTD (see Sedcti@r). Themy: color attribute
changes the color of the characters in the presentation, while/thexckground attribute changes the color
of the background behind the characters.

<maction actiontype="menu" selection="1" > (menu item 1) (menu item 2) ... </maction>
This action type instructs a renderer to provide a pop up menu. This allows a one-to-many linking capabil-
ity. Note that the menu items may be other <maction actiontype="menu">...</maction> expressions, thereb
allowing nested menus.

101

Chapter 4

Content Markup

4.1 Introduction
41.1 The Intent of Content Markup

As has been noted in the introductory section of this recommendation, mathematics can be distinguished by its use
a (relatively) formal language, mathematical notation. However, mathematics and its presentation should not be viewe
as one and the same thing. Mathematical sums or products exist and are meaningful to many applications complett
without regard to how they are rendered aurally or visually. The intent of the content markup in the Mathematical
Markup Language is to provide an explicit encoding of tihderlying mathematical structure of an expression, rather

than any particular rendering for the expression.

There are many reasons for providing a specific encoding for content. Even a disciplined and systematic use of pr
sentation tags cannot properly capture this semantic information. This is because without additional information it i
impossible to decide if a particular presentation was chosen deliberately to encode the mathematical structure or sil
ply to achieve a particular visual or aural effect. Furthermore, an author using the same encoding to deal with bot
the presentation and mathematical structure might find a particular presentation encoding unavailable simply becau
convention had reserved it for a different semantic meaning.

The difficulties stem from the fact that there are many to one mappings from presentation to semantics and vice vers
For example the mathematical construét multiplied by €' is often encoded using an explicit operator agdin< e.

In different presentational contexts, the multiplication operator might be invisible€’, or rendered as the spoken
word ‘times’. Generally, many different presentations are possible depending on the context and style preferences of t
author or reader. Thus, giveH € out of context it may be impossible to decide if this is the name of a chemical or a
mathematical product of two variablesande.

Mathematical presentation also changes with culture and time: some expressions in combinatorial mathematics tod
have one meaning to an Russian mathematician, and quite another to a French mathematician; sée4Skctiam
example. Notations may lose currency, for example the use of musical sharp and flat symbols to denote maxima al
minima [}: A notation in use in 1644 for the multiplication mentioned above Bds e[].

When we encode the underlying mathematical structure explicitly, without regard to how it is presented aurally ot
visually, we are able to interchange information more precisely with those systems that are able to manipulate th
mathematics. In the trivial example above, such a system could substitute values for the veriabtesand evaluate

the result. Further interesting application areas include interactive textbooks and other teaching aids.

4.1.2 The Scope of Content Markup

The semantics of general mathematical notation is not a matter of consensus. It would be an enormous job to system:
cally codify most of mathematics - a task that can never be complete. Instead, MathML makes explicit a relatively smal
number of commonplace mathematical constructs, chosen carefully to be sufficient in a large number of applications.

102

addition, it provides a mechanism for associating semantics with new notational constructs. In this way, mathematic:
concepts that are not in the base collection of elements can still be encoded (8&ttipn

The base set of content elements are chosen to be adequate for simple coding of most of the formulas used frc
kindergarten to the end of high school in the United States, and probably beyond through the first two years of colleg
that is up to A-Level or Baccalaureate level in Europe. Subject areas covered to some extent in MathML are:

arithmetic, algebra, logic and relations
calculus and vector calculus

set theory

sequences and series

elementary classical functions
statistics

linear algebra

It is not claimed, or even suggested, that the proposed set of elements is complete for these areas, but the provision
author extensibility greatly alleviates any problem omissions from this finite list might cause.

4.1.3 Basic Concepts of Content Markup

The design of the MathML content elements are driven by the following principles:

° The expression tree structure of a mathematical expression should be directly encoded by the MathML cor
tent elements.

° The encoding of an expression tree should be explicit, and not dependent on the special p&&ag of
or on additional processing such as operator precedence parsing.

. The basic set of mathematical content constructs that are provided should have default mathematical sema
tics.

. There should be a mechanism for associating specific mathematical semantics with the constructs.

The primary goal of the content encoding is to establish explicit connections between mathematical structures and the
mathematical meanings. The content elements correspond directly to parts of the underlying mathematical expressi
tree. Each structure has an associated default semantics and there is a mechanism for associating new mathema
definitions with new constructs.

Significant advantages to the introduction of content-specific tags include:

° Usage of presentation elements is less constrained. When mathematical semantics are inferred from presen
tion markup, processing agents must either be quite sophisticated, or they run the risk of inferring incomplete
or incorrect semantics when irregular constructions are used to achieve a particular aural or visual effect.

. It is immediately clear which kind of information is being encoded simply by the kind of elements that are
used.
. Combinations of semantic and presentation elements can be used to convey both the appearance and

mathematical meaning much more effectively than simply trying to infer one from the other.

Expressions described in terms of content elements must still be rendered. For common expressions, default vist
presentations are usually clear. ‘Take care of the sense and the sounds will take care of themselves’ wrote Lewis Carr
[]. Default presentations are included in the detailed description of each element occurring in &dction

To accomplish these goals, the MathML content encoding is based on the concept of an expression tree. A conte
expression tree is constructed from a collection of more primitive objects, referred to heseinaggers andoperators.
MathML possesses a rich set of predefined container and operator objects, as well as constructs for combining contain
and operators in mathematically meaningful ways. The syntax and usage of these content elements and construction
described in the next section.

103

4.2 Content Element Usage Guide

Since the intent of MathML content markup is to encode mathematical expressions in such a way that the mathematic
structure of the expression is clear, the syntax and usage of content markup must be consistent enough to facilit
automated semantic interpretation. There must be no doubt when, for example, an actual sum, product or functic
application is intended and if specific numbers are present, there must be enough information present to reconstri
the correct number for purposes of computation. Of course, it is still up to a MathML-compliant processor to decide
what is to be done with such a content-based expression, and computation is only one of many options. A render
or a structured editor might simply use the data and its own built-in knowledge of mathematical structure to rende
the object. Alternatively, it might manipulate the object to build a new mathematical object. A more computationally
oriented system might attempt to carry out the indicated operation or function evaluation.

The purpose of this section is to describe the intended, consistent usage. The requirements involve more than jt
satisfying the syntactic structure specified by an XML DTD. Failure to conform to the usage as described below will
result in a MathML error, even though the expression may be syntactically valid according to the DTD.

In addition to the usage information contained in this section, Sedtidmives a complete listing of each content
element, providing reference information about their attributes, syntax, examples and suggested default semantics &
renderings. The rules for using presentation markup within content markup are explained in S&cickn informal

EBNF grammar describing the syntax for the content markup is given in App@ndix

421 Overview of Syntax and Usage

MathML content encoding is based on the concept of an expression tree. As a general rule, the terminal nodes in t
tree represent basic mathematical objects, such as numbers, variables, arithmetic operations and so on. The intel
nodes in the tree generally represent some kind of function application or other mathematical construction that builc
up a compound object. Function application provides the most important example; an internal node might represent tl
application of a function to several arguments, which are themselves represented by the terminal nodes underneath
internal node.

The MathML content elements can be grouped into the following categories based on their usage:

containers

operators and functions
qualifiers

relations

conditions

semantic mappings
constants and symbols

These are the building blocks out of which MathML content expressions are constructed. Each category is discussed
a separate section below. In the remainder of this section, we will briefly introduce some of the most common elemen
of each type, and consider the general constructions for combining them in mathematically meaningful ways.

4.2.1.1 Constructing Mathematical Objects

Content expression trees are built up from basic mathematical objects. At the lowedkldualdes are encapsulated

in non-empty elements that define their type. Numbers and symbols are markeddiethelementsn andci. More
elaborate constructs such as sets, vectors and matrices are also marked using elements to denote their types, but re
than containing data directly, thesentainer elements are constructed out of other elements. Elements are used in order
to clearly identify the underlying objects. In this way, standard XML parsing can be used and attributes can be used t
specify global properties of the objects.

104

The containers such &gn>12345<cn/> , <ci>x</ci> and<csymbol definitionURL="mySymbol.htm" encod-
ing="text">S</csymbol>represent mathematical numbers , identifiers and externally defined symbols. Below, we
will look at operator elements such gslus or sin, which provide access to the basic mathematical operations and
functions applicable to those objects. Additional containers suele@for sets, anchatrix for matrices are provided

for representing a variety of common compound objects.

For example, the number 12345 is encoded as

<cn>12345</cn>

The attributes an@CDATA content together provide the data necessary for an application to parse the number. Fol
example, a default base of 10 is assumed, but to communicate that the underlying data was actually written in base
simply set thebase attribute to 8 as in

<cn base="8">12345</cn>

while the complex number 3 + 4i can be encoded as

<cn type="complex">3<sep/>4</cn>
Such information makes it possible for another application to easily parse this into the correct number.

As another example, the scalar symb@ encoded as

<ci>v</ci>

By default,ci elements represent elements from a commutative field (see Appenhdia vector is intended then this
fact can be encoded as

<ci type="vector">v</ci>

This invokes default semantics associated withvidiet or element, namely an arbitrary element of a finite-dimensional
vector space.

By using theci andcsymbol elements we have made clear that we are referring to a mathematical identifier or sym-
bol but this does not say anything about how it should be rendered. By default a symbol is rendered as$ irthe
csymbolelement were actually the presentation elemen(see Sectior8.2.2. The actual rendering of a mathemat-

ical symbol can be made as elaborate as necessary simply by using the more elaborate presentational constructs
described in Chapte) in the body of theci or csymbol element.

The default rendering of a simpta-tagged object is the same as for the presentation elemaemith some provision
for overriding the presentation of tl€DATA by providing explicitnntags. This is described in detail in Sectibd.

The issues for compound objects such as sets, vectors and matrices are all similar to those outlined above for numb
and symbols. Each such object has global properties as a mathematical object that impact how they are to be pars
This may affect everything from the interpretation of operations that are applied to them through to how to render the
symbols representing them. These mathematical properties are captured by setting attribute values.

4.2.1.2 Constructing General Expressions

The notion of constructing a general expression tree is essentially that of applying an operator to sub-objects. F
example, the suma + b can be thought of as an application of the addition operator to two arguraertd b. In
MathML, elements are used for operators for much the same reason that elements are used to contain objects. They
recognized at the level of XML parsing, and their attributes can be used to record or modify the intended semantics. F
example, with the MathMIplus element, setting th@efinitionURL andencodingattributes as in

105

<plus definitionURL="www.vnbooks.com/VectorCalculus.htm"
encoding="text"/>

can communicate that the intended operation is vector-based.

There is also another reason for using elements to denote operators. There is a crucial semantic distinction betwe
the function itself and the expression resulting from applying that function to zero or more arguments which must be
captured. This is addressed by making the functions self-contained objects with their own properties and providin
an explicitapply construct corresponding to function application. We will considerathely construct in the next
section.

MathML contains many pre-defined operator elements, covering a range of mathematical subjects. However, an ir
portant class of expressions involve unknown or user-defined functions and symbols. For these situations, MathM
provides a generalsymbol element, which is discussed below.

4.2.1.3 The apply construct

The most fundamental way of building up a mathematical expression in MathML content markuggg tgeonstruct.

An apply element typically applies an operator to its arguments. It corresponds to a complete mathematical expressio
Roughly speaking, this means a piece of mathematics that could be surrounded by parentheses or ‘logical bracke
without changing its meaning.

For example,X + y) might be encoded as

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
</apply>
The opening and closing tags afply specify exactly the scope of any operator or function. The most typical way of
usingapply is simple and recursive. Symbolically, the content model can the described as:

<apply>

op

a

b </apply>
where theoperands a and b are containers or other content-based elements themselves jsad operator or function.
Note that sincexpply is a container, this allowspply constructs to be nested to arbitrary depth.

An apply may in principle have any number of operands:

<apply> op a b [c...] <apply>
For example,X + y + 2) can be encoded as

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</apply>

106

Mathematical expressions involving a mixture of operations result in nested occurrerggd of For examplea x +
b would be encoded as
<apply>
<plus/>
<apply>
<times/>
<ci> a </ci>
<ci> x </ci>
</apply>
<ci> b </ci>
</apply>
There is no need to introduce parentheses or to resort to operator precedence in order to parse the expression corre
The apply tags provide the proper grouping for the re-use of the expressions within other constructs. Any expressiol
enclosed by aapply element is viewed as a single coherent object.

An expression such af (+ G)(x) might be a product, as in

<apply>
<times/>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>
<ci> x </ci>
</apply>
or it might indicate the application of the functién+ G to the argument. This is indicated by constructing the sum

<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>
and applying it to the argumenrtas in

<apply>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>
<ci> x </ci>
</apply>
Both the function and the arguments may be simple identifiers or more complicated expressions.

In MathML 1.0, another construction closely related to the use cdjipay element with operators and arguments was
thereln element. Therelnelement was used to denote that a mathematical relation holds between its arguments, a
opposed to applying an operator. Thus, the MathML markup for the expressigiwas given in MathML 1.0 by:

107

<reln>
<1t/>
<ci> x </ci>
<ci> y </ci>
</reln>
In MathML 2.0, theapply construct is used with all operators, including logical operators. The expression above
becomes

<apply>
<1t/>
<ci> x </ci>
<ci> y </ci>
</apply>
in MathML 2.0. The use oteln with relational operators is supported for reasons of backwards compatibility, but
deprecatedAuthors creating new content are encouraged taapgéy in all cases.

4.2.1.4 Explicitly defined functions and operators

The most common operations and functions suchlas andsin have been predefined explicitly as empty elements
(see Sectiont.4). They havetype anddefinitionURLattributes, and by changing these attributes, the author can
record that a different sort of algebraic operation is intended. This allows essentially the same notation to be re-used f
a discussion taking place in a different algebraic domain.

Due to the nature of mathematics the notation must be extensible. The key to extensibility is the ability of the user t
define new functions and other symbols to expand the terrain of mathematical discourse.

It is always possible to create arbitrary expressions, and then to use them as symbols in the language. Their propert
can then be inferred directly from that usage as was done in the previous section. However, such an approach wot
preclude being able to encode the fact that the construct was a known symbol, or to record its mathematical properti
except by actually using it. Thesymbol element is used as a container to construct a new symbol in much the same way
thatci is used to construct an identifier. (Note that ‘symbol’ is used here in the abstract sense and has no connectic
with any presentation of the construct on screen or paper). The difference in usagedsyilitail should refer to

some mathematically defined concept with an external definition referenced diaftivei t i onURL attribute, whereas

ci is used for identifiers that are essentially ‘local’ to the MathML expression and do not use any external definition
mechanism. The target of thiefinitionURLattribute on thecsymbol element may encode the definition in any
format: the particular encoding in use is given by #aeoding attribute

To usecsymbol to describe a completely new function, we write for example

<csymbol definitionURL="www.vnbooks.com/VectorCalculus.htm"
encoding="text">
Christoffel
</csymbol>

The definitionURL attribute specifies a URI that provides a written definition for theistoffel symbol. Sug-
gested default definitions for the content elements of MathML appear in Appénidia format based on OpenMath,
although there is no requirement that a particular format be used. The role @étheitionURL attribute is very
similar to the role of definitions included at the beginning of many mathematical papers, and which often just refer to ¢
definition used by a particular book.

108

MathML 1.0 supported the use of tHa to encode the fact that a construct is explicitly being used as a function or
operator. To record the fact that- G is being used semantically as if it were a function, it was encoded as:

<fn>
<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>
</apply>
</fn>

This usage, although allowed in MathML 2.0 for reasons of backwards compatibility, islepwcatedThe fact that

a construct is being used as an operator is clear from the position of the construct as the first chitgppf yhéf it is
required to add additional information to the construct, it should be wrappeddn=mticselement, for example:

<semantics definitionURL="www.mathslib.com/vectorfuncs/plus.htm"
encoding="Mathematica">
<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>
</apply>
</semantics>

MathML 1.0 supported the use 6éfinitionURL with fn to refer to external definitions for user-defined functions.

This usage, although allowed for reasons of backwards compatibilitydsecatedin MathML 2.0 in favour of using
csymbol to define the function, and theipply to link the function to its arguments. For example:

<apply>
<csymbol definitionURL="http://www.defs.org/function_spaces.html#my_def"
encoding="text">
BigK
</csymbol>
<ci>x</ci>
<ci>y</ci>
</apply>

4.2.1.5 The inverse construct
Given functions, it is natural to have functional inverses. This is handled byntherse element.

Functional inverses can be problematic from a mathematical point of view in that it implicitly involves the definition of
an inverse for an arbitrary functidh. Even at the K-through-12 level the concept of an invérse of many common
functionsFis not used in a uniform way. For example, the definitions used for the inverse trigonometric functions may
differ slightly depending on the choice of domain and/or branch cuts.

MathML adopts the view: i is a function from a domai® to D’, then the inversé of F is a function oveiD’ such
thatG(F (x)) = x for x in D. This definition does not assert that such an inverse exists for all or indeedraby or that
it is single-valued anywhere. Also, depending on the functions involved, additional properties $U&G(@¥ =y fory
in D’ may hold.

109

Theinverse element is applied to a function whenever an inverse is required. For example, application of the inverse
sine function tox, i.e. sin~! (x), is encoded as:

<apply>
<apply> <inverse/> <sin/> </apply>
<ci> x </ci>
</apply>
While arcsin is one of the predefined MathML functions, an explicit reference to ¥x) might occur in a document
discussing possible definitions afcsin.

4.2.1.6 The declare construct

Consider a document discussing the vectors(a, b, ¢) andB = (d, g,), and later including the expressivr= A + B.
It is important to be able to communicate the fact that wherévamdBare used they represent a particular vector. The
properties of that vector may determine aspects of operators spthifs

The simple fact thaf is a vector can be communicated by using the markup
<ci type="vector">A</ci>

but this still does not communicate, for example, which vector is involved or its dimensions.

Thedeclare construct is used to associate specific properties or meanings with an object. The actual declaration itse
is not rendered visually (or in any other form). However, it indirectly impacts the semantics of all affected uses of the
declared object.

The scope of a declaration is, by default, local to the MathML element in which the declaration is made. If the
scopeattribute of thedeclare element is set tglobal, the declaration applies to the entire MathML expression
in which it appears.

The uses of theleclare element range from resetting default attribute values to associating an expression with a
particular instance of a more elaborate structure. Subsequent uses of the original expression (within the scope of t
declare) play the same semantic role as would the paired object.

For example, the declaration

<declare>
<ci> A </ci>
<vector>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</vector>
</declare>

specifies thaf stands for the particular vectaa, (b, c) so that subsequent usesfdés inV = A + B can take this into
account. Whemrleclare is used in this way, the actual encoding

<apply>
<eq/>
<ci> V </ci>
<apply>
<plus/>

110

<ci> A </ci>
<ci> B </ci>
</apply>
</apply>
remains unchanged but the expression can be interpreted properly as vector addition.

There is no requirement to declare an expression to stand for a specific object. For example, the declaration

<declare type="vector">
<ci> A </ci>
</declare>

specifies thal is a vector without indicating the number of components or the values of specific components. The
possible values for theype attribute include all the predefined container element names succasr, matrix or
set (see Sectiod.3.2.9.

4.2.1.7 The lambda construct

The lambda calculus allows a user to construct a function from a variable and an expression. For example, the lamb
construct underlies the common mathematical idiom illustrated here:

Let f be the function taking tox 2 + 2

There are various notations for this concept in mathematical literature, sa¢k, #x)) = F or A(x, [F]) =F, wherex
is a free variable irf.

This concept is implemented in MathML with thembda element. A lambda construct withinternal variables is
encoded by aambda element withn+1 children. All but the last child must berar elements containing the identifiers
of the internal variables. The last child is an expression defining the function. This is typicalppamn, but can also
be any container element.

The following constructa (x, sinf+1)):

<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>
</apply>
</apply>
</lambda>
To usedeclare andlambda to construct the functior for which f(x) = x2 + x + 3 use:

<declare type="£fn">
<ci> f </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<plus/>
<apply>

111

<power/>
<ci> x </ci>
<cn> 2 </cn>
</apply>
<ci> x </ci>
<cn> 3 </cn>
</apply>
</lambda>
</declare>

The following markup declares and constructs the funcicuch that)(x, y) is the integral fromx to y of t 4 with
respect td.

<declare type="£fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<apply> <int/>
<bvar>
<ci> t </ci>
</bvar>
<lowlimit>
<ci> x </ci>
</lowlimit>
<uplimit>
<ci> y </ci>
</uplimit>
<apply> <power/>
<ci>t</ci>
<cn>4</cn>
</apply>
</apply>
</lambda>
</declare>

The functiond can then in turn be applied to an argument pair.

4.2.1.8 The use of qualifier elements and the condition construct

The last example of the preceding section illustrates the ugeadffier elementdowlimit, uplimit, andbvar used

in conjunction with theint element. A number of common mathematical constructions involve additional data that is
either implicit in conventional notation, such as a bound variable, or thought of as part of the operator rather than a
argument, as is the case with the limits of a definite integral.

Content markup uses qualifier elements in conjunction with a number of operators, including integrals, sums, serie
and certain differential operators. Qualifier elements appear in the sapg element with one of these operators. In
general, they must appear in a certain order, and their precise meaning depends on the operators being used. For det
see Sectiod.2.3.2

The qualifier elemenbvar is also used in another important MathML construction. Thadition element is used

112

to place conditions on bound variables in other expressions. This allows MathML to define sets by rule, rather tha
enumeration, for example. The following markup, for instance, encodes the| get 1:

<gset>
<bvar><ci> x </ci></bvar>
<condition>
<apply>
<1t/>
<ci> x </ci>
<cn> 1 </cn>
</apply>
</condition>
</set>

4.2.1.9 Rendering of Content elements

While the primary role of the MathML content element set is to directly encode the mathematical structure of ex-
pressions independent of the notation used to present the objects, rendering issues cannot be ignored. Each con
element has a default rendering, given in Sectigh and several mechanisms (including Sectioh 3.9 are provided

for associating a particular rendering with an object.

4.2.2 Containers

Containers provide a means for the construction of mathematical objects of a given type.

Tokens ci, cn, csymbol
Constructors interval, list, matrix, matrixrow, set, vector, apply, reln, fn, lambda
Specials declare

4.2.2.1 Tokens

Token elements are typically the leaves of the MathML expression tree. Token elements are used to indicate mathem
ical identifiers, numbers and symbols.

It is also possible for the canonically empty operator elements suekpasin andcos to be leaves in an expression
tree. The usage of operator elements is described in Setich

cn Thecn element is the MathML token element used to represent numbers. The supported types of numbers includ
real, integer, rational, complex-cartesian, andcomplex-polar, with real being the default type.
An attributebase (with default valuet0) is used to help specify how the content is to be parsed. The content
itself is essentiallfPCDATA, separated bysep/> when two parts are needed in order to fully describe a
number. For example, the real number 3 is constructedday type="real"> 3 </cn>, while the ratio-
nal number 3/4 is constructed &sn type="rational"> 3<sep/>4 </cn>. The detailed structure and
specifications are provided in Sectiént.1.1

ci Theci element, or ‘content identifier’ is used to construct a variable, or an identifieypA attribute indicates the
type of object the symbol represents. Typicadly, represents a real scalar, but no default is specified. The
content is eithePCDATA or a general presentation construct (see Se&ibry. For example,

<ci>

<msub>
<mi>c</mi>

113

<mn>1</mn>

</msub>

</ci>

encodes an atomic symbol that displays visuallg aghich, for purposes of content, is treated as a single

symbol representing a real number. The detailed structure and specifications is provided inSéctién
csymbol The csymbol element, or ‘content symbol’ is used to construct a symbol whose semantics are not part of

the core content elements provided by MathML, but defined exterraliyabol does not make any attempt

to describe how to map the arguments occurring in any application of the function into a new MathML

expression. Instead, it depends ondtgfinitionURL attribute to point to a particular meaning, and the

encoding attribute to give the syntax of this definition. The content afsgmbol is eitherPCDATAOr a

general presentation construct (see Sedidny. For example,

<csymbol definitionURL="www.vnbooks.com/ContDiffFuncs.htm"
encoding="text">
<msup>
<mi>C</mi>
<mn>2</mn>
</msup>

</csymbol>
encodes an atomic symbol that displays visuallyCa% and that, for purposes of content, is treated as a

single symbol representing the space of twice-differentiable continuous functions. The detailed structure an:
specifications is provided in Sectidr4.1.3

4.2.2.2 Constructors

MathML provides a number of elements for combining elements into familiar compound objects. The compound object
include things like lists, sets. Each constructor produces a new type of object.

interval Theinterval elementis described in detail in Sectiérl.2.4 It denotes an interval on the real line with the
values represented by its children as end points.clleure attribute is used to qualify the type of interval
being represented. For example,

<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval>
represents the open-closed interval often writi .

set and list The set andlist elements are described in detail in SectibiA.6.1and Sectiort.4.6.2 Typically, the
child elements of a possibly emplyist element are the actual components of an ordésed-or example,
an ordered list of the three symbealsb, andc is encoded as

<list> <ci> a </ci> <ci> b </ci> <ci> ¢ </ci> </list>
Alternatively, bvar and condition elements can be used to define lists where membership depends on

satisfying certain conditions. Asirder attribute, which is used to specify what ordering is to be used. When
the nature of the child elements permits, the ordering defaults to a numeric or lexicographic ordering. Sets ar
structured much the same as lists except that there is no implied ordering aiygéhaf set may berormal
ormultiset withmultiset indicating that repetitions are allowed. For both sets and lists, the child elements
must be valid MathML content elements. The type of the child elements is not restricted. For example, one
might construct a list of equations, or inequalities.

matrix and matrixrow Thematrix element is used to represent mathematical matrices. It is described in detail in
Section4.4.10.2 It has zero or more child elements, all of which argrixrow elements. These in turn

114

expect zero or more child elements that evaluate to algebraic expressions or numbers. These sub-eleme
are often real numbers, or symbols as in

<matrix>
<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>
<matrixrow> <cn> 3 </cn> <cn> 4 </cn> </matrixrow>

</matrix>
Thematrixrow elements must always be contained inside of a matrix, and all rows in a given matrix must

have the same number of elements. Note that the behavior ehtheix andmatrixrow elements is sub-
stantially different from thetable andmtr presentation elements.

vector Thevector elementis described in detail in Sectibd.10.1 It constructs vectors from andimensional vector
space so that ita child elements typically represent real or complex valued scalars as in the three-element
vector

<vector>
<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
</apply>
<cn> 3 </cn>
<cn> 7 </cn>
</vector>
apply The apply element is described in detail in Sectidnt.2.1 Its purpose is apply a function or operator to its
arguments to produce an an expression representing an element of the range of the function. It is involved i
everything from forming sums such as- b as in

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>
</apply>
through to using the sine function to construct gjrgs in

<apply>

<sin/>

<ci> a </ci>
</apply>
or constructing integrals. Its usage in any particular setting is determined largely by the properties of the
function (the first child element) and as such its detailed usage is covered together with the functions ant
operators in Section.2.3

reln Thereln elementis described in detail in Sectiért.2.2 It was used in MathML 1.0 to construct an expression

such asa=Db, as in

<reln><eq/>
<ci> a </ci>
<ci> b </ci>

</reln>
indicating an intended comparison between two mathematical values. MathML 2.0 takes the view that this

should be regarded as the application of a boolean function, and as such could be constructgspiging

115

The use ofreln with logical operators is supported for reasons of backwards compatibilitgldmrecated
in favour ofapply.
fn The fn element was used in MathML 1.0 to make explicit the fact that an expression is being used as a functior
or operator. This is allowed in MathML 2.0 for backwards compatibility, butéprecatedas the use of an
expression as a function or operator is clear from its position as the first childapparg. fn is discussed in
detail in Sectiom.4.2.3
lambda The lambda element is used to construct a user-defined function from an expression and one or more free
variables. The lambda construct withinternal variables takes+1 children. The first (second, uptyis a
bvar containing the identifiers of the internal variables. The last is an expression defining the function. This
is typically anapply, but can also be any container element. The following constluptssin x)
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<ci> x </ci>
</apply>
</lambda>
The following constructs the constant functibifx, 3)

<lambda>
<bvar><ci> x </ci></bvar>
<cn> 3 </cn>

</lambda>

4.2.2.3 Special Constructs

Thedeclare construct is described in detail in Sectiénrt.2.8 It is special in that its entire purpose is to modify the
semantics of other objects. It is not rendered visually or aurally.

The need for declarations arises any time a symbol (including more general presentations) is being used to represent
instance of an object of a particular type. For example, you may wish to declare that the symbolic idéntifisxsents
a vector.

The declaration

<declare type="vector"><ci>V</ci></declare>

resets the default type attribute ofi>V</ci> to vector for all affected occurrences a&fci>V</ci>. This avoids
having to write<ci type="vector">V</ci> every time you use the symbol.

More generallydeclare can be used to associate expressions with specific content. For example, the declaration

<declare>
<ci>F</ci>
<lambda>
<bvar><ci> U </ci></bvar>
<apply>
<int/>
<bvar><ci> x </ci></bvar>
<lowlimit><cn> 0 </cn></lowlimit>
<uplimit><ci> a </ci></uplimit>
<ci> U </ci>

116

</apply>
</lambda>
</declare>

associates the symbBlwith a new function defined by thiambda construct. Within the scope where the declaration

is in effect, the expression

<apply>
<ci>F</ci>
<ci> U </ci>

</apply>

stands for the integral &f from O toa.

The declare element can also be used to change the definition of a function or operator. For example, if the URL
http://.../MathML:noncommutplus described a non-commutative plus operation encoded in Maple syntax, then

the declaration

<declare definitionURL="http://.../MathML:noncommutplus"

encoding="Maple">
<plus/>
</declare>

would indicate that all affected usesmifus are to be interpreted as having that definitiopdis.

4.2.3

Functions, Operators and Qualifiers

The operators and functions defined by MathML can be divided into categories as shown in the table below.

unary arithmetic
unary logical
unary functional

exp, factorial, minus, abs, conjugate, arg, real, imaginary
not
inverse, ident

unary elementary classical functionsin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arc-

unary linear algebra

unary calculus and vector calculus

unary set-theoretic
binary arithmetic
binary logical

binary set operators
binary linear algebra
n-ary arithmetic
n-ary statistical
n-ary logical

n-ary linear algebra
n-ary set operator
n-ary functional
integral, sum, product operators
differential operator
quantifier

sin, arccos, arctan, arccosh, arccot, arccoth, arccsc, arccsch, arc-
sec, arcsech, arcsinh, arctanh, exp, 1n, log
determinant, transpose
divergence, grad, curl, laplacian

card

quotient, divide, minus, power, rem

implies, equivalent, approx

setdiff

vectorproduct, scalarproduct, outerproduct
plus, times, max, min, gcd, 1cm

mean, sdev, variance, median, mode
and, or, xor

selector

union, intersect

fn, compose

int, sum, product

diff, partialdiff

forall, exists

117

From the point of view of usage, MathML regards functions (for examaple and cos) and operators (for example
plus andtimes) in the same way. MathML predefined functions and operators are all canonically empty elements.

Note that thesymbol element can be used to construct a user-defined symbol that can be used as a function or operatc

4.2.3.1 Predefined functions and operators

MathML functions can be used in two ways. They can be used as the operator witippanelement, in which case
they refer to a function evaluated at a specific value. For example,

<apply>
<sin/>
<cn>5</cn>
</apply>
denotes a real number, namely sin(5).

MathML functions can also be used as arguments to other operators, for example

<apply>
<plus/><sin/><cos/>
</apply>
denotes a function, namely the result of adding the sine and cosine functions in some function space. (The defal
semantic definition oplus is such that it infers what kind of operation is intended from the type of its arguments.)
The number of child elements in th@ply is defined by the element in the first (i.e. operator) position.
Unary operators are followed by exactly one other child element withiragia y.
Binary operators are followed by exactly two child elements.
N-ary operators are followed by zero or more child elements.

The one exception to these rules is thatlare elements may be inserted in any position except the fiegtlare
elements are not counted when satisfying the child element count fagrycontaining a unary or binary operator
element.

Integral, sum, product and differential operators are discussed below in Sé&i6r2

4.2.3.2 Operators taking Qualifiers
The table below contains the qualifiers and the operators taking qualifiers in MathML.

gualifiers lowlimit, uplimit, bvar, degree, logbase, interval, condition
operators int, sum, product, root, diff, partialdiff, 1imit, log, moment, min, max, forall, exists

Operators taking qualifiers are canonically empty functions that differ from ordinary empty functions only in that they
support the use of specigalifier elements to specify their meaning more fully. They are used in exactly the same way
as ordinary operators, except that when they are used as operators, certain qualifier elements are also permitted tc
in the enclosingapply. They always precede the argument if it is present. If more than one qualifier is present, they
appear in the ordésvar, lowlimit, uplimit, interval, condition, degree, logbase. A typical example is:
<apply>

<int/>

<bvar><ci>x</ci></bvar>

118

<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>
</apply>
</apply>
It is also valid to use qualifier schema with a function not applied to an argument. For example, a function acting or
integrable functions on the interval [0,1] might be denoted:
<fn>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>
</apply>
</fn>

The meaning and usage of qualifier schema varies from function to function. The following list summarizes the usag
of qualifier schema with the MathML functions taking qualifiers.

int Theint function accepts theowlimit, uplimit, bvar, interval andcondition schemata. If bothowlimit
anduplimit schema are present, they denote the limits of a definite integral. The domain of integration may
alternatively be specified using interval or condition. Brar schema signifies the variable of integration.
When used withint, each qualifier schema is expected to contain a single child schema; otherwise an error
is generated.

diff Thediff function accepts thevar schema. Thevar schema specifies with respect to which variable the deriva-
tive is being taken. Thevar may itself contain alegree schema that is used to specify the order of the
derivative, i.e. a first derivative, a second derivative, etc. For example, the second derivativiglofespect
toxis:

<apply>
<diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>
</degree>
</bvar>
<apply><fn><ci>f</ci></fn>
<ci> x </ci>
</apply>
</apply>
partialdiff Thepartialdiff function accepts zero or mobgar schemata. Thevarschema specify with respect to
which variables the derivative is being taken. var elements may themselves contasgree schemata
that are used to specify the order of the derivative. Variables specified by mutigteelements will be
used in order as the variable of differentiation in mixed partials. When useatttialdiff, thedegree
schema is expected to contain a single child schema. For example,

119

<apply>

<partialdiff/>

<bvar><ci>x</ci></bvar>

<bvar><ci>y</ci></bvar>

<fn><ci>f</ci></fn>
</apply>
denote the mixed partial @/ dxdy) f.

sum, product Thesum andproductfunctions accept thigvar, lowlimit, uplimit, interval andconditionschemata.

If both lowlimit anduplimit schemata are present, they denote the limits of the sum or product. The lim-
its may alternatively be specified using theterval or conditionschema. Thévar schema signifies the
index variable in the sum or product. A typical example might be:

<apply>
<sum/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply>
<power/>
<ci>x</ci>
<ci>i</ci>
</apply>
</apply>
When used withlsum or product, each qualifier schema is expected to contain a single child schema; other-
wise an error is generated.
limit Thelimit function accepts zero or mok&rar schemata, and optionabndition andlowlimitschemata. A
condition may be used to place constraints ontkier. Thebvar schema denotes the variable with respect
to which the limit is being taken. Thiowlimit schema denotes the limit point. When used withit, the
bvar andlowlimit schemata are expected to contain a single child schema; otherwise an error is generatec
log Thelog function accepts only theogbase schema. If present, tHegbase schema denotes the base with respect
to which the logarithm is being taken. Otherwise, the log is assumed to be base 10. When useg with
logbase schema is expected to contain a single child schema; otherwise an error is generated.
moment Themoment function accepts only théegree schema. If present, thiegree schema denotes the order of
the moment. Otherwise, the moment is assumed to be the first order moment. When useshevith) the
degree schema is expected to contain a single child schema; otherwise an error is generated.
min, max Themin andmaxfunctions accept avar schema in cases where the maximum or minimum is being taken
over a set of values specified by éndition schema together with an expression to be evaluated on that set.
In MathML1.0, thebvar element was optional when using@ndition; if a condition element containing
a single variable was given by itself followingman or max operator, the variable was implicitly assumed to
be bound, and the expression to be maximized or minimized (if absent) was assumed to be the single bour
variable. This usage ideprecateih MathML 2.0 in favour of explicitly stating the bound variable(s) and the
expression to be maximised in all cases. The andmax elements may also be applied to a list of values in
which case no qualifier schemata are used. For examples of all three usages, seelSe8tibn
forall, exists The universal and existential quantifier operattb¥sall andexists are used in conjuction with one or
morebvar schemata to represent simple logical assertions. There are two ways of using the logical quantifie
operators. The first usage is for representing a simple, quantified assertion. For example, the statement ‘the
existsx< 9’ would be represented as:

<apply>

120

<exists/>
<bvar><ci> x </ci></bvar>
<apply><1lt/>

<ci> x </ci><cn> 9 </cn>
</apply>

</apply>
The second usage is for representing implications. Hypotheses are giverohgia ion element following

the bound variables. For example the statement ‘fox &b, x < 10’ would be represented as:

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><1t/>
<ci> x </ci><cn> 9 </cn>
</apply>
</condition>
<apply><1lt/>
<ci> x </ci><cn> 10 </cn>
</apply>
</apply>
Note that in both usages one or maxear qualifiers are mandatory.

42.4 Relations

binary relation neq, equivalent, approx

binary logical relation implies

binary set relation in, notin, notsubset, notprsubset
binary series relation tendsto

n-ary relation eq, leq, 1t, geq, gt

n-ary set relation subset, prsubset

The MathML content tags include a number of canonically empty elements which denote arithmetic and logical rela
tions. Relations are characterized by the fact that, if an external application were to evaluate them (MathML does nc
specify how to evaluate expressions), they would typically return a truth value. By contrast, operators generally retur
a value of the same type as the operands. For example, the result of evaduatirig either true or false (by contrast,

1+ 2 is again a number).

Relations are bracketed with their arguments usingfipd y element in the same way as other functions. In MathML
1.0, relational operators were bracketed uata@in. This usage, although still supported, is ndeprecatedn favour
of apply. The element for the relational operator is the first child element oapipey. Thus, the example from the
preceding paragraph is properly marked up as:
<apply>
<1t/>
<ci>a</ci>
<ci>b</ci>
</apply>
It is an error to enclose a relation in an element other taily or reln.

The number of child elements in theply is defined by the element in the first (i.e. relation) position.

Unary relations are followed by exactly one other child element withinaihel y.

121

Binary relations are followed by exactly two child elements.
N-ary relations are followed by zero or more child elements.

The one exception to these rules is thatlare elements may be inserted in any position except the fiegtlare
elements are not counted when satisfying the child element count fapgrycontaining a unary or binary relation
element.

425 Conditions
condition condition

The condition element is used to define the ‘such that’ construct in mathematical expressions. Condition element:
are used in a number of contexts in MathML. They are used to construct objects like sets and lists by rule instead of &
enumeration. They can be used with trerall andexists operators to form logical expressions. And finally, they
can be used in various ways in conjunction with certain operators. For example, they can be used withed@shent

to specify domains of integration, or to specify argument lists for operatoraiike@ndmax.

Thecondition element is always used together with one or merer elements.

The exact interpretation depends on the context, but generally speakirgnihietion element is used to restrict the
permissible values of a bound variable appearing in another expression to those that satisfy the relations contained
thecondition. Similarly, when theondition element contains get, the values of the bound variables are restricted

to that set.

A condition element contains a single child that is eithepply, or areln element (eprecateld Compound conditions
are indicated by applying relations suchaasl inside the child of the condition.

4.2.5.1 Examples

The following encodes ‘there existsuch thai ® < 3.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><1lt/>
<apply>
<power/>
<ci>x</ci>
<cn>5</cn>
</apply>
<cn>3</cn>
</apply>
</condition>
</apply>
The next example encodes ‘for alh N there exists prime numbepsq such thatp+ g= 2x.

<apply>
<forall/>
<bvar><ci>x</ci></bvar>

122

<condition>
<apply><in/>
<ci>x</ci>
<csymbol encoding="text" definitionURL="www.naturalnums.htm">N</csymbol>
</apply>
</condition>

<apply><exists/>
<bvar><ci>p</ci></bvar>
<bvar><ci>q</ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci>p</ci>
<csymbol encoding="text" definitionURL="www.primes.htm">P</csymbol>
</apply>
<apply><in/><ci>q</ci>
<csymbol encoding="text" definitionURL="www.primes.htm">P</csymbol>
</apply>
<apply><eq/>
<apply><plus/><ci>p</ci><ci>qg</ci></apply>
<apply><times/><cn>2</cn><ci>x</ci></apply>
</apply>
</apply>
</condition>
</apply>
</apply>
A third example shows the use of quantifiers withdition. The following markup encodes ‘there exigts 3 such
thatx 2 = 4.
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><1lt/><ci>x</ci><cn>3</cn></apply>
</condition>
<apply>
<eq/>
<apply>
<power/><ci>x</ci><cn>2</cn>
</apply>
<cn>4</cn>
</apply>
</apply>

4.2.6 Syntax and Semantics

mappings semantics, annotation, annotation-xml

The use of content markup rather than presentation markup for mathematics is sometimes refeseathigiasagging

[J. The parse-tree of a valid element structure using MathML content elements corresponds directly to the

123

expression tree of the underlying mathematical expression. We therefore regard the content tagging itself as encoding
syntax of the mathematical expression. This is, in general, sufficient to obtain some rendering and even some symbol
manipulation (e.g. polynomial factorization).

However, even in such apparently simple expressionX asY, some additional information may be required for
applications such as computer algebra. XrandY integers, or functions, etc.? ‘Plus’ represents addition over which
field? This additional information is referred to &snantic mapping. In MathML, this mapping is provided by the
semantics, annotation andannotation-xml elements.

The semantics element is the container element for the MathML expression together with its semantic mappings.
semantics expects a variable number of child elements. The first is the element (which may itself be a complex
element structure) for which this additional semantic information is being defined. The second and subsequent childre
if any, are instances of the elemeaimotation and/orannotation-xml.

Thesemantics tags also accepts tliefinitionURL andencoding attributes for use by external processing applica-
tions. One use might be a URI for a semantic content dictionary, for example. Since the semantic mapping informatio
might in some cases be provided entirely by dleéinitionURLattribute, theannotation Or annotation-xml ele-

ments are optional.

The annotation element is a container for arbitrary data. This data may be in the form of text, computer algebra
encodings, C programs, or whatever a processing application expects.ation has an attributencoding defining

the form in use. Note that the content modelaahotation is PCDATA, so care must be taken that the particular
encoding does not conflict with XML parsing rules.

The annotation-xml element is a container for semantic information in well-formed XML. For example, an XML
form of the OpenMath semantics could be given. Another possible use here is to embed, for example, the presentati
tag form of a construct given in content tag form in the first child elemestaéntics (or vice versa)annotation-

xml has an attributencoding defining the form in use.

For example:

<semantics>
<apply>
<divide/>
<cn>123</cn>
<cn>456</cn>
</apply>
<annotation encoding="Mathematica">
N[123/456, 39]
</annotation>
<annotation encoding="TeX">
$0.269736842105263157894736842105263157894\1dots$
</annotation>
<annotation encoding="Maple">
evalf (123/456, 39);
</annotation>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<mn> 0.269736842105263157894 </mn>
<mover accent=’true’>
<mn> 736842105263157894 </mn>
<mo> &0OverBar; </mo>

124

</mover>
</mrow>
</annotation-xml>
<annotation-xml encoding="OpenMath">
<OMA>...</0OMA>
</annotation-xml>
</semantics>

where0MA is the element defining the additional semantic information.

Of course, providing an explicit semantic mapping at all is optional, and in general would only be provided where there
is some requirement to process or manipulate the underlying mathematics.

4.2.7 Semantic Mappings

Although semantic mappings can easily be provided by various proprietary, or highly specialized encodings, there al
no widely available, non-proprietary standard schemes for semantic mapping. In part to address this need, the goal
the OpenMath effort is to provide a platform-independent, vendor-neutral standard for the exchange of mathematic
objects between applications. Such mathematical objects include semantic mapping information. The OpenMath groi
has defined an SGML syntax for the encoding of this informationd I This element set could provide the
basis of onennotation-xml element set.

An attractive side of this mechanism is that the OpenMath syntax is specified in XML, so that a MathML expression
together with its semantic annotations can be validated using XML parsers.

4.2.8 Constants and Symbols

MathML provdies a collection of predefined constants and symbols which represent frequently-encountered concer
in K-12 mathematics. These include symbols for well-known sets, such as iniegegsers andrationals, and also
some widely known constant symbols suctfasse, true, exponentiale.

4.2.9 MathML element types

MathML functions, operators and relations can all be thought of as mathematical functions if viewed in a sufficiently
abstract way. For example, the standard addition operator can be regarded as a function mapping pairs of real numb
to real numbers. Similarly, a relation can be thought of as a function from some space of ordered pairs into the set «
values true, false. To be mathematically meaningful, the domain and range of a function must be precisely specifie
In practical terms, this means that functions only make sense when applied to certain kinds of operands. For examp
thinking of the standard addition operator, it makes no sense to speak of ‘adding’ a set to a function. Since MathMl
content markup seeks to encode mathematical expressions in a way that can be unambiguously evaluated, it is
surprise that the types of operands is an issue.

MathML specifies the types of arguments in two ways. The first way is by providing precise instructions for processing
applications about the kinds of arguments expected by the MathML content elements denoting functions, operators a
relations. These operand types are defined in a dictionary of default semantic bindings for content elements, which
given in AppendixC. For example, the MathML content dictionary specifies that for real scalar arguments the plus
operator is the standard commutative addition operator over a field. The eleménats atype attribute with a default

value ofreal. Thus some processors will be able to use this information to verify the validity of the indicated operations.

Although MathML specifies the types of arguments for functions, operators and relations, and provides a mechanism fi
typing arguments, a MathML-compliant processor is not required to do any type checking. In other words, a MathML
processor will not generate errors if argument types are incorrect. If the processor is a computer algebra system, it m
be unable to evaluate an expression, but no MathML error is generated.

125

4.3 Content Element Attributes
43.1 Content Element Attribute Values

Content element attributes are all of the tyfpATA, that is, any character string will be accepted as valid. In addition,
each attribute has a list of predefined values, which a content processor is expected to recognize and process. The re:
that the attribute values are not formally restricted to the list of predefined values is to allow for extension. A processo
encountering a value (not in the predefined list) which it does not recognize may validly process it as the default valu
for that attribute.

4.3.2 Attributes Modifying Content Markup Semantics

Each attribute is followed by the elements to which it can be applied.

4.3.2.1 base

cn indicates numerical base of the number. Predefined values: any numeric string. The defaultMalue is

4.3.2.2 closure

interval indicates closure of the interval. Predefined valu@gn, closed, open-closed, closed-open. The default
value isclosed

4.3.2.3 definitionURL

csymbol, declare, semantics, any operator elemergoints to an external definition of the semantics of the symbol
or construct being declared. The value is a URL or URI that should point to some kind of definition. This
definition overrides the MathML default semantics. At present, MathML does not specify the format in which
external semantic definitions should be given. In particutere is no requirement that the target of the URI
be loadable and parsable.An external definition could, for example, define the semantics in human-readable
form. Ideally, in most situations the definition pointed to by ##f initionURL attribute would be some
standard, machine-readable format. However, there are several reasons why MathML does not require suct
format. First, no such format currently exists. There are several projects underway to develop and implemer
standard semantic encoding formats, most notably the OpenMath effort. But by nature, the development c
a comprehensive system of semantic encoding is a very large enterprise, and while much work has bee
done, much additional work remains. Therefore, even thoughdhénitionURL is designed and intended
for use with a formal semantic encoding language such as OpenMath, it is premature to require any on
particular format. Another reason for leaving the format ofdbe@initionURL attribute unspecified is that
there will always be situations where some non-standard format is preferable. This is particularly true in
situations where authors are describing new ideas. It is anticipated that in the near term, there will be :
variety of renderer-dependent implementations ofd&®initionURL attribute. For example, a translation
tool might simply prompt the user with the specified definition in situations where the proper semantics have
been overridden, and in this case, human-readable definitions will be most useful. Other software may utilize
OpenMath encodings. Still other software may use proprietary encodings, or look for definitions in any of
several formats. As a consequence, authors need to be aware that there is no guarantee a generic rendk
will be able to take advantage of information pointed to bydbeinitionURL attribute. Of course, when
widely-accepted standardized semantic encodings are available, the definitions pointed to can be replace
without modifying the original document. However, this is likely to be labor intensive. There is no default
value for thedefinitionURLattribute, i.e. the semantics are defined within the MathML fragment, and/or
by the MathML default semantics.

126

4.3.2.4 encoding

annotation, annotation-xml, csymbol, semantics, all operator elementsdicates the encoding of the annotation, or
in the case otsymbol , semantics and operator elements, the syntax of the target referred teby-
nitionURL. Predefined values aMathML-Presentation, MathML-Content. Other typical valuesTeX,
OpenMath. The default value is ", i.e. unspecified.

4325 nargs

declare indicates number of arguments for function declarations. Pre-defined vakigs:or any numeric string. The
default value isl

4.3.2.6 occurrence

declare indicates occurrence for operator declarations. Pre-defined valuesix, infix, function-model. The
default value ifunction-model

4.3.2.7 order

list indicates ordering on the list. Predefined valuesticographic, numeric. The default value igumeric

4.3.2.8 scope

declare indicates scope of applicability of the declaration. Pre-defined valuwesl, global.
e local means the containing MathML element.
e global means the containingath element.
The default value i9ocal. At present, declarations cannot affect anything outside of the contaikitig
element. Ideally, one would like to make document-wide declarations by setting the value foifte
attribute to beglobal-document. However, the proper mechanism for document-wide declarations very
much depends on details of the way in which XML will be embedded in HTML, future XML style sheet

mechanisms, and the underlying Document Object Model. Since these supporting technologies are still i

flux at present, the MathML specification does not inclgllebal-document as a pre-defined value of the
scope attribute. It is anticipated, however, that this issue will be revisited in future revisions of MathML as

supporting technologies stabilize. In the near term, MathML implementors that wish to simulate the effect of
a document-wide declaration are encouraged to pre-process documents in order to distribute document-wic

declarations to each individuahth element in the document.

4.3.2.9 type

cn indicates type of the number. Predefined valuesieger, rational, real, float, complex, complex-polar,
complex-cartesian, constant. The default value ixeal. Notes. Each data type implies that the data

adheres to certain formating conventions, detailed below. If the data fails to conform to the expected format

an error is generated. Details of the individual formats are:
real Areal number is presented in decimal notation. Decimal notation consists of an optional sign (‘+'or ‘-')

followed by a string of digits possibly separated into an integer and a fractional part by a ‘decimal point'.

Some examples are 0.3, 1, and -31.56. If a diffekente is specified, then the digits are interpreted

as being digits computed to that base. A real number may also be presented in scientific notation
Such numbers have two parts (a mantissa and an exponent) separated by ‘e’. The first part is a re:
number, while the second part is an integer exponent indicating a power of the base. For example

12.3e5 represents 12.3 times 1015.

127

integer Aninteger is represented by an optional sign followed by a string of 1 or more ‘digits’. What a ‘digit’
is depends on theaseattribute. Ifbase is present, it specifies the base for the digit encoding, and it
specifies it base ten. Thivase="16’ specifies a hex encoding. Whease > 10, letters are added in
alphabetical order as digits. The legitimate valuedfse are therefore between 2 and 36.

rational A rational number is two integers separateckbygp/>. If base is present, it specifies the base used
for the digit encoding of both integers.

complex-cartesian A complex number is of the form two real point numbers separatetsby/>.

complex-polar A complex number is specified in the form of a magnitude and an angle (in radians). The
raw data is in the form of two real numbers separateddyp/>.

constant The constant type is used to denote named constants. For example, an instanee afype=
"constant">π</cn>should be interpreted as having the semantics of the mathematical constant
Pi. The data for a constanh tag may be one of the following common constants:

Symbol Value

π The usuakpi; of trigonometry: approximately 3.141592653...
ⅇ (oOr ⅇ) The base for natural logarithms: approximately 2.718281828 ...
&Imaginaryl; (Orⅈ) Square root of -1

&gamma ; Euler’'s constant: approximately 0.5772156649...

∞ (Or&infty;) Infinity. Proper interpretation varies with context

&true; the logical constantrue

&false; the logical constantalse

&NotANumber; (Or &NaN;) represents the result of an ill-defined floating point division

ci indicates type of the identifier. Predefined valuasteger, rational, real, float, complex, complex-polar,
complex-cartesian, constant, or the name of any content element. The meaning of the various attribute
values is the same as that listed above fordtnelement. The default value is ™, i.e. unspecified.

declare indicates type of the identifier being declared. Predefined values: any content element name. The default valt
is ci, i.e. a generic identifier

set indicates type of the set. Predefined valuesrmal, multiset. multiset indicates that repetitions are allowed.
The default value igormal.

tendsto indicates the direction from which the limiting value is approached. Predefined valess, below, two-
sided. The default value iabove.

4.3.3 Attributes Modifying Content Markup Rendering
4.3.3.1 type

Thetype attribute, in addition to conveying semantic information, can be interpreted to provide rendering information.
For example in

<ci type="vector">V</ci>

a renderer could display a boldfor the vector.

4.3.3.2 General Attributes

All content elements support the following general attributes that can be used to modify the rendering of the markup.

class
style
id

other

128

Theclass, style andid attributes are intended for compatibility with Cascading Style Sheets (CSS), as described in
Section2.3.5

Content or semantic tagging goes along with the (frequently implicit) premise that, if you know the semantics, you cat
always work out a presentation form. When an author’'s main goal is to mark up re-usable, evaluatable mathematic
expressions, the exact rendering of the expression is probably not critical, provided that it is easily understandabl
However, when an author’s goal is more along the lines of providing enough additional semantic information to make :
document more accessible by facilitating better visual rendering, voice rendering, or specialized processing, controllir
the exact notation used becomes more of an issue.

MathML elements accept an attribuieher (see Sectior7.2.3, which can be used to specify things not specifically
documented in MathML. On content tags, this attribute can be used by an author to expre&seace between
equivalent forms for a particular content element construct, where the selection of the presentation has nothing to
with the semantics. Examples might be

° inline or displayed equations
° script-style fractions
° use ofx with a dot for a derivative over g/d t

Thus, if a particular renderer recognized a display attribute to select between script-style and display-style fractions, ¢
author might write

<apply other=’display="scriptstyle"’>
<divide/>
<mn> 1 </mn>
<mi> x </mi>

</apply>

to indicate that the rendering s preferred.

The information provided in thether attribute is intended for use by specific renderers or processors, and therefore,
the permitted values are determined by the renderer being used. It is legal for a renderer to ignore this informatiol
This might be intentional, in the case of a publisher imposing a house style, or simply because the renderer does r
understand them, or is unable to carry them out.

4.4 The Content Markup Elements

This section provides detailed descriptions of the MathML content tags. They are grouped in categories that broad|
reflect the area of mathematics from which they come, and also the grouping in the MathML DTD. There is no linguistic
difference in MathML between operators and functions. Their separation here and in the DTD is for reasons of historice
usage.

When working with the content elements, it can be useful to keep in mind the following.

° The role of the content elements is analogous to data entry in a mathematical system. The information that |
provided is there to facilitate the successful parsing of an expression as the intended mathematical object t
a receiving application.

. MathML content elements do not by themselves ‘perform’ any mathematical evaluations or operations. They
do not ‘evaluate’ in a browser and any ‘action’ that is ultimately taken on those objects is determined en-
tirely by the receiving mathematical application. For example, editing programs and applications geared tc
computation for the lower grades would typically leave 3 + 4 as is, whereas computational systems targetin
a more advanced audience might evaluate this as 7. Similarly, some computational systems might evalua
sin(0) to 0, whereas others would leave it unevaluated. Yet other computational systems might be unable t

129

deal with pure symbolic expressions sindnd may even regard it as a data entry error. None of this has any
bearing on the correctness of the original MathML representation. Where evaluation is mentioned at all in
the descriptions below, it is merely to help clarify the meaning of the underlying operation.

Apart from the instances where there is an explicit interaction with presentation tagging, there is no requirec
rendering (visual or aural) - only a suggested default. As such, the presentations that are included in thi
section are merely to help communicate to the reader the intended mathematical meaning by association wi
the same expression written in a more traditional notation.

The available content elements are:

token elements

- cn

- ci

— csymbol (MathML 2.0)
basic content elements
— apply

— reln (deprecated)
— fn (deprecated for externally defined functions)
- interval

- inverse

- sep

- condition

- declare

- lambda

- compose

- ident

arithmetic, algebra and logic
- quotient

- exp

- factorial

— divide

— max andmin

- minus

- plus

— power

— rem

- times

- root

- gcd

- and

- or

- xor

- not

- implies

- forall

- exists

- abs

- conjugate

— arg(MathML 2.0)
— real (MathML 2.0)

130

— imaginary (MathML 2.0)
— 1lcm (MathML 2.0)
relations

- eq

— neq

- 1t

- g€q

- leq

— equivalent (MathML 2.0)
— approx (MathML 2.0)
calculus and vector calculus
- int

- diff

— partialdiff

- lowlimit

- uplimit

- bvar

- degree

— divergence (MathML 2.0)
— grad (MathML 2.0)

— curl (MathML 2.0)

— laplacian (MathML 2.0)
theory of sets

- set

- list

- union

- intersect

- in

- notin

- subset

- prsubset

- notsubset

— notprsubset

- setdiff

— card (MathML 2.0)
sequences and series

- sum

- product

- limit

- tendsto

elementary classical functions
- exp

- In

- log

- sin

- cos

— tan

- sec

131

— csc
- cot

- sinh

- cosh

- tanh

- sech

- csch

- coth

- arcsin

— arccos

— arctan

- arccosh

- arccot

- arccoth

— arccsc

- arccsch

- arcsec

- arcsech

- arcsinh

- arctanh

statistics

— mean

- sdev

- variance

- median

- mode

— moment

linear algebra

— vector

- matrix

- matrixrow

- determinant

— transpose

- selector

— vectorproduct (MathML 2.0)
— scalarproduct (MathML 2.0)
— outerproduct (MathML 2.0)
semantic mapping elements

- annotation

- semantics

- annotation-xml

constant and symbol elements

— integers (MathML2.0)

— reals (MathML2.0)

— rationals (MathML2.0)

— naturalnumbers (MathML2.0)
— complexes (MathML2.0)

— primes (MathML2.0)

— exponentiale (MathML2.0)

132

— imaginaryi (MathML2.0)
— notanumber (MathML2.0)
— true (MathML2.0)

— false (MathML2.0)

— emptyset (MathML2.0)

— pi(MathML2.0)

— eulergamma (MathML2.0)
— infinity (MathML2.0)

4.4.1 Token Elements
4.4.1.1 Number (cn)
Discussion

The cn element is used to specify actual numerical constants. The content model must provide sufficient informatior
that a number may be entered as data into a computational system. By default, it represents a signed real numberin b
10. Thus, the content normally consistsP@DATA restricted to a sign, a string of decimal digits and possibly a decimal
point, or alternatively one of the predefined symbolic constants sugpigs

The cn element uses the attributgpe to represent other types of numbers such as, for example, integer, rational, real
or complex, and uses the attributese to specify the numerical base.

In addition to simplePCDATA, cn accepts as conteRCDATA separated by the (empty) elemerp. This determines the
different parts needed to construct a rational or complex-cartesian number.

The cn element may also contain arbitrary presentation markup in its content (see Chlagtethat its presentation
can be very elaborate.

Alternative input notations for numbers are possible, but must be explicitly defined by usiagfthei tionURL and
encoding attributes, to refer to a written specification of how a sequence of real numbers separaseg byshould
be interpreted.

Attributes

All attributes areCDATA:

type Allowed values arereal, integer, rational, complex-cartesian, complex-polar, constant
base Number CDATA for XML DTD) between 2 and 36.

definitionURL URL or URI pointing to an alternative definition.

encoding Syntax of the alternative definition.

Examples

<cn type="real"> 12345.7 </cn>

<cn type="integer"> 12345 </cn>

<cn type="integer" base="16"> AB3 </cn>

<cn type="rational"> 12342 <sep/> 2342342 </cn>
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
<cn type="constant"> π </cn>

133

Default Rendering

By default, a contiguous block (fCDATA contained in acn element should render as if it were wrapped inman
presentation element. Similarly, presentation markup containeddnetement should render as it normally would. A
mixture of PCDATA and presentation markup should render as if it were contained wrappedirparelement, with
contiguous blocks dfCDATAwrapped imn elements.

However, not all mathematical systems that encounter content based tagging do visual or aural rendering. The receivi
applications are free to make use of a number in the manner it normally handles numerical data. Some systems mic
simplify the rational number 12342/2342342 to 6171/1171171 while pure floating point based systems might approxi
mate this as 0.5269085385e-2. All numbers might be re-expressed in base 10. The role of MathML is simply to recor
enough information about the mathematical object and its structure so that it may be properly parsed.

The following renderings of the above MathML expressions are included both to help clarify the meaning of the cor-
responding MathML encoding and as suggestions for authors of rendering applications. In each case, no mathemati
evaluation is intended or implied.

° 12345.7

° 12345

. AB3 16

. 12342 /2342342
. 12.3+5i

. Polar(2,3.1415)
° Tt

4.4.1.2 Identifier (ci)
Discussion

Theci element is used to name an identifier in a MathML expression (for example a variable). Such names are used
identify mathematical objects. By default they are assumed to represent complex scalars €ldraent may contain
arbitrary presentation markup in its content (see Chaj)tso that its presentation as a symbol can be very elaborate.

The ci element uses theype attribute to specify the type of object that it represents. Valid types indudeger,
rational, real, float, complex, constant, and more generally, any of the names of the MathML container elements
(e.g.vector) or their type values. ThéefinitionURL andencoding attributes can be used to extend the definition
of ci to include other types. For example, a more advanced use might requitg Bex-vector.

Examples
<ci> x </ci>
<ci type="vector"> V </ci>

<ci>
<msub>
<mi>x</mi>
<mi>a</mi>
</msub>
</ci>

134

Default Rendering

If the content of aci element is tagged using presentation tags, that presentation is used. If no such tagging is supplie
then thePCDATA content would typically be rendered as if it were the content afiaalement. A renderer may wish to
make use of the value of the type attribute to improve on this. For example, a symbol eettaer might be rendered

using a bold face. Typical renderings of the above symbols are:

° X
° \Y
o Xi

4.4.1.3 Externally defined symbol (csymbol)
Discussion

Thecsymbol element allows a writer to create an element in MathML whose semantics are externally defined (i.e. no
in the core MathML content). The element can then be used in a MathML expression as for example an operator
constant. Attributes are used to give the syntax and location of the external definition of the symbol semantics.

Use ofcsymbol for referencing external semantics can be contrasted with use ektfamtics to attach additional
information in-line (ie. within the MathML fragment) to a MathML construct. See Secti@rb

Attributes

All attributes areCDATA:

definitionURL Pointer to external definition of the semantics of the symbol. MathML does not specify a particular
syntax in which this definition should be written.

encoding Gives the syntax of the definition pointed to by definitionURL. An application can then test the value of this
attribute to determine whether it is able to process the target afdhinitionURL. This syntax might be
text, or a formal syntax such as OpenMath.

Examples

<!-- reference to OpenMath formal syntax definition of Bessel function -->
<apply>

<csymbol encoding="OpenMath"

definitionURL="www.openmath.org/cds/BesselFunctions.ocd">
<msub><mi>J</mi><mn>0</mn></msub>

</csymbol>

<ci>y</ci>
</apply>

<!-- reference to human readable text description of Boltzmann’s constant -->
<csymbol encoding="text"
definitionURL="www.uni.edu/universalconstants/Boltzmann.htm">
k
</csymbol>

135

Default Rendering

By default, a contiguous block #CDATA contained in asymbol element should render as if it were wrapped in an

mo presentation element. Similarly, presentation markup contained #ymbol element should render as it normally
would. A mixture ofPCDATA and presentation markup should render as if it were contained wrappedioesiement,

with contiguous blocks afCDATA wrapped imo elements. The examples above would render by default as

o Jo(y)

. k

As csymbol is used to support reference to externally defined semantics, it is a MathML error to have embedded conter
MathML elements within thesymbolelement.

442 Basic Content Elements
4.4.2.1 Apply (apply)
Discussion

The apply element allows a function or operator to be applied to its arguments. Nearly all expression construction in
MathML content markup is carried out by applying operators or functions to arguments. The first ciplslLgfis the
operator, to be applied, with the other child elements as arguments.

Theapply element is conceptually necessary in order to distinguish between a function or operator, and an instance
its use. The expression constructed by applying a function to 0 or more arguments is always an element from the ran
of the function.

Proper usage depends on the operator that is being applied. For examplendéheperator may have zero or more
arguments. while theinus operator requires one or two arguments to be properly formed.

If the object being applied as a function is not already one of the elements known to be a function (&mckiasor
plus) then it is treated as if it were the contents offanelement.

Some operators such @sff andint make use of ‘named’ arguments. These special arguments are elements that
appear as children of thepply element and identify ‘parameters’such as the variable of differentiation or the domain
of integration. These elements are discussed further in Setttod.2

Examples

<apply>
<factorial/>
<cn>3</cn>

</apply>

<apply>
<plus/>
<cn>3</cn>
<cn>4</cn>

</apply>

<apply>
<sin/>
<ci>x</ci>

</apply>

136

Default Rendering

A mathematical system that has been passegpahy element is free to do with it whatever it normally does with such
mathematical data. It may be that no rendering is involved (e.g. a syntax validator), or that the ‘function application’ is
evaluated and that only the result is rendered (e.g. sir(0).

When an unevaluated ‘function application’ is rendered there are a wide variety of appropriate renderings. The choic
often depends on the function or operator being applied. Applications of basic operations guab ase generally
presented using an infix notation while applicationssohwould use a more traditional functional notation such as
sin(x). Consult the default rendering for the operator being applied.

Applications of user-defined functions (segymbol, £n) that are not evaluated by the receiving or rendering application
would typically render using a traditional functional notation unless an alternative presentation is specified using th
semantics tag.

4.4.2.2 Relation (reln)

Discussion

Thereln element was used in MathML 1.0 to construct an equation or relation. Relations were constructed in a manne
exactly analogous to the useayply. This usage isleprecateih MathML 2.0 in favour of the more generally usable
apply.

The first child ofreln is the relational operator, to be applied, with the other child elements acting as arguments. See
Section4.2.4for further details.

Examples

<reln>
<eq/>
<ci> a </ci>
<ci> b </ci>
</reln>

<reln>
<1t/>
<ci> a </ci>
<ci> b </ci>
</reln>

Detault Rendering

° a=>b
a<b

4.4.2.3 Function (fn)

Discussion

The £n element makes explicit the fact that a more general (possibly constructed) MathML object is being used in the
same manner as if it were a pre-defined function sudia®r plus.

137

fn has exactly one child element, used to give the name (or presentation form) of the functionfM\ibeised as the
first child of an apply, the number of following arguments is determined by the contentsfif.the

In MathML 1.0, fn was also the primary mechanism used to extend the collection of ‘known’ mathematical functions.
This usage is nowleprecateih favour of the more generally applicableymbol element. (New functions may also be
introduced by usindeclare in conjunction with alambda expression.)

Examples

<fn><ci> L </ci> </fn>

<apply>
<fn>
<apply>
<plus/>
<ci> f </ci>
<ci> g </ci>
</apply>
</fn>
<ci>z</ci>
</apply>

Default Rendering

An fn object is rendered in the same way as its content. A rendering application may add additional adornments suc
as parentheses to clarify the meaning.

° L
° (f+g)z

4.4.2.4 Interval (interval)
Discussion

The interval element is used to represent simple mathematical intervals of the real number line. It takes an attributs
closure, which can take on any of the valuegen, closed, open-closed, Or closed-open, with a default value of
closed.

More general domains are constructed by using:thelition andbvar elements to bind free variables to constraints.

The interval element expectsithertwo child elements that evaluate to real numbharene child element that is a
condition defining theinterval.

Examples

<interval>
<ci> a </ci>
<ci> b </ci>

</interval>

138

<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval>

Default Rendering

° [a, b]
° (a, b]

4.4.2.5 Inverse (inverse)
Discussion

The inverse element is applied to a function in order to construct a generic expression for the functional inverse of
that function. (See also the discussioniafrerse in Section4.2.1.5. As with other MathML functionsinverse may

either be applied to arguments, or it may appear alone, in which case it represents an abstract inversion operator act
on other functions.

A typical use of theinverse element is in an HTML document discussing a number of alternative definitions for a
particular function so that there is a need to write and defiifie! (x). To associate a particular definition with=b,
use thedefinitionURL andencodingattributes.

Examples

<apply>
<inverse/>
<ci> f </ci>

</apply>

<apply>
<inverse definitionURL="../MyDefinition.htm" encoding="text"/>
<ci> f </ci>

</apply>

<apply>
<apply><inverse/>
<ci type="matrix"> a </ci>
</apply>
<ci> A </ci>
</apply>

Detault Rendering

The default rendering for a functional inverse makes use of a parenthesized exponehtas(i).

139

4.4.2.6 Separator (sep)
Discussion

The sep element is to separaRCDATA into separate tokens for parsing the contents of the various specialized forms
of the cn elements. For examplegp is used when specifying the real and imaginary parts of a complex number (see
Section4.4.]). If it occurs between MathML elements, it is a MathML error.

Examples

<cn type="complex"> 3 <sep/> 4 </cn>

Detault Rendering

The sep element is not directly rendered (see Sectichl).

4.4.2.7 Condition (condition)
Discussion

Thecondition element is used to place a condition on one or more free variables or identifiers. The conditions may
be specified in terms of relations that are to be satisfied by the variables, including general relationships such as ¢
membership.

It is used to define general sets and lists in situations where the elements cannot be explicitly enumerated. Conditit
contains either a singlepply or relnelement; theapply element is used to construct compound conditions. For
example, it is used below to describe the set okallch thatx < 5. See the discussion on sets in SectlohG See
Sectiond.2.5for further details.

Examples

<condition>
<apply><in/><ci> x </ci><ci type="set"> R </ci></apply>
</condition>

<condition>
<apply>
<and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><1lt/><ci> x </ci><cn> 1 </cn></apply>
</apply>
</condition>

<apply>
<max/>
<bvar><ci> x </ci></bvar>
<condition>
<apply> <and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>

140

<apply><1lt/><ci> x </ci><cn> 1 </cn></apply>
</apply>
</condition>
<apply>
<minus/>
<ci> x </ci>
<apply>
<sin/>
<ci> x </ci>
</apply>
</apply>
</apply>

Default Rendering

xeR
X>0AX<1
max{x—sinx| 0 <x< 1}

4.4.2.8 Declare (declare)
Discussion

The declare construct has two primary roles. The first is to change or set the default attribute values for a specific
mathematical object. The second is to establish an association between a ‘name’ and an object. Once a declaration i
effect, the ‘name’ object acquires the new attribute settings, and (if the second object is present) all the properties of i
associated object.

The various attributes of théeclare element assign properties to the object being declared or determine where the
declaration is in effect.

By default, the scope of a declaration is ‘local’ to the surrounding container element. Setting the value afpihe
attribute toglobal extends the scope of the declaration to the enclasatgelement. As discussed in Sectiérs.2.§
MathML contains no provision for making document-wide declarations at present, though it is anticipated that this
capability will be added in future revisions of MathML, when supporting technologies become availablere

takes one or two children. The first child, which is mandatory,ds aontaining the identifier being declared:

<declare type="vector"> <ci> V </ci> </declare>
The second child, which is optional, is a constructor initialising the variable:

<declare type="vector">
<ci> V </ci>
<vector>
<cn> 1 </cn><cn> 2 </cn><cn> 3 </cn>
</vector>
</declare>

The constructor type and the type of the element declared must agree. For example, if the type attribute of the declarati
is fn, the second child (constructor) must be an element equivalent fa @ement (This would include actuah

elementslambda elements and any of the defined function in the basic set of content tags.) If no type is specified in
the declaration then the type attribute of the declared name is set to the type of the constructor (second child) of tt

141

declaration. The type attribute of the declaration can be especially useful in the special case of the second element be
a semantic tag.

Attributes

All attributes areCDATA:

type defines the MathML element type of the identifier declared.

scope defines the scope of application of the declaration.

nargs number of arguments for function declarations.

occurrence describes operator usagem®fix, infix or function-modelindications.
definitionURL URI pointing to detailed semantics of the function.

encoding syntax of the detailed semantics of the function.

Examples

The declaration

<declare type="fn" nargs="2" scope="local">
<ci> f </ci>
<apply>
<plus/>
<ci> F </ci><ci> G </ci>
</apply>
</declare>

declaresf to be a two-variable function with the property tHgk, y) = (F+ G)(X, V).

The declaration

<declare type="£fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply><1ln/>
<ci> x </ci>
</apply>
</lambda>
</declare>

associates the nandewith a one-variable function defined so tl¥x) = In y. (Note that because of the type attribute
of thedeclare element, the second argument must be something offtypeamely a known function likein, anfn
construct, or dambdaconstruct.)

The type attribute on the declaration is only necessary if if the type cannot be inferred from the type of the second
argument.

Even when a declaration is in effect it is still possible to override attributes values selectively asiintype=
"integer"> V </ci>. This capability is needed in order to write statements of the form S.be a member of
S.

142

Default Rendering

Since thedeclare construct is not directly rendered, most declarations are likely to be invisible to a reader. However,
declarations can produce quite different effects in an application which evaluates or manipulates MathML conten
While the declaration

<declare>
<ci> v </ci>
<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
</vector>
</declare>

is active the symbol acquires all the properties of the vector, and even its dimension and components have meaningfu
values. This may affect howis rendered by some applications, as well as how it is treated mathematically.

4.4.2.9 Lambda (1ambda)
Discussion

Thelambda elementis used to construct a user-defined function from an expression and one or more free variables. Tt
lambda construct with internal variables takas+1 children. The firsh children identify the variables that are used as
placeholders in the last child for actual parameter values. See Sécti@n2for further details.

Examples

The first example presents a simple lambda construct.

<lambda>
<bvar><ci> x </ci></bvar>
<apply><sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>
</apply>
</apply>
</lambda>
The next example constructs a one-argument function in which the arglrspetifies the upper bound of a specific
definite integral.

<lambda>
<bvar><ci> b </ci></bvar>
<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>

143

<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>
</lambda>
Such constructs are often used in conjunction wihlare to construct new functions.

Detault Rendering

. A(X,sinx+1)
b, [f(x) &)

4.4.2.10 Function composition (compose)
Discussion

The compose element represents the function compaosition operator. Note that MathML makes no assumption about th
domain and range of the constituent functions in a composition; the domain of the resulting composition may be empt

To override the default semantics for thempose element, or to associate a more specific definition for function
composition, use théefinitionURL andencodingattributes. See Sectigh2.3for further details.

Examples

<apply>
<compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>
</apply>

<apply>
<compose/>
<ci type="fn"> f </ci>
<ci type="fn"> g </ci>
<ci type="fn"> h </ci>
</apply>

<apply>
<apply><compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>
</apply>
<ci> x </ci>
</apply>

144

<apply>
<fn><ci> f </ci></fn>
<apply>
<fn><ci> g </ci></fn>
<ci> x </ci>
</apply>
</apply>

Detault Rendering

fog
fogoh
(feg)(x)
f(9(3))

4.4.2.11 Identity function (ident)
Discussion

The ident element represents the identity function. MathML makes no assumption about the function space in whick
the identity function resides. That is, proper interpretation of the domain (and hence range) of the identity functior
depends on the context in which it is used.

To override the default semantics for théentelement, or to associate a more specific definition, useléfieni-
tionURL andencodingattributes (see Sectigh2.3.

Examples

<apply>
<eq/>
<apply><compose/>
<fn><ci> f </ci></fn>
<apply><inverse/>
<fn><ci> f </ci></fn>
</apply>
</apply>
<ident/>
</apply>

Default Rendering
fof~t=id

4.4.3 Arithmetic, Algebra and Logic
4.4.3.1 Quotient (quotient)
Discussion

The quotient element is the operator used for division modulo a particular base. Whequtheent operator is
applied to integer argumengsandb, the result is the ‘quotient addivided byb'. That is,quotientreturns the unique

145

integer,g such thaa=qg b+ r. (In common usage is called the quotient andis the remainder.)

The quotient element takes the attributefinitionURL andencodingattributes, which can be used override the
default semantics.

Thequotient element is ainary arithmetic operator (See Sectiod.2.3.

Example

<apply>
<quotient/>
<ci> a </ci>
<ci> b </ci>
</apply>
Various mathematical applications will use this data in different ways. Editing applications might choose an image suc
as shown below, while a computationally based application would evaluate it to 2axti8randb=5.

Detault Rendering

There is no commonly used notation for this concept. Some possible renderings are

° guotient ofa divided byb
. integer part o&/ b
. [a/b)

4.4.3.2 Factorial (factorial)
Discussion
Thefactorial elementis used to construct factorials.

Thefactorial element takes théefinitionURL andencodingattributes, which can be used to override the default
semantics.

Thefactorial element is anary arithmetic operator (See Sectiod.2.3.

Example

<apply>
<factorial/>
<ci> n </ci>

</apply>

If this were evaluated at= 5 it would evaluate to 120.

Default Rendering

n!

146

4.4.3.3 Division (divide)
Discussion
Thedivide element is the division operator.

The divide element takes thdefinitionURL andencodingattributes, which can be used to override the default
semantics.

Thedivide element is ainary arithmetic operator (see Sectiod.2.3.

Example

<apply>
<divide/>
<ci> a </ci>
<ci> b </ci>

</apply>

As a MathML expression, this does not evaluate. However, on receiving such an expression, some applications m
attempt to evaluate and simplify the value. For example, wdreh andb=2 some mathematical applications may
evaluate this to 2.5 while others will treat is as a rational number.

Detault Rendering
a/b

4.4.3.4 Maximum and minimum (max, min)
Discussion

The elementaax andminare used to compare the values of their arguments. They return the maximum and minimum
of these values respectively.

Themax andmin elements take théefinitionURL andencoding attributes that can be used to override the default
semantics.

Themax andmin elements ar@-ary arithmetic operators (see Sectiod.2.3.

Examples

When the objects are to be compared explicitly they are listed as arguments to the function as in:

<apply>
<max/>
<ci> a </ci>
<ci> b </ci>
</apply>
The elements to be compared may also be described using bound variablesanifii &ion element and an expression
to be maximised, as in:

147

<apply>
<min/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><notin/><ci> x </ci><ci type="set"> B </ci></apply>
</condition>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>
</apply>
</apply>
Note that the bound variable must be stated even if it might be implicit in conventional notation. In MathML1.0, the
bound variable and expression to be evaluai@ad@uld be omitted in the example below: this usagddgrecatedn
MathML2.0 in favour of explicitly stating the bound variable and expression in all cases:

<apply>
<bvar><ci>x</ci></bvar>
<max/>
<condition>
<apply><and/>
<apply><in/><ci>x</ci><ci type="set">B</ci></apply>
<apply><notin/><ci>x</ci><ci type="set">C</ci></apply>
</apply>
</condition>
<ci>x</ci>
</apply>

Default Rendering

max{a, b}
min{x? | x¢ B}
max{xec BAx¢C}

4.4.3.5 Subtraction (minus)
Discussion
Theminus element is the subtraction operator.

Theminus element takes théefinitionURL and encodingattributes, which can be used to override the default
semantics.

Theminus element can be used asigary arithmetic operator (e.g. to representx), or as abinary arithmetic operator
(e.g. to represent).

Example

148

<apply> <minus/>
<ci> x </ci>
<ci> y </ci>

</apply>

If this were evaluated a¢=5 andy=2 it would yield 3.

Default Rendering

X—=y

4.4.3.6 Addition (plus)
Discussion
Theplus element is the addition operator.

The plus element takes theefinitionURL andencodingattributes, which can be used to override the default se-
mantics.

Theplus element is am-ary arithemtic operator (see Sectiod.2.3.

Example

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
<ci> z </ci>
</apply>

If this were evaluated at=5,y =2 andz=1 it would yield 8.

Detault Rendering

X+y+2z

4.4.3.7 Exponentiation (power)
Discussion

Thepower element is a generic exponentiation operator. That is, when applied to argunaeits, it returns the value
the *ato the power ob'.

The power element takes th@efinitionURL and encodingattributes, which can be used to override the default
semantics.

Thepower element is arbinary arithmetic operator (see Sectiod.2.3.

149

Example

<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>

If this were evaluated a¢= 5 it would yield 125.

Default Rendering
x3

4.4.3.8 Remainder (rem)
Discussion

The rem element is the operator that returns the ‘remainder’ of a division modulo a particular base. Whem the
operator is applied to integer argumeatandb, the result is the ‘remainder eflivided byb'. That is, rem returns the
unigue integen; such thal = q b+ r, wherer < g. (In common usagej is called the quotient andis the remainder.)

Therem element takes théefinitionURL andencodingattributes, which can be used to override the default seman-
tics.

Therem element is ainary arithmetic operator (See Sectiod.2.3.

Example

<apply>
<rem/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were evaluated at= 15 andb = 8 it would yield 7.

Default Rendering

amodb

4.4.3.9 Multiplication (times)
Discussion
Thetimes element is the multiplication operator.

times takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

150

Example

<apply>
<times/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were evaluated & = 5.5 andb = 3 it would yield 16.5.

Default Rendering
ab

4.4.3.10 Root (root)

Discussion

Theroot element is used to construct roots. The kind of root to be taken is specifieddgy @aeelement, which should

be given as the first child of thepply element enclosing theoot element. Thus, square roots correspond to the case
wheredegree contains the value 2, cube roots correspond to 3, and so ondégiee is present, a default value of 2

is used.

The root element takes the@efinitionURL andencodingattributes, which can be used to override the default se-
mantics.

Theroot element is amperator taking qualifiers (see Sectiod.2.3.9.

Example
Thenth root ofais is given by
<apply>
<root/>
<degree><ci type=’integer’> n </ci></degree>

<ci> a </ci>
</apply>

Detault Rendering
va

4.4.3.11 Greatest common divisor (gcd)

Discussion

Thegcd element is used to denote the greatest common divisor of its arguments.

Thegcd takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

Thegcd element is am-ary operator (see Sectiod.2.3.

151

Example

<apply> <gcd/>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>

</apply>

If this were evaluated at = 15,b =21,c = 48 it would yield 3.

Detault Rendering
geda,b,c)

4.4.3.12 And (and)
Discussion
Theand element is the boolean ‘and’ operator.

Theand element takes théefinitionURL andencodingattributes, which can be used to override the default seman-
tics.

Theand element is am-ary logical operator (see Sectiod.2.3.

Example

<apply>
<and/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were evaluated and bothandb had truth values ofrue, then the value would berue.

Default Rendering

anb

4.4.3.13 Or (or)

Discussion

Theor element is the boolean ‘or’ operator.

Theor element takes théefinitionURL andencodingattributes, which can be used to override the default semantics.

Theor element is am-ary logical operator (See Sectiod.2.3.

152

Example

<apply>
<or/>
<ci> a </ci>
<ci> b </ci>
</apply>

Detault Rendering
avb

4.4.3.14 Exclusive Or (xor)

Discussion

Thexor element is the boolean ‘exclusive or’operator.

xor takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

Thexor element is am-ary logical operator (See Sectiod.2.3.

Example

<apply>
<xor/>
<ci> a </ci>
<ci> b </ci>
</apply>

Default Rendering

axorb

4.4.3.15 Not (not)
Thenot operator is the boolean ‘not’ operator.

Thenot element takes the attribudefinitionURL andencodingattributes, which can be used to override the default
semantics.

Thenot element is anary logical operator (See Sectiod.2.3.

Example

<apply>

<not/>

<ci> a </ci>
</apply>

153

Default Rendering

—a

4.4.3.16 Implies (implies)
Discussion
Theimplies element is the boolean relational operator ‘implies’.

The implies element takes theéefinitionURL andencodingattributes, which can be used to override the default
semantics.

Theimplies element is @inary logical operator (See Sectiod.2.4).

Example

<apply>
<implies/>
<ci> A </ci>
<ci> B </ci>
</apply>
Mathematical applications designed for the evaluation of such expressions would evaluatethiswiena = false
andb = true.

Detault Rendering
A=B

4.4.3.17 Universal quantifier (forall)

Theforall element represents the universal quantifier of logic. It must used in conjunction with one or more bound
variables, an optionatondition element, and an assertion, which may either take the form afpaby or reln
element.

The forall element takes th@efinitionURL andencodingattributes, which can be used to override the default
semantics.

Theforall element is amuantifier (See Sectiod.2.3.2.

Examples

The first example encodes a simple identity.

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<minus/><ci> x </ci><ci> x </ci>
</apply>

154

<cn>0</cn>
</apply>
</apply>
The next example is more involved, and makes use of an optienalition element.

<apply>
<forall/>
<bvar><ci> p </ci></bvar>
<bvar><ci> q </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> p </ci><ci type="set"> Q </ci></apply>
<apply><in/><ci> q </ci><ci type="set"> Q </ci></apply>
<apply><lt/><ci> p </ci><ci> q </ci></apply>
</apply>
</condition>
<apply><1lt/>
<ci> p </ci>
<apply>
<power/>
<ci> q </ci>
<cn> 2 </cn>
</apply>
</apply>
</apply>

The final example uses both therall andexists quantifiers.

<apply>
<forall/>
<bvar><ci> n </ci></bvar>
<condition>
<apply><and/>
<apply><gt/><ci> n </ci><cn> 0 </cn></apply>
<apply><in/><ci> n </ci><ci type="set"> Z </ci></apply>
</apply>
</condition>
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<bvar><ci> z </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> x </ci><ci type="set"> Z </ci></apply>
<apply><in/><ci> y </ci><ci type="set"> Z </ci></apply>
<apply><in/><ci> z </ci><ci type="set"> Z </ci></apply>
</apply>
</condition>

155

<apply>
<eq/>
<apply>
<plus/>
<apply><power/><ci> x </ci><ci> n </ci></apply>
<apply><power/><ci> y </ci><ci> n </ci></apply>

</apply>
<apply><power/><ci> z </ci><ci> n </ci></apply>
</apply>
</apply>
</apply>
Detault Rendering
° VX:Xx—x=0
. VpeQ,qeQ,p<q:p< ¢
. vn>0neZ:IXeZyecZzeZ X"+y'=2"

4.4.3.18 Existential quantifier (exists)

Theexists element represents the existential quantifier of logic. It must used in conjuction with one or more bound
variables, an optionadondition element, and an assertion, which may either take the form afpaby or reln
element.

The exists element takes th@efinitionURL andencodingattributes, which can be used to override the default
semantics.

Theexists element is amuantifier (See Sectiod.2.3.2.

Example

The following example encodes the sense of the expression ‘there existsiah thatf (x) = 0'.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
<cn>0</cn>
</apply>
</apply>

Default Rendering
Ix: f(x)=0

156

4.4.3.19 Absolute Value (abs)
Theabs element represents the absolute value of a real quantity or the modulus of a complex quantity.

The abs element takes théef initionURL andencodingattributes, which can be used to override the default seman-
tics.

Theabs element is ainary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the absolute value of

<apply>

<abs/>

<ci> x </ci>
</apply>

Default Rendering

X

4.4.3.20 Complex conjugate (conjugate)
Theconjugate element represents the complex conjugate of a complex quantity.

Theconjugate element takes theéef initionURL andencodingattributes, which can be used to override the default
semantics.

Theconjugate element is amary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the conjugate efi v.

<apply>
<conjugate/>
<apply>
<plus/>
<ci> x </ci>
<apply><times/>
<cn> &ImaginaryIl; </cn>
<ci> y </ci>
</apply>
</apply>
</apply>

Default Rendering

X+iy

157

4.4.3.21 Argument (arg)

The arg operator (introduced in MathML 2.0)) gives the ‘argument’ of a complex number, which is the angle (in
radians) it makes with the positive real axis. Real negative numbers have argument equal to +

Thearg element takes théef initionURL andencodingattributes, which can be used to override the default seman-
tics.

Thearg element is anary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the argument operatiox-dny.

<apply>
<arg/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> &Imaginaryl; </cn>
<ci> y </ci>
</apply>
</apply>
</apply>

Detault Rendering
arg(x—+1y)

4.4.3.22 Real part (real)

Thereal operator (introduced in MathML 2.0) gives the real part of a complex number, that is the x compoxrent in
Iy
Thereal element takes the attributescoding, definitionURL that can be used to override the default semantics.

Thereal element is amnary arithmetic operator (see Sectiod.2.3).

Example

The following example encodes the real operatiorxeni y.

<apply>
<real/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> &Imaginaryl; </cn>
<ci> y </ci>
</apply>
</apply>
</apply>
A MathML-aware evaluation system would return theomponent, suitably encoded.

158

Default Rendering
O(x+1y)

4.4.3.23 Imaginary part (imaginary)

The imaginary operator (introduced in MathML 2.0) gives the imaginary part of a complex number, that is the y
componentirk+iy

The imaginary element takes the attributesicoding, definitionURL that can be used to override the default
semantics.

The imaginary element is amnary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the imaginary operation 6n y.

<apply>
<imaginary/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> &Imaginaryl; </cn>
<ci> y </ci>
</apply>
</apply>
</apply>
A MathML-aware evaluation system would return theomponent, suitably encoded.

Default Rendering
O(x+1y)

4.4.3.24 Lowest common multiple (1cm)

Discussion

Thelcm element (introduced in MathML 2.0) is used to denote the lowest common multiple of its arguments.
Thelcm takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

Thelcm element is am-ary operator (See Sectiod.2.3.

Example

<apply> <lcm/>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</apply>
If this were evaluated &= 2,b=4,c=6 it would yield 12.

159

Default Rendering

lcm(a, b, c)

4.4.4 Relations

4.44.1 Equals (eq)

Discussion

Theeq element is the relational operator ‘equals’.

Theeq element takes théef initionURL andencodingattributes, which can be used to override the default semantics.

Theequals element is am-ary relation (See Sectiod.2.3.2.

Example

<apply>
<eq/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were tested a = 5.5 andb = 6 it would yield the truth valu€alse.

Detault Rendering

a=>b

4.4.4.2 Not Equals (neq)

Discussion

Theneq element is the ‘not equal to’ relational operator.

neq takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

Theneq element is arbinary relation (see Sectiod.2.4).

Example

<apply>
<neq/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were tested a = 5.5 andb = 6 it would yield the truth valuerue.

Detault Rendering
a#£b

160

4.4.4.3 Greater than (gt)

Discussion

Thegt element is the ‘greater than’ relational operator.

Thegt element takes théefinitionURL andencodingattributes, which can be used to override the default semantics.

Thegt element is am-ary relation (See Sectiod.2.4).

Example

<apply>
<gt/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were tested a = 5.5 andb = 6 it would yield the truth valu€alse.

Default Rendering

a>b

4444 Less Than (1t)

Discussion

Thelt element is the ‘less than’ relational operator.

Thelt element takes théefinitionURL andencodingattributes, which can be used to override the default semantics.

Thelt element is am-ary relation (See Sectiod.2.4).

Example

<apply>
<1t/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were tested a = 5.5 andb = 6 it would yield the truth value ‘true’.

Default Rendering

a<b

161

4.4.4.5 Greater Than or Equal (geq)
Discussion
Thegeq element is the relational operator ‘greater than or equal’.

Thegeq element takes théef initionURL andencodingattributes, which can be used to override the default seman-
tics.

Thegeq element is am-ary relation (see Sectiod.2.4).

Example

<apply>
<geq/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were tested foa= 5.5 andb = 5.5 it would yield the truth valuerue.

Detault Rendering

a>b

4.4.4.6 Less Than or Equal (1eq)
Discussion
Theleq element is the relational operator ‘less than or equal’.

Theleq element takes théef initionURL andencodingattributes, which can be used to override the default seman-
tics.

Theleq element is am-ary relation (see Sectiod.2.4).

Example

<apply>
<leq/>
<ci> a </ci>
<ci> b </ci>
</apply>

If a=5.4 andb = 5.5 this will yield the truth valuerue.

Detault Rendering

a<b

162

4.4.4.7 Equivalent (equivalent)
Discussion
Theequivalent element is the ‘equivalence’ relational operator.

The equivalent element takes the attributeacoding, definitionURL that can be used to override the default
semantics.

Theequivalent element is am-ary relation (See Sectiod.2.3.9.

Example

<apply>
<equivalent/>
<ci> a </ci>

<apply>
<not/>
<apply> <not/> <ci> a </ci> </apply>
</apply>
</apply>

This yields the truth valuerue for all values ofa.

Default Rendering

a=-(-a)

4.4.4.8 Approximately (approx)
Discussion
Theapprox element is the relational operator ‘approximately equal’.

Theapprox element takes the attributesacoding, definitionURL that can be used to override the default seman-
tics.

The approx element is ainary relation (see Sectiod.2.3.9.

Example

<apply>
<approx/>
<cn type="rational"> 22 <sep/> 7 </cn>
<cn type="constant"> π </cn>
</apply>

Default Rendering

a~b

163

4.45 Calculus and Vector Calculus
4.4.5.1 Integral (int)
Discussion

The int element is the operator element for an integral. The lower limit, upper limit and bound variable are given
by (optional) child elements,owlimit, uplimit andbvar in the enclosingapply element. The integrand is also
specified as a child element of the enclosipgly element.

The domain of integration may alternatively be specified by usingnarerval element, or by @ondition element.
In such cases, if a bound variable of integration is intended, it must be specified explicitly. (The condition may involve
more than one symbol.)

Theint element takes théefinitionURL andencodingattributes, which can be used to override the default seman-
tics.

Theint element is amperator taking qualifiers (see Sectiod.2.3.9.

Examples
This example specifieslowlimit, uplimit, andbvar.

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<cn> 0 </cn>
</lowlimit>
<uplimit>
<ci> a </ci>
</uplimit>
<apply>
<fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>
This example specifies the domain of integration withiaterval element.

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<interval>
<ci> a </ci>
<ci> b </ci>
</interval>
<apply><cos/>
<ci> x </ci>

164

</apply>
</apply>
The final example specifies the domain of integration witk@ndition element.

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply><in/>
<ci> x </ci>
<ci type="set"> D </ci>
</apply>
</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>

Detault Rendering

0/f(x) dx
b

/ cosxdx

a

/ (%) dx

xeD

4.4.5.2 Differentiation (diff)
Discussion

Thediff element is the differentiation operator element for functions of a single real variable. The bound variable is
given by abvar element that is a child of the containiagply element. Thé&var elements may also contairdagree
element, which specifies the order of the derivative to be taken.

The diff element takes the@efinitionURL andencodingattributes, which can be used to override the default se-
mantics.

Thediff element is amwperator taking qualifiers (See Sectiod.2.3.9.

Example

<apply>
<diff/>
<bvar>

165

<ci> x </ci>
</bvar>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>

Detault Rendering
df (x)

dx

4.4.5.3 Partial Differentiation (partialdiff)
Discussion

Thepartialdiff element is the partial differentiation operator element for functions of several real variables. The
bound variables are given lyrar elements, which are children of the containigply element. Thévarelements
may also contain degree element, which specifies the order of the partial derivative to be taken in that variable.

The partialdiff element takes théefinitionURL and encodingattributes, which can be used to override the
default semantics.

Thepartialdiff element is amperator taking qualifiers (See Sectiod.2.3.2.

Example

<apply>
<partialdiff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>
</degree>
</bvar>
<bvar>
<ci> y </ci>
</bvar>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>

Detault Rendering
3

mf(xvy)

166

4.4.5.4 Lower limit (lowlimit)
Discussion

Thelowlimit element is the container element used to indicate the ‘lower limit’ of an operator using qualifiers. For
example, in an integral, it can be used to specify the lower limit of integration. Similarly, it is also used to specify the
lower limit of an index for sums and products.

The meaning of theowlimit element depends on the context it is being used in. For further details aboythbfiers
are used in conjunction with operators taking qualifiers, consult Se¢tibA.2

Example

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>

Detault Rendering

The default rendering of theowlimit element and its contents depends on the context. In the preceding example, it
should be rendered as a subscript to the integral sign:

b
/f(x) dx

Consult the descriptions of individual operators that make use dfdheimit construct for default renderings.

4.4.5.5 Upper limit (uplimit)
Discussion

Theuplimit element is the container element used to indicate the ‘upper limit' of an operator using qualifiers. For
example, in an integral, it can be used to specify the upper limit of integration. Similarly, it is also used to specify the
upper limit of an index for sums and products.

The meaning of theplimit element depends on the context it is being used in. For further details aboythbfiers
are used in conjunction with operators taking qualifiers, consult SetibA.2

167

Example

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>

Detault Rendering

The default rendering of theplimit element and its contents depends on the context. In the preceding example, it
should be rendered as a superscript to the integral sign:

b
/f(x) dx

Consult the descriptions of individual operators that make use afgthénit construct for default renderings.

4.4.5.6 Bound variable (bvar)
Discussion

The bvar element is the container element for the ‘bound variable’ of an operation. For example, in an integral it
specifies the variable of integration. In a derivative, it indicates which variable with respect to which a function is being
differentiated. When thevar element is used to quantify a derivative, thear element may contain a chiltkgree
element that specifies the order of the derivative with respect to that variableavihelement is also used for the
internal variable in sums and products and for the bound variable used with the universal and existential quantifiel
forall andexists.

The meaning of thevar element depends on the context it is being used in. For further details aboygythbfiers are
used in conjunction with operators taking qualifiers, consult Seetidrs.2

Examples

<apply>
<diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>

168

</degree>
</bvar>
<apply>
<power/>
<ci> x </ci>
<cn> 4 </cn>
</apply>
</apply>

<apply>
<int/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><in/><ci> x </ci><ci> D </ci></apply>
</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>

Detault Rendering

The default rendering of thevar element and its contents depends on the context. In the preceding examples, it should
be rendered as thein the dx of the integral, and as thein the denominator of the derivative symbol:

dx*

dx?

/ f(x) dx

xeD
Note that in the case of the derivative, the default rendering odélgeee child of thebvar element is as an exponent.

Consult the descriptions of individual operators that make use afitae construct for default renderings.

4.4.5.7 Degree (degree)
Discussion

The degree element is the container element for the ‘degree’ or ‘order’ of an operation. There are a number basic
mathematical constructs that come in families, such as derivatives and moments. Rather than introduce special eleme
for each of these families, MathML uses a single general construciethe:e element for this concept of ‘order’.

The meaning of theegree element depends on the context it is being used in. For further details abogtuhbfiers
are used in conjunction with operators taking qualifiers, consult Se¢tibA.2

Example

<apply>
<partialdiff/>

<bvar>
<ci> x </ci>

169

<degree>
<ci> n </ci>
</degree>
</bvar>
<bvar>
<ci> y </ci>
<degree>
<ci> m </ci>
</degree>
</bvar>
<apply><sin/>
<apply> <times/>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>
</apply>

Default Rendering

The default rendering of theegree element and its contents depends on the context. In the preceding example, the

degree elements would be rendered as the exponents in the differentiation symbols:
an+m

Iy sin(xy)
Consult the descriptions of individual operators that make use afdfece construct for default renderings.

4.4.5.8 Divergence (divergence)
Discussion
Thedivergence element is the vector calculus divergence operator, often called div.

The divergence element takes the attributeacoding, definitionURL that can be used to override the default
semantics.

Thedivergence element is amnary calculus operator (See Sectiod.2.3.

Example

<apply>
<divergence/>
<ci> a </ci>
</apply>
If ais a vector field defined inside a closed surf8@nclosing a volum¥, then the divergence @afis given by

<apply>
<limit/>
<bvar>
<ci> V </ci>

170

</bvar>
<condition>
<apply>
<tendsto/>
<ci> V </ci>
<cn> 0 </cn>
</apply>
</condition>
<apply>
<divide/>
<apply><int encoding="text" definitionURL="Surfacelntegrals.htm"/>
<bvar>
<ci> 8</ci>
</bvar>
<ci> a </ci>
</apply>
<ci> V </ci>
</apply>
</apply>

Detault Rendering

diva

4.4.5.9 Gradient (grad)

Discussion

Thegrad element is the vector calculus gradient operator, often called grad.

Thegrad element takes the attributescoding, definitionURL that can be used to override the default semantics.

Thegrad element is amnary calculus operator (See Sectiod.2.3.

Example

<apply>
<grad/>
<ci> f</ci>

</apply>

Where for exampld is a scalar function anél(x, y, z) = k defines a surfacg

Default Rendering
gradf

171

4.4.5.10 Curl (curl)

Discussion

The curl element is the vector calculus curl operator.

Thecurl element takes the attributescoding, definitionURL that can be used to override the default semantics.

The curl element is amnary calculus operator (see Sectiod.2.3.

Example

<apply>
<curl/>
<ci> a </ci>
</apply>

Where for exampla is a vector.

Detault Rendering

curla

4.4.5.11 Laplacian (laplacian)
Discussion
Thelaplacian element is the vector calculus laplacian operator.

The laplacian element takes the attributecoding, definitionURL that can be used to override the default
semantics.

Thelaplacian element is amnary calculus operator (See Sectiod.2.3.

Example

<apply>
<eq/>
<apply><laplacian/>
<ci> f </ci>
</apply>
<apply>
<divergence/>
<apply><grad/>
<ci> f </ci>
</apply>
</apply>
</apply>

Where for exampld is a vector

172

Default Rendering
02 f

4.4.6 Theory of Sets
4.4.6.1 Set (set)
Discussion

Theset element is the container element that constructs a set of elements. The elements of a set can be defined eit
by explicitly listing the elements, or by using thear andcondition elements.

Theset element is &onstructor element (see Sectiod.2.2.2).

Examples

<set>
<ci> b </ci>
<ci> a </ci>
<ci> ¢ </ci>
</set>

<gset>
<bvar><ci> x </ci></bvar>
<condition>
<apply><1t/>
<ci> x </ci>
<cn> 5 </cn>
</apply>
</condition>
</set>

Detault Rendering

° {a,b,c}
. {x|x<5}

4.4.6.2 List(1ist)
Discussion

Thelist elementis the container element that constructs a list of elements. Elements can be defined either by explicitl
listing the elements, or by using thear andcondition elements.

Lists differ from sets in that there is an explicit order to the elements. Two orders are supported: lexicographic an
numeric. The kind of ordering that should be used is specified byzher attribute.

Thelist element is &onstructor element (See Sectiod.2.2.2).

173

Examples

<list>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</list>

<list order="numeric">
<bvar><ci> x </ci></bvar>
<condition>
<apply><1t/>
<ci> x </ci>
<cn> 5 </cn>
</apply>
</condition>
</list>

Default Rendering

° [ajb,q
. [X|x <5

4.4.6.3 Union (union)
Discussion
Theunion element is the operator for a set-theoretic union or join of two (or more) sets.

The union attribute takes thelefinitionURL and encodingattributes, which can be used to override the default
semantics.

Theunion element is am-ary set operator (see Sectiod.2.3.

Example

<apply>
<union/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
AUB

174

4.4.6.4 Intersect (intersect)
Discussion
Theintersect element is the operator for the set-theoretic intersection or meet of two (or more) sets.

Theintersect element takes théefinitionURL andencodingattributes, which can be used to override the default
semantics.

Theintersect element is am-ary set operator (see Sectiod.2.3.

Example

<apply>
<intersect/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>
</apply>

Detault Rendering
ANB

4.4.6.5 Setinclusion (in)

Discussion

Thein element is the relational operator used for a set-theoretic inclusion (‘is in’ or ‘is a member of’).

Thein element takes théef initionURL andencodingattributes, which can be used to override the default semantics.

Thein element is ainary set relation (See Sectiod.2.4).

Example

<apply>

<in/>

<ci> a </ci>

<ci type="set"> A </ci>
</apply>

Detault Rendering

acA

4.4.6.6 Set exclusion (notin)

Discussion

Thenotin element is the relational operator element used for set-theoretic exclusion (‘is not in’ or ‘is not a member
of").

175

The notin element takes théefinitionURL and encodingattributes, which can be used to override the default
semantics.

Thenotin element is ainary set relation (See Sectiod.2.4).

Example

<apply>
<notin/>
<ci> a </ci>
<ci> A </ci>

</apply>

Default Rendering
a¢A

4.4.6.7 Subset (subset)
Discussion
Thesubset element is the relational operator element for a set-theoretic containment (‘is a subset of’).

The subset element takes thdefinitionURL and encodingattributes, which can be used to override the default
semantics.

Thesubset element is am-ary set relation (See Sectiod.2.4).

Example

<apply>
<subset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
ACB

4.4.6.8 Proper Subset (prsubset)
Discussion
Theprsubset element is the relational operator element for set-theoretic proper containment (‘is a proper subset of’).

Theprsubset element takes théefinitionURL andencodingattributes, which can be used to override the default
semantics.

Thesubset element is am-ary set relation (See Sectiod.2.4).

176

Example

<apply>
<prsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
ACB

4.4.6.9 Not Subset (notsubset)
Discussion
Thenotsubset element is the relational operator element for the set-theoretic relation ‘is not a subset of’.

Thenotsubset element takes théefinitionURL andencodingattributes, which can be used to override the default
semantics.

Thenotsubset element is ainary set relation (see Sectiod.2.4).

Example

<apply>
<notsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
A¢ZB

4.4.6.10 Not Proper Subset (notprsubset)
Discussion
Thenotprsubset element is the operator element for the set-theoretic relation ‘is not a proper subset of’.

Thenotprsubset takes thedefinitionURL andencodingattributes, which can be used to override the default se-
mantics.

Thenotprsubset element is ainary set relation (see Sectiod.2.4).

177

Example

<apply>
<notprsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
AZB

4.4.6.11 Set Difference (setdiff)
Discussion
Thesetdiff element is the operator element for a set-theoretic difference of two sets.

The setdiff element takes the@efinitionURL andencodingattributes, which can be used to override the default
semantics.

Thesetdiff element is ainary set operator (See Sectiod.2.3.

Example

<apply>
<setdiff/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
A\B

4.4.6.12 Cardinality (card)

Discussion

Thecard element is the operator element for deriving the size or cardinality of a set

The card element takes the attributésfinitionURL, encoding that can be used to override the default semantics.

The card element is amnary set operator (see Sectiod.2.3.

Example

<apply>
<eq/>
<apply><card/>

178

<ci> A </ci>
</app1y>
<ci> 5 </ci>
</apply>
where A is a set with 5 elements.

Detault Rendering
Al

4.4.7 Sequences and Series
44.7.1 Sum (sum)
Discussion

The sum element denotes the summation operator. Upper and lower limits for the sum, and more generally a domair
for the bound variables are specified usitpd imit, lowlimit Or acondition on the bound variables. The index for
the summation is specified bybaar element.

Thesum element takes théefinitionURL andencodingattributes, which can be used to override the default seman-
tics.

The sum element is amperator taking qualifiers (see Sectiod.2.3.9.

Examples

<apply>
<sum/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>

<apply>
<sum/>
<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply> <in/>

179

<ci> x </ci>
<ci type="set"> B </ci>
</apply>
</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>

Default Rendering
b

Z f(x)

X=a

;f(x)

4.4.7.2 Product (product)
Discussion

The product element denotes the product operator. Upper and lower limits for the product, and more generally &
domains for the bound variables are specified usiigimit, lowlimit Or acondition on the bound variables. The
index for the product is specified bybaar element.

The product element takes theéefinitionURL andencodingattributes, which can be used to override the default
semantics.

Theproduct element is amperator taking qualifiers (See Sectiod.2.3.9.

Examples

<apply>
<product/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>

<apply>

<product/>
<bvar>

180

<ci> x </ci>
</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>
</apply>
</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>

Default Rendering

b
M

)i_Ef(x)

4.4.7.3 Limit (1imit)
Discussion

Thelimit element represents the operation of taking a limit of a sequence. The limit point is expressed by specifying
alowlimit and abvar, or by specifying aondition on one or more bound variables.

The limit element takes théefinitionURL and encodingattributes, which can be used to override the default
semantics.

Thelimit element is amwperator taking qualifiers (see Sectiod.2.3.2.
Examples

<apply>
<limit/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<cn> 0 </cn>
</lowlimit>
<apply><sin/>
<ci> x </ci>
</apply>
</apply>

<apply>
<limit/>

181

<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply>
<tendsto type="above"/>
<ci> x </ci>
<ci> a </ci>
</apply>
</condition>
<apply><sin/>
<ci> x </ci>
</apply>
</apply>

Default Rendering
. lim sinx
x—0

° lim sinx
xla

4.4.74 Tends To (tendsto)
Discussion
Thetendsto element is used to express the relation that a quantity is tending to a specified value.

Thetendsto element takes the attributegpe to set the direction from which the the limiting value is approached and
thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Thetendsto element is ainary relational operator (See Sectiod.2.4).

Examples

<apply>
<tendsto type="above"/>
<apply>
<power/>
<ci> x </ci>
<ecn> 2 </cn>
</apply>
<apply>
<power/>
<ci> a </ci>
<cn> 2 </cn>
</apply>
</apply>

To expressX, y) —(f(x, y), g(x, y¥)), one might use vectors, as in:

182

<apply>
<tendsto/>
<vector>
<ci> x </ci>
<ci> y </ci>
</vector>
<vector>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
<ci> y </ci>
</apply>
<apply><fn><ci> g </ci></fn>
<ci> x </ci>
<ci> y </ci>
</apply>
</vector>
</apply>

Default Rendering
X2 | &% (xy) = (f(x¥),9(xy))

4.4.8 Elementary classical functions

The names of the common trigonometric functions supported by MathML are listed below. Since their standard inter
pretations are widely known, they are discussed as a group.

sin cos tan

sec csc cot
sinh cosh tanh
sech csch coth
arcsin arccos arctan
arccosh arccot arccoth
arccsc arccsch arcsec
arcsech arcsinh arctanh

4.4.8.1 Discussion
These operator elements denote the standard trigonometrical functions.

These elements all take tliefinitionURL andencoding attributes, which can be used to override the default se-
mantics.

They are allunary trigonometric operators. (See Sectiod.2.3.

4.4.8.2 Examples

<apply>

<sin/>

<ci> x </ci>
</apply>

183

<apply>
<sin/>

<apply>
<plus/>
<apply><cos/>
<ci> x </ci>
</apply>
<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>
</apply>
</apply>
</apply>

4.4.8.3 Default Rendering

sinx
sin(cosx+x°)

4.4.8.4 Exponential (exp)
Discussion

Theexp element represents the exponential function associated with the inverse afftivection. In particular, exp(1)
is approximately 2.718281828.

Theexp element takes théefinitionURL andencodingattributes, which may be used to override the default seman-
tics.

Theexp element is anary arithmetic operator (See Sectiod.2.3.

Example

<apply>

<exp/>

<ci> x </ci>
</apply>

Detault Rendering
e

4.4.8.5 Natural Logarithm (1n)

Discussion

Theln element is the natural logarithm operator.

Theln element takes théefinitionURL andencodingattributes, which can be used to override the default semantics.

Theln element is ammnary calculus operator (See Sectiod.2.3.

184

Example

<apply>
<1ln/>
<ci> a </ci>
</apply>
If a=ethis will yield the value 1.

Detault Rendering

Inx

4.4.8.6 Logarithm (1log)
Discussion

The log element is the operator that returns a logarithm to a given base. The base may be specified eigitag«
element, which should be the first element followingg, i.e. the second child of the containiagply element. If the
logbase element is not present, a default base of 10 is assumed.

Thelog element takes théefinitionURL andencodingattributes, which can be used to override the default seman-
tics.

Thelog element can be used as eitheroparator taking qualifiers or aunary calculus operator (See Sectiod.2.3.9.

Example

<apply>
<log/>
<logbase>
<cn> 3 </cn>
</logbase>
<ci> x </ci>
</apply>
This markup represents ‘the base 3 logarithm of x’. For natural logarithms basd e,dglement should be used instead.

Default Rendering

logs x

4.4.9 Statistics

4.4.9.1 Mean (mean)

Discussion

mean iS the operator element for a mean or average.

mean takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

185

Example
mean iS an n-ary operator (see Sectidr2.3.
<apply>

<mean/>

<ci> X </ci>
</apply>

Detault Rendering
Xor (X)

4.4.9.2 Standard Deviation (sdev)
Discussion
sdev is the operator element for the standard deviation.

sdev takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

Example
sdev is an n-ary operator (see Sectiér2.3.
<apply>

<sdev/>

<ci> X </ci>
</apply>

Default Rendering
o(X)

4.4.9.3 Variance (variance)
Discussion
variance is the operator element for the statistical variance.

variance takes thelef initionURL andencodingattributes, which can be used to override the default semantics.

Example
variance iS an n-ary operator (see Sectidr2.3.
<apply>

<variance/>

<ci> X </ci>
</apply>

186

Default Rendering
a(X)?

4.4.9.4 Median (median)
Discussion
median is the operator element for the median.

median takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

Example
median iS an n-ary operator (see Sectiér.3.
<apply>

<median/>

<ci> X </ci>
</apply>

Detault Rendering
mediar{X)

4.4.9.5 Mode (mode)
Discussion
mode is the operator for the statistical mode.

mode takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

Example
mode iS an n-ary operator (see Sectiére.3.
<apply>

<mode/>

<ci> X </ci>
</apply>

Detault Rendering
modeX)

4.4.9.6 Moment (moment)
Discussion
Themoment element represents statistical moments. dkgeree for thenin * n-th moment'.

moment takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

187

Example

moment iS an operator taking qualifiers (see Section.3.2).

<apply>
<moment/>
<degree>
<cn> 3 </cn>
</degree>
<ci> X </ci>
</apply>

Detault Rendering
(X3)

4.4.10 Linear Algebra

4.4.10.1 Vector (vector)

Discussion

vector is the container element for a vector. The child elements form the components of the vector.

For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a matri;
consisting of a single column, and the transpose of a vector behaves the same as a matrix consisting of a single row.

Example

vector is a constructor element (see Sectibh.2.).

<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
<ci> x </ci>
</vector>

Detault Rendering
1

2
3
X
1, 2,3

4.4.10.2 Matrix (matrix)
Discussion
Thematrix element is the container element for matrix rows, which are represeniegtbyxrow. Thematrixrows

contain the elements of a matrix.

188

Example

matrix iS a constructor element (see Sectibf.2.).

<matrix>
<matrixrow>
<cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>
</matrixrow>
<matrixrow>
<en> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>
</matrixrow>
<matrixrow>
<cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>
</matrixrow>
</matrix>

Default Rendering
010
A= 0 0 1
1 00
4.4.10.3 Matrix row (matrixrow)
Discussion

Thematrixrow element is the container element for the rows of a matrix.

Example

matrixrow iS a constructor element (see Sectibh.2.).

<matrixrow>
<cn> 1 </cn>
<cn> 2 </cn>
</matrixrow>
<matrixrow>
<cn> 3 </cn>
<ci> x </ci>
</matrixrow>

Default Rendering

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

4.4.10.4 Determinant (determinant)
Discussion
Thedeterminant element is the operator for constructing the determinant of a matrix.

determinant takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

189

Example
determinant iS aunary operator (see Sectiod.2.3.
<apply>

<determinant/>

<ci type="matrix"> A </ci>
</apply>

Detault Rendering
detA

4.4.10.5 Transpose (transpose)
Discussion
Thetranspose element is the operator for constructing the transpose of a matrix.

transpose takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

Example

transpose IS aunary operator (See Sectiod.2.3.

<apply>
<transpose/>
<ci type="matrix"> A </ci>
</apply>
Default Rendering
At

4.4.10.6 Selector (selector)
Discussion

The selector element is the operator for indexing into vectors matrices and lists. It accepts one or more arguments
The first argument identifies the vector, matrix or list from which the selection is taking place, and the second anc
subsequent arguments, if any, indicate the kind of selection taking place.

Whenselector is used with a single argument, it should be interpreted as giving the sequence of all elements in the
list, vector or matrix given. The ordering of elements in the sequence for a matrix is understood to be first by column
then by row. That is, for a matrixg j), where the indices denote row and column, the ordering woulthhea 1 o, ...
az1,azyz ... etcetera.

When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix, the second a
third arguments specify the row and column of the selected element.

When two arguments are given, and the first is a vector or list, the second argument specifies an element in the list
vector. When a matrix and only one indets specified as in

190

<apply>
<selector/>
<matrix>
<matrixrow>
<cn> 1 </cn> <cn> 2 </cn>
</matrixrow>
<matrixrow>
<cn> 3 </cn> <cn> 4 </cn>
</matrixrow>
</matrix>
<cn> 1 </cn>
</apply>
it refers to the-th matrixrow. Thus, the preceding example selects the following row:

<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>

selector takes thelefinitionURL andencodingattributes, which can be used to override the default semantics.

selector is classified as an n-ary linear algebra operator even though it can take only one, two, or three arguments.

Example

<apply>
<selector/>
<ci type="matrix"> A </ci>
<cn> 3 </cn>
<cn> 2 </cn>
</apply>

Default Rendering

Theselector construct renders the same as the expression it selects.

4.4.10.7 Vector product (vectorproduct)
Discussion
Thevectorproduct is the operator element for deriving the vector product of two vectors

Thevectorproduct element takes the attributésfinitionURL, encoding that can be used to override the default
semantics.

Thevectorproduct element is ainary vector operator (See Sectiod.2.3.

Example

<apply>
<eq/>

191

<apply><vectorproduct/>
<ci type="vector"> A </ci>
<ci type="vector"> B </ci>
</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><sin/>
<ci> θ </ci>
</apply>
</apply>
</apply>
where A and B are vectora, b are the magnitudes of A, B arfiis the angle between A and B.

Default Rendering
AxB

4.4.10.8 Scalar product (scalarproduct)
Discussion
Thescalarproduct is the operator element for deriving the scalar product of two vectors

Thescalarproduct element takes the attributésfinitionURL, encoding that can be used to override the default
semantics.

Thescalarproduct element is ainary vector operator (See Sectiod.2.3.

Example

<apply>
<eq/>
<apply><scalarproduct/>
<ci type="vector"> A </ci>
<ci type="vector">B </ci>
</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><cos/>
<ci> θ </ci>
</apply>
</apply>
</apply>
where A and B are vectorg, b are the magnitudes of A, B arllis the angle between A and B.

Detault Rendering
AB

192

4.4.10.9 Outer product (outerproduct)
Discussion
Theouterproduct is the operator element for deriving the outer product of two vectors

Theouterproduct element takes the attributésfinitionURL, encoding that can be used to override the default
semantics.

Theouterproduct element is ainary vector operator (see Sectiod.2.3.

Example

<apply>
<outerproduct/>
<ci type="vector">A</ci>
<ci type="vector">B</ci>
</apply>
where A and B are vectors.

Default Rendering
A.B

4411 Semantic Mapping Elements

This section explains the use of the semantic mapping elersentsitics, annotation andannotation-xml.

4.4.11.1 Annotation (annotation)
Discussion
Theannotation element is the container element for a semantic annotation in a non-XML format.

Theannotation element takes the attribuéacoding to define the encoding being used.

Example

Theannotation element is a semantic mapping element. It is always usedsasithntics.

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>
</apply>
<cn> 5 </cn>
</apply>
<annotation encoding="TeX">
\sin x + 5
</annotation>
</semantics>

193

Default Rendering

None. The information contained in annotations may optionally be used by a renderer able to process the kind ¢
annotation given.

4.4.11.2 Semantics (semantics)
Discussion

Thesemantics element is the container element that associates additional representations with a given MathML con
struct. Thesemantics element has as its first child the expression being annotated, and the subsequent children ar
the annotations. There is no restriction on the kind of annotation that can be attached using the semantics element. |
example, one might give X encoding, or computer algebra input in an annotation.

The representations that are XML based are enclosed anmdtation-xml element while those representations that
are to be parsed ®EDATA are enclosed in asnnotation element.

Thesemantics element takes théefinitionURL andencodingattributes, which can be used to reference an external
source for some or all of the semantic information.

An important purpose of theemantics construct is to associate specific semantics with a particular presentation,
or additional presentation information with a content construct. The default renderingedbatics element is the
default rendering of its first child. When a MathML-presentation annotation is provided, a MathML renderer may
optionally use this information to render the MathML construct. This would typically be the case when the first child is
a MathML content construct and the annotation is provided to give a preferred rendering differing from the default for
the content elements.

Use ofsemantics to attach additional information in-line to a MathML construct can be contrasted with use of the
csymbol for referencing external semantics. See Sectidnl.3

Examples

Thesemantics element is a semantic mapping element.

<semantics>
<apply>
<plus/>
<apply>
<sin/>
<ci> x </ci>
</apply>
<cn> 5 </cn>
</apply>
<annotation encoding="Maple">
sin(x) + 5
</annotation>
<annotation-xml encoding="MathML-Presentation">

</annotation-xml>
<annotation encoding="Mathematica">
Sin[x] + 5

194

</annotation>

<annotation encoding="TeX">
\sin x + 5

</annotation>

<annotation-xml encoding="OpenMath">
<0MA>. . .</0OMA>

</annotation-xml>

</semantics>

Default Rendering

The default rendering of semantics element is the default rendering of its first child.

4.4.11.3 XML-based annotation (annotation-xml)
Discussion

The annotation-xml container element is used to contain representations that are XML based. It is always used
together with thesemantics element, and takes the attributecoding to define the encoding being used.

annotation-xml iS @ Semantic mapping element.
Example

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>
</apply>
<cn> 5 </cn>
</apply>
<annotation-xml encoding="OpenMath">
<OMA><0OMS name="plus" cd="arithl"/>
<OMA><0OMS name="sin" cd="transcl"/>
<0MV name="x"/>
</0MA>
<0OMI>5</0MI>
</0MA>
</annotation-xml>
</semantics>

See also the discussion ®mantics above.

Default Rendering

None. The information may optionally be used by a renderer able to process the kind of annotation given.

4.4.12 Constant and Symbol Elements

This section explains the use of the Constant and Symbol elements.

195

4.4.12.1 integers (integers)
Discussion

integers represents the set of all integers.

Example

<apply>
<in/>
<cn type="integer"> 42 </cn>
<integers/>

</apply>

Default Rendering
42 Z

4.4.12.2 reals (reals)
Discussion

reals represents the set of all real numbers.

Example

<apply>
<in/>
<cn type="real"> 44.997 </cn>
<reals/>

</apply>

Default Rendering
44997 R

4.4.12.3 rationals (reals)

Discussion

rationals represents the set of all rational numbers.

Example

<apply>
<in/>
<cn type="rational"> 22 <sep/>7</cn>
<rationals/>

</apply>

196

Default Rendering
22/7€Q

4.4.12.4 naturalnumbers (naturalnumbers)
Discussion

naturalnumbers represents the set of all natural numbers, ie. non-negative integers.

Example

<apply>
<in/>
<cn type="integer">1729</cn>
<naturalnumbers/>

</apply>

Detault Rendering
1729¢ N

4.4.12.5 complexes (complexes)
Discussion

complexes represents the set of all complex numbers, ie. numbers which may have a real and an imaginary part.

Example

complexes represents the set of all complex numbers, ie. numbers which may have a real and an imaginary part.

Example
<apply>
<in/>
<ci type="complex">17<sep/>29</ci>
<complexes/>
</apply>
Default Rendering
17429 ¢C

4.4.12.6 primes (primes)
Discussion

primes represents the set of all natural prime numbers, ie. integers greater than 1 which have no positive integer fact
other than themselves and 1.

197

Example

<apply>
<in/>
<cn type="integer">17</cn>
<primes/>

</apply>

Default Rendering
17¢P

4.4.12.7 exponentiale (exponentiale)
Discussion

exponentiale represents the mathematical constant which is the exponential base of the natural logarithms, commonl
writtene . It is approximately 2.718281828..

Example

<apply> <eq/>
<apply>
<ln/>
<exponentiale/>
</apply>
<cn>1</cn>
</apply>

Detault Rendering

Ine=1

4.4.12.8 imaginaryi (imaginaryi)
Discussion

imaginaryi represents the mathematical constant which is the square root of -1, commonly written

Example

<apply> <eq/>
<apply>
<power/>
<imaginaryi/>
<cn>2</cn>
</apply>
<cn>-1</cn>
</apply>

198

Default Rendering
i=-1

4.4.12.9 notanumber (notanumber)

Discussion

notanumber represents the result of an ill-defined floating point operation, sometimes also/SaNed

Example

<apply> <eq/>
<apply>
<divide/>
<cn>0</cn>
<cn>0</cn>
</apply>
<notanumber/>
</apply>

Detault Rendering
0/0=NaN

4.4.12.10 true (true)
Discussion

true represents the logical constant for truth.

Example

<apply> <eq/>
<apply>
<or/>
<true/>
<ci type = "logical">P</ci>
</apply>
<true/>
</apply>

Default Rendering

trueorP=true

4.4.12.11 false (false)
Discussion

false represents the logical constant for falsehood.

199

Example

<apply> <eq/>
<apply>
<and/>
<false/>
<ci type = "logical">P</ci>
</apply>
<false/>
</apply>

Detault Rendering

falseandP= false

4.4.12.12 emptyset (emptyset)
Discussion

emptyset represents the empty set.

Example

<apply>
<neq/>
<integers/>
<emptyset/>

</apply>

Default Rendering
7+0

4.4.12.13 pi (pi)
Discussion

pi represents the mathematical constant which is the ratio of a circle’s circumference to its diameter, approximatel
3.141592653.

Example

<apply>

<approx/>

<pi/>

<cn type = "rational">22<sep/>7</cn>
</apply>

200

Default Rendering
T~ 22/7

4.4.12.14 eulergamma (eulergamma)
Discussion

eulergamma represents Euler’'s constant, approximately 0.5772156649

Example

<eulergamma/>

Default Rendering
r

4.4.12.15 infinity (infinity)
Discussion

infinity represents the concept of infinity. Proper interpretation depends on context.

Example

<infinity/>

Default Rendering

00

201

Chapter 5

Combining Presentation and Content Markup

Presentation markup and content markup can be combined in two ways. The first manner is to intersperse content ¢
presentation elements in what is essentially a single tree. This is ealied markup. The second manner is to provide
both an explicit presentation and an explicit content in a pair of trees. This is cadiadle]l markup. This chapter
describes both mixed and parallel markup, and how they may used in conjunction with style sheets and other tools.

51 Why Two Different Kinds of Markup?
Chapters 3 and 4 describe two kinds of markup for encoding mathematical material in documents.

Presentation markup capturesnotational structure. It encodes the notational structure of an expression in a sufficiently
abstract way to facilitate rendering to various media. Thus, the same presentation markup can be rendered with relat
ease on screen in either wide and narrow windows, in ASCII or graphics, in print, or it can be enunciated in a sensibl
way when spoken. It does this by providing information such as structured grouping of expression parts, classificatio
of symbols, etc.

Presentation markup doest directly concern itself with the mathematical structure or meaning of an expression. In
many situations, notational structure and mathematical structure are closely related, so a sophisticated processing ap
cation may be able to heuristically infer mathematical meaning from notational structure, provided sufficient context i
known. However, in practice, the inference of mathematical meaning from mathematical notation must often be left t
the reader.

Employing presentation tags alone may limit the ability to re-use a MathML object in another context, especially
evaluation by external applications.

Content markup capturesnathematical structure. It encodes mathematical structure in a sufficiently regular way in order

to facilitate the assignment of mathematical meaning to an expression by application programs. Though the details

mapping from mathematical expression structure to mathematical meaning can be extremely complex, in practice, the
is wide agreement about the conventional meaning of many basic mathematical constructions. Consequently, much
the meaning of a content expression is easily accessible to a processing application, independently of where or how it
displayed to the reader. In many cases, content markup could be cut from a Web browser and pasted into a mathemat
software tool with confidence that sensible values will be computed.

Since content markup isot directly concerned with how an expression is displayed, a renderer must infer how an ex-

pression should be presented to a reader. While a sufficiently sophisticated renderer and style-sheet mechanism coul
principle allow a user to read mathematical documents using personalized notational preferences, in practice, render
content expressions with notational nuances may still require intervention of some sort.

Employing content tags alone may limit the ability of the author to precisely control how an expression is rendered.

202

Both content and presentation tags are necessary in order to provide the full expressive capability one would expect ir
mathematical markup language. Often the same mathematical notation is used to represent several completely differ:
concepts. For example, the notatidmay be intended (in polynomial algebra) as itfile power of the variablg, or as

thei-th component of a vectot (in tensor calculus). In other cases, the same mathematical concept may be displayec
in one of various notations. For instance, the factorial of a number might be expressed with an exclamation mark,
Gamma function, or a Pochhammer symbol.

Thus the same notation may represent several mathematical ideas, and, conversely, the same mathematical idea c
has several notations. In order to provide authors with the ability to precisely control notation while at the same time
encoding meanings in a machine-readable way, both content and presentation markup are needed.

In general, if it is important to control exactly how an expression is rendered, presentation markup will generally be
more satisfactory. If it is important that the meaning of an expression can be interpreted dependably and automatical
then content markup will generally be more satisfactory.

5.2 Mixed Markup

MathML offers authors elements for both content and presentation markup. Whether to use one or the other, or
combination of both, depends on what aspects of rendering and interpretation an author wishes to control, and wk
kinds of re-use he or she wishes to facilitate.

5.2.1 Reasons to Mix Markup

In many common situations, an author or authoring tool may choose to generate either presentation or content mark
exclusively. For example, a program for translating legacy documents would most likely generate pure presentatic
markup. Similarly, an educational software package might very well generate only content markup for evaluation ir
a computer algebra system. However, in many other situations, there are advantages to mixing both presentation ¢
content markup within a single expression.

If an author is primarily presentation-oriented, interspersing some content markup will often produce more accessibl
more re-usable results. For example, an author writing about linear algebra might write:

<mrow>
<apply>
<power/>
<ci>x</ci><cn>2</cn>
</apply>
<mo>+</mo>
<msup>
<mi>v</mi><mn>2</mn>
</msup>
</mrow>
wherev is a vector and the superscript denotes a vector componenk, iaradreal variable. On account of the linear
algebra context, a visually impaired reader may have directed his or her voice synthesis software to render superscri
as vector components. By explicitly encoding the power, the content markup yields a much better voice rendering the
would likely happen by default.

If an author is primarily content-oriented, there are two reasons to intersperse presentation markup. First, using prese
tation markup provides a way of modifying or refining how a content expression is rendered. For example, one migh
write:

203

<apply>
<in/>
<ci><mi fontweight="bold">v</mi></ci>
<ci>8</ci>

</apply>

In this case, the use of embedded presentation markup allows the author to spewighthat be rendered in boldface.
In the same way, it is somtimes the case that a completely different notation is desired for a content expression. F
example, here we express a fact about factonmetsn!/(n-1)!, using the ascending factorial notation:

<apply>
<equivalent/>
<ci>n</ci>
<apply>
<divide/>
<semantics>
<apply>
<factorial/>
<ci>n</ci>
</apply>
<annotation-xml encoding="MathML-Presentation">
<msup>
<mn>1</mn>
<mover accent="true">
<mi>n</mi>
<mo><mchar name="OverBar"/></mo>
</mover>
</msup>
</annotation-xml>
</semantics>
<semantics>
<apply>
<factorial/>
<apply><minus/><ci>n</ci><cn>1</cn></apply>
</apply>
<annotation-xml encoding="MathML-Presentation">
<msup>
<mn>1</mn>
<mover accent="true">
<mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow>
<mo><mchar name="OverBar"/></mo>
</mover>
</msup>
</annotation-xml>
</semantics>
</apply>
</apply>

This content expresison would render using the given notatio,f%s:

204

A second reason to use presentation within content markup is that there is a continually growing list of areas of discour:
that do not have pre-defined content elements for encoding their objects and operators. As a consequence, any sys
of content markup inevitably requires an extension mechanism that combines notation with semantics in some wa
MathML content markup specifies several ways of attaching an external semantic definitions to content objects. It |
necessary, however, to use MathML presentation markup to specify how such user-defined semantic extensions sho
be rendered.

For example, the ‘rank’ operator from linear algebra is not included as a pre-defined MathML content element. Thus
to express the statement rank¢)=1 we use aemantics element to bind a semantic definition to the symiawik.

<apply>
<eq/>
<apply>
<fn>
<semantics>
<mi>rank</mi>
<annotation-xml encoding="OpenMath">
<0OMS cd="linalg3" name="rank"/>
</annotation-xml>
</semantics>
</fn>
<apply>
<times/>
<apply> <transpose/> <ci>u</ci> </apply>
<ci>v</ci>
</apply>
</apply>
<cn>1</cn>
</apply>

Here, the semantics of rank have been given using a symbol from an OpenMath content dictionary (CD).

5.2.2 Combinations that are prohibited

The main consideration when presentation markup and content markup are mixed together in a single expression is tl
the result should still make sense. When both kinds of markup are contained in a presentation expression, this mee
it should be possible to render the resulting mixed expressions simply and sensibly. Conversely, when mixed markt
appears in a content expression, it should be possible to simply and sensibly assign a semantic interpretation to 1
expression as whole. These requirements place a few natural constraints on how presentation and content markup
be mixed in a single expression, in order to avoid ambiguous or otherwise problematic expressions.

Two examples illustrate the kinds of problems that must be avoided in mixed markup. Consider:

<mrow>
<bvar> x </bvar> <mo> + </mo> <bvar> y </bvar>
</mrow>

In this example, the content elemeaniar has been indiscriminately embedded in a presentation expressionbsiice
requires an enclosing context for its meaning, this expression is unclear.

Similarly, consider:

205

<apply>

<ci> x </ci> <mo> + </mo> <ci> y </ci>
</apply>
Here, themo element is problematic. Should a renderer infer that the usual arithmetic operator is intended, and act as
the prefix content elemeptLlus had been used? Or should this be literally interpreted as the opzrapmlied to two
argumentsgmo>+</mo> and<mi>y</mi> ? Even if we were to decide thaho>+</mo> was the operator, then what
should its meaning be? These questions do not have particularly compelling answers, so this kind of mixing of conter
and presentation markup is also prohibited.

5.2.3 Presentation Markup Contained in Content Markup

The use of presentation markup within content markup is limited to situations that do not effect the ability of content
markup to unambiguously encode mathematical meaning. Specifically, presentation markup may only appear in conte
markup in three ways:

1. within ci andcn token elements
2. within the csymbol element
3. within the semantics element

Any other presentation markup occurring within a content markup is a MathML error. More detailed discussion of these
three cases follows:

Presentation markup within token elements. The token elementsi andcn are permitted to contain any sequence
of MathML characters (defined in Chaptg), presentation elements, asdp empty elements. Contiguous
blocks of MathML characters ini andcn elements are rendered as if they were wrappedii@ndmn
elements respectively. If a token element contains both MathML characters and presentation elements, col
tiguous blocks of MathML characters (if any) are treated as if wrapped ior mn elements as appropriate,
and the resulting collection of presentation elements are rendered as if wrappet-iswaglement.

Presentation markup within the csymbol element. The csymbol element may contain either MathML characters
interspersed with presentation markup, or content elements of the container type. It is a MathML error for
acsymbol element to contain both presentation and content elements. Whenjythieol element contains
both raw data and presentation markup, the same rendering rules that apply to content elements of the tok
type should be used.

Presentation markup within the semantics element. One of the main purposes of themantics element is to
provide a mechanism for incorporating arbitrary MathML expressions into content markup in a semantically
meaningful way. In particular, any valid presentation expression can be embedded in a content expressic
by placing it as the first child of aemantics element. The meaning of this wrapped expression should be
indicated by one or more annotation elements also contained izt ics element. Suggested rendering
for asemantics element is discussed in Sectiér?.a

5.24 Content Markup Contained in Presentation Markup

The guiding principle for embedding content markup within presentation expressions is that the resulting expressio
should still have an unambiguous rendering. In general, this means that embedded content expressions must be sen
tically meaningful, since rendering of content markup depends on its meaning.

Certain content elements derive part of their semantic meaning from the surrounding context, such as whather a
element is qualifying an integral, logical quantifier or lambda expression. Another example would be whieghsrea
element occurs in aoot or partialdiff element. Thus, in a presentation context, elements such as these do not have
a clearly defined meaning, and hence there is no obvious choice for a rendering. Consequently, they are not allowed.

206

Using the terminology of Sectiof.2.1, we see that operator, relation, container, constant and symbol elements make
sense on their own, while elements of the qualifier and condition type do not. (Notentteatval may be used either
as a general container, or as a qualifier.)

Outside these categories, certain elements deserve specific comment: the etemesnte, sep, annotation and
annotation-xml can only appear in very specific contexts and consequently are not permitted as direct sub-expressior
of any presentation element. Finally, the elemesiiantics carries with it sufficient information to be permitted in
presentation.

The complete list of content elements thatnot appear as a child in a presentation elementrigotation, annotation-
xml, sep, declare, bvar, condition, degree, logbase, lowlimit, uplimit.

Note that within presentation markup, content expressions may only appear in locations where it is valid for any
MathML expression to appear. In particular, content expressions may not appear within presentation token elements.
this regard mixing presentation and content are asymmetrical.

Note that embedding content markup in presentation will often require applications to render operators outgige of an
ply context. E.g., it may be necessary to renslet, plus, root or sin outside of an application. Content/presentation
mixing does not introduce any new requirements, however, since unapplied operators are already permitted in conte
expressions, for example:

<apply>
<compose/>
<sin/>
<apply>
<inverse/>
<root/>
</apply>
</apply>

5.3 Parallel Markup

Some applications are able to make uséah presentation and content information. For these applications it is desir-
able to provide both forms of markup for the same mathematical expression. This ispeadiéel markup.

Parallel markup is achieved with thkemantics element. Parallel markup for an expression can be used on its own, or
can be incorporated as part of a larger content or presentation tree.

5.3.1 Top-level Parallel Markup

In many cases what is desired is to provide presentation markup and content markup for a mathematical expression
a whole. To achieve this, a singlemantics element is used pairing two markup trees, with the first branch being the
MathML presentation markup, and the second branch being the MathML content markup.

The following example encodes the boolean arithmetic expresaidn(€+d) in this way.

<semantics>
<mrow>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<mo>⁢</mo>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

207

</mrow>
<annotation-xml encoding="MathML-Content">
<apply><and/>
<apply><xor/><ci>a</ci> <ci>b</ci></apply>
<apply><xor/><ci>c</ci> <ci>d</ci></apply>
</apply>
</annotation-xml>
</semantics>

This example is non-trivial in the sense that the content markup could not be easily derived from the presentation markt
alone.

5.3.2 Fine-grained Parallel Markup

Top-level pairing of independent presentation and content markup is sufficient for many, but not all, situations. Appli-
cations that allow treatment afib-expressions of mathematical objects require the ability to associate presentation,
content or information with thearts of an object with mathematical markup. Top-level pairing witBemantics
element is insufficient in this type of situation; identification of a sub-expression in one branehaftics element

gives no indication of the corresponding parts in other branches.

The ability to identify corresponding sub-expressions is required in applications such as mathematical expression ec
tors. In this situation, selecting a sub-expression on a visual display can identify a particular portion of a presentatio
markup tree. The application then needs to determine the corresponding annotations of the sub-expressions; in parti
lar, the application requires the sub-expressions oétim@tation-xml tree in MathML content notation.

It is, in principle, possible to provide annotations for each presentation node by incorparatiagtics elements
recursively.

<semantics>
<mrow>
<semantics>
<mrow><mo> (</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">
<apply><plus/><ci>a</ci> <ci>b</ci></apply>
</annotation-xml>
</semantics>
<mo>⁢</mo>
<semantics>
<mrow><mo> (</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">
<apply><plus/><ci>c</ci> <ci>d</ci></apply>
</annotation-xml>
</semantics>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply><times/>
<apply><plus/><ci>a</ci> <ci>b</ci></apply>
<apply><plus/><ci>c</ci> <ci>d</ci></apply>
</apply>
</annotation-xml>

208

</semantics>

To be complete this example would be much more verbose, wrapping each of the individuahtsaveandmn in a
further seversemantics elements.

This approach is very general and works for all kinds of annotations (including non-MathML annotations and multiple
annotations). It leads, however, tor@) increase in size of the document. This is therefore not a suitable approach for
fine-grained parallel markup of large objects.

5.3.3 Parallel Markup via Cross-Referencesid and xref

To better accomodate applications that must deal with sub-expressions of large objects, MathML uses cross-referent
between the branches okamantics element to identify corresponding sub-structures.

Cross-referencing is achieved using andxref attributes within the branches of a containisgmantics element.
These attributes may optionally be placed on MathML elements of any type.

The following example shows this cross-referencing for the boolean arithmetic expresdidfc{d).

<semantics>
<mrow id="E">
<mrow id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>
</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>
</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">
<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>
</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>
</apply>
</apply>
</annotation-xml>
</semantics>

209

An id attribute and a correspondingref appearing within the samgemantics element create a correspondence
between sub-expressions.

In creating these correspondences by cross-referaficef the id attributes referenced by amygef must be in the

same branch of an enclosingemantics element. This constraint guarantees that these correspondences do not create
unintentional cycles. (Note that this restriction daesexclude the use afd attributes within the other branches of the
enclosingsemantics element. It does, however, exclude references to these ndtatributes originating in the same
semantics element.)

There is no restriction on which branch of themantics element may contain the destinatibé attributes. It is up to
the application to determine which branch to use.

In general, there will not be a one-to-one correspondence between nodes in parallel branches. For example, a prese
tion tree may contain elements, such as parentheses, that have no correspondents in the content tree. It is therefore c
useful to put theid attributes on the branch with the finest-grained node structure. Then all of the other branches will
havexref attributes to some subset of theé attributes.

In absence of other criteria, the first branch of #eeantics element is a sensible choice to contain tdeattributes.
Applications that add or remove annotations will then not have to re-assign attributestmthe ics trees.

In general, the use afd andxref attributes allows a full correspondence between sub-expressions to be given in text
that is at most a constant factor larger than the original. The direction of the references should not be taken to imply th
sub-expression selection is intended to be permitted only on one child sétlaatics element. It is equally feasible

to select a subtree in any branch and to recover the corresponding subtrees of the other branches.

5.3.4 Annotation Cross-References using XLinkid and href

It is possible to give cross-references between a MathML expression and a non-MathML XML annotation using the
XLink protocol []. As an example, the boolean expression of the previous section can be annotated with Open
Math, and cross-linked as follows:

<semantics>
<mrow id="E">
<mrow id="E.1" xlink:id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>
</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>
</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">

210

<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>
</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>
</apply>
</apply>
</annotation-xml>

<annotation-xml encoding="OpenMath">
<OMA xlink:href="id(’E’)" xmlns="www.openmath.org/OpenMath">
<0MS cd="logicl" name="and" xlink:href="id(’E’)"/>
<OMA xlink:href="id(’E.1°)">
<OMS cd="logicl" name="xor" xlink:href="id(’E.1.3’)"/>
<OMV name="a" xlink:href="id(’E.1.2°)"/>
<OMV name="b" xlink:href="id(’E.1.4°)"/>
</0MA>
<0OMA xlink:href="id(’E.3’)">
<OMS cd="logicl" name="xor" xlink:href="id(’E.3.3’)"/>
<OMV name="c" xlink:href="id(’E.3.2°)"/>
<OMV name="d" xlink:href="id(’E.3.4°)"/>
</0MA>
</0MA>
</annotation-xml>
</semantics>

Here0OMA, OMS andOMV are elements defined in the OpenMath standard for representing application, symbol and vari-
able, respectively.

(Note that the application might or might not have a mechanism for extending DTDs. It will be the case, therefore tha
some applications will give well-formed, but not "valid," XML withimnotation-xml elements. Consequently, some
MathML applications usinginnotation-xml will not be validated. More flexibility is offered by the use of XML
Schemas.)

5.4 Tools, Style Sheets and Macros for Combined Markup

The interaction of presentation and content markup can be greatly enhanced through the use of various tools. While t
set of tools and standards for working with XML applications is rapidly evolving at the present, we can already outline
some specific techniques.

In general, the interaction of content and presentation is handled via transformation rules on MathML trees. Thes
transformation rules are sometimes called ‘macros’. In principle, these rules can be expressed using any one of a numl
of mechanisms, including DSSSL, Java programs operating on a DOM, etc. We anticipate, however, that the princip
mechanism for these transformations in most applications shall be XSLT.

In this section we discuss transformation rules for two specific purposes: for notational style sheets, and to simplif
parallel markup.

211

54.1 Notational Style Sheets

Authors who make use of content markup may be required to deploy their documents in locales with notational cor
ventions different than the default content rendering. It is therefore expected that transformation tools will be used t
determine notations for content elements in different settings. Certain elementsaeh@a, mean and transpose,

have widely varying common notations and will often require notational selection. Some examples of notational varia
tions are given below.

. V versusV

. tanx versus tg

o (1) versus,C™ versusCp, versusC'

. ao+|%+...+‘%ak‘versus[ao,al,...,ak]

Other elements, for examppdus andsin, are less likely to require these features.

We observe that selection of notational style is sometimes necessary for correct understanding of documents by loca
For instance, the binomial coefficie@f, in French notation is equivalent @' in Russian notation.

A natural way for a MathML application to bind a particular notation to the set of content tags is with an XSLT style
sheet |]. The examples of this section shall assume this is the mechanism to express style choices. (Other choic
are equally possible, for example an application program may provide menus offering a number of rendering choice
for all content tags.)

When writing XSLT style sheets for mathematical notation, some transformation rules can be purely local, while other:
will require multi-node context to determine the correct output notation. The following example gives a local transfor-
mation rule that could be included in a notational style sheet displaying open intervajg[aather than asgb).

<xsl:template match="m:interval">
<m:mrow>
<xsl:choose>
<xsl:when test="@closure=’closed’">
<m:mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>
</m:mfenced>
</xsl:when>
<xsl:when test="Q@closure=’open’">
<m:mfenced open="]" close="[" separators=",6">
<xsl:apply-templates/>
</m:mfenced>
</xsl:when>
<xsl:when test="Q@closure=’open-closed’">
<m:mfenced open="]" close="]" separators=",">
<xsl:apply-templates/>
</m:mfenced>
</xsl:when>
<xsl:when test="Qclosure=’closed-open’">
<m:mfenced open="[" close="[" separators=",">
<xsl:apply-templates/>
</m:mfenced>
</xsl:when>
<xsl:otherwise>
<m:mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>

212

</m:mfenced>
</xsl:otherwise>
</xsl:choose>
</mrow>
</xsl:template>

Heren is established as the MathML namespace.

An example of a rule requiring context information would be:

<xsl:template match="m:apply[m:factoriall] ">
<m:mrow>
<xsl:choose>
<xsl:when test="not(*[2]=m:ci) and not(*[2]=m:cn)">
<m:mrow>
<m:mo>(</m:mo>
<xsl:apply-templates select="*[2]" />
<m:mo>)</m:mo>
</m:mrow>
</xsl:when>
<xsl:otherwise>
<xsl:apply-templates select="*[2]" />
</xsl:otherwise>
</xsl:choose>
<m:mo>!</m:mo>
</m:mrow>
</xsl:template>

Other examples of context-dependent transformations would be, e.g. fapjihg of a plus to rendera-b+c, rather
thana+ -b+c, or for theapply of apower to render sifix, rather than sin?.

Notational variation will occur both for built-in content elements as well as extensions. Notational style for extensions
can be handled as described above, with rules matching the names of any extension tags, and with the content hand
(in a content-faithful style sheet) proceeding as described in SeaHoR

5.4.2 Content-Faithful Transformations

There may be a temptation to view notational style sheets as a transformation from content markup to equivalent prese
tation markup. This viewpoint is explicitly discouraged, since information will be lost and content-oriented applications
will not function properly.

We define a ‘content-faithful’ transformation to be a transformation that retains the original content in parallel markup
(Sections.3).

Tools that support MathML should be ‘content-faithful’, and not gratuitously convert content elements to presentatior
elements in their processing. Notational style sheets should be content-faithful whenever they may be used in interacti
applications.

It is possible to write content-faithful style sheets in a number of ways. Top-level parallel markup can be achieved b
incorporating the following rules in an XSLT style sheet:

<xsl:template match="m:math">
<m:semantics>

213

<xsl:apply-templates/>

<m:annotation-xml m:encoding="MathML-Content">
<xsl:copy-of select="."/>
</annotation-xml>
</m:semantics>
</xsl:template>

The notation would be generated by additional rules for producing presentation from content, such as those in Se
tion 5.4.1 Fine-grained parallel markup can be achieved with additional rules treatiagributes.

5.4.3 Style Sheets for Extensions

The presentation tags of MathML form a closed vocabulary of notational structures, but are quite rich and can be use
to express a rendering of most mathematical notations. Complex notations can be composed from the basic eleme
provided for presentation markup. In this sense, the presentation ability of MathML is open-ended. It is often useful
however, to give a name to new notational schemas if they are going to be used often. For example, we can shorten ¢
clarify the ascending factorial example of Secttof.1, with a rule which replaces

<mx:a-factorial>X</mx:a-factorial>
with

<semantics>
<apply> <factorial/> <mi>X</mi> </apply>
<annotation-xml encoding="MathML-Presentation">
<msup>
<mn>1</mn>
<mover accent="true">
<mi>X</mi>
<mo><mchar name="OverBar"/></mo>
</mover>
</msup>
</annotation-xml>
</semantics>

Then the example would be more clearly written as:

<apply>
<equivalent/>
<ci>n</ci>
<apply>
<divide/>
<mx:a-factorial><ci>n</ci></mx:a-factorial>
<mx:a-factorial>
<apply><minus/><ci>n</ci><cn>1</cn></apply>
</mx:a-factorial>
</apply>
</apply>
Likewise, the content tags form a fixed vocabulary of concepts covering the types of mathematics seen in most comm
applications. It is not reasonable to expect users to compose existing MathML content tags to construct new conte

214

concepts. (This approach is frought with technical difficulties even for professional mathematicians.) Instead, it is an
ticipated that applications whose mathematical content concepts extend beyond what is offered by MathML will ust
annotations withirsemantics elements, and that these annotations will use content description languages outside o
MathML.

Often the naming of a notation and the identification of a new semantic concept are related. This allows a singl
transformation rule to capture both a presentation and a content markup for an expression. This is one of the areas
MathML that benefits most strongly from the use of macro processing.

<mx:rank/>

and

<mx:tr>X</mx:tr>

and respectively transform them to

<semantics>
<ci><mo>rank</mo></ci>
<annotation-xml encoding="OpenMath">
<0OMS cd="linalgl" name="rank"/>
</annotation-xml>
</semantics>

and

<apply>
<transpose/>
<ci>X</ci>
</apply>
The lengthy sample encoding of rankg)=1, from Sectiorb.2.1could then be condensed to

<apply>
<eq/>
<apply>
<mx:rank/>
<apply> <times/> <mx:tr>u</mx:tr> <ci>v</ci> </apply>
</apply>
<cn>1</cn>
</apply>
From this example we see how the combination of presentation and content markup could become much simpler a
effective to generate as standard style-sheet libraries become available.

215

Chapter 6

Characters, Entities and Fonts

6.1 Introduction
6.1.1 The Intent of Character Names

Notation and symbols have proved very important for mathematics. Mathematics has grown in part because of the su
cinctness and suggestiveness of its evolving notation. There have been many new signs evolved for use in mathemati
notation, and mathematicians have not held back from making use of many symbols originally developed elsewher
The result is that mathematics makes use of a very large collection of symbols. It is difficult to write mathematics flu-
ently if these characters are not available for use in coding. It is difficult to read mathematics if corresponding glyph:
are not available for presentation on specific display devices.

This situation posed a problem for the first W3C Math Working Group when it was brought into existence. It did not fall
naturally within the purview of a developing a specification enabling mathematics to be used with HTML and producing
a DTD for this to worry about more than the entities allowed in the DTD. However, as experience has shown, a long lis
of entities with no means to display them is of little use, and a cause of frequent frustrations in trying use a standart
On the other hand, a large collection of glyphs and fonts of characters without a standard way to refer to them is not «
much use either.

The W3C Math Working Group has therefore took on directly the task of specification of part of the full mechanism of
needed to proceed from notation to final presentation, and started collaboration with organizations undertaking speci
cation of the rest.

For instance, in MathML 1 we tried to use entity names for the many character signs that are contained in ISO TR 957.
which supersedes the ISO TR 8879 annex as far as mathematics is concerned. There are considerations of mathema
usage that do on occasion militate against this, and the TR 9573 lists need supplementing. There was the hope
agreeing with the TR 9573 WG on suitable extensions, in the course of the revision of their document that they wer
undertaking. That has not actually happened, and the expected TR 9573 revision has not appeared either.

The STIX project of the STIPUB group of scientific and technical publishers has also been working since 1997 towarc
a common collection of mathematical symbols and names. The W3C Math Working Group itself has collaborated witt
that project and expects to have to issue further updates on the matter of character entities as a consequence of us
work of this project and others. For the latest character tables and fonts information, $é&Ghéath Working Group

home page

6.1.2 The STIX Project

The first STIX project team leader, Nico Poppelier, is a member of the W3C Math Working Group. The STIX project,
set up by the STIPUB group of publishers includes the American Chemical Society (ACS), the American Institute of
Physics (APS), the American Mathematical Society (AMS), the AMerican Physical Society (APS), Elsevier Science
Publishers, the Institute of Electrical and Electronic Engineers (IEEE). An initial aim was to formulate a collection

216

http://www.w3.org/Math
http://www.w3.org/Math

of characters needed in the course of scientific and technical publishing. A database of characters in common u
has been produced by collaborating publishing organizations, including information fronpXhedrld, Springer
Verlag (Heidelberg), Design Science Inc., Wolfram Research Inc., the Association for Computing Machinery (ACM) in
addition to the above-mentioned. The coordination and the major portion of the work on this have been carried out b
Barbara Beeton of the AMS.

The STIX team has proposed to the Unicode Technical Committee (UTC) of the Unicode consortium the additions t«
the next revision of the Unicode character set that this process shows are needed, together with the appropriate chara
codes. This has been the subject of on-going negotiation for some time. In March 2000 a honed proposal supported
the UTC went on the the ISO WG2 meeting in Beijing which deals with incorporation of new material into the standard
ISO 10646. The final results of that deliberation, which it is hoped will confirm assignement of code-points put forward
by the UTC will be incorporated into the information made public by the Math WG.

Finally, the STIX project’s intention has always been to commission the production of a complete set of fonts covering
those Unicode characters for science and technology, to be made available to the public under license, but free of char
The STIPUB group recognizes that easy availability of the characters and fonts greatly facilitates communication an
publication. At the start of the year 2000 the process of commisioning the making of fonts is underway, and theil
wide-spread availability is hoped with one or two years.

6.1.3 Character Listings
This chapter of the MathML Specification contains a listing of character names for use in MathML.

To provide more background on the characters used by mathematics we have used a large comparative database sho
codes and meanings in other common math environments. The W3C Math Working Group is very grateful to Elsevie
Science, to Wolfram Research (makers of Mathema®g¢and to Design Science (Makers of MathTy@g for making
available to us so much useful data.

In MathML 1 the characters of the mathematical sciences were listed as entities. This is coherent with thinking in term
of SGML markup and the use of DTDs. For the XML world with its use of documents well-formedness is to be sufficient
for the examination of a particular one, which does not require validation against a DTD, where character entities woul
be found declared. The next development that is expected to replace the DTD as a specifier of a class of docume
is that of Schemas. The specification for Schemas is presently under active development at the W3C. Though the fir
form of Schemas is not yet clear, it is known that their use precludes effective use of large lists of entities. For tha
reason MathML 2 passes from the use of entities to name mathematical characters, which becomes a deprecated us
to the use ofrror: mchar elements. For this reason the tables below just list the suggested character names, whicl
should be used in the foreAmchar name="character_name" />.

6.1.4 Non-Marking Characters

Some characters although important for the quality of print rendering do not directly have glyph marks that corresponc
They are called here non-marking characters. Below we have a table of those adopted for the purposes of MathM
Their roles are discussed in Chaptaand Chapte#, respectively. The values of the spaces given are recommendations.
Some of these characters do not have official Unicode values, and some are given as combinations of Unicode char
ters employing the special mathematics modifier character (U02063). The correspondence between the spacing val
mentioned below and those in the Unicode descriptions are not exact, but are good matches.

It used to be in MathML 1.0 that there were a number more non-marking character entities listed here. These wel
conerned with composition control, such as line-breaking, In MathML 2 such control is effected by the use of the
proper attributes on thespace element.

217

Character name Unicode Description

	 00009 tabulator stop; horizontal tabulation

 0000A force a line break; line feed

&Space; 00020 one em of space in the current font

 000AO0 space that is not a legal breakpoint

​ 0200B space of no width at all

  0200A space of width 1/18 em

  02009 space of width 3/18 em

  02005 space of width 4/18 em

   02005-0200A space of width 5/18 em

​ 0200A-02063 space of width -1/18 em

​ 02009-02063 space of width -3/18 em

​ 0205F-02063 space of width -4/18 em

​ 02005-02063 space of width -5/18 em

⁢ 02062 marks multiplication when it is understood without a mark (Se&iar
⁡ 02061 character showing function application in presentation tagging (S&c#igh

6.1.5 Printing Character Symbol Listings

Even though the situation concerning availability of character codes from Unicode and under ISO 10646 is not yet full
clear at the time of writing, we have decided to proceed on the assumption that the code points suggested to ISO W(
by the UTC will be confirmed. As before we can only reiterate that for current developments on details of characte
standards as far as they influence mathematical formalism the Home Page of the W3C Math WG should be consultec

The Math WG started from the 1SO 9573-13 proposal, as conveyed to us from Anders Berglund, and added a numb
of informative additional aliases based in the practice of the mathematical typesetting community. The main influenc
outside ISO has been the names to be found in ghecdmmunity because they inform the practice of the contributors

to the STIX character database mentioned above.

To facilitate comprehension of a fairly large list of names, which totals over 2000 in this case, we offer the same
information in more than one form.

We have characters listed by name and sample glyphs for all of them. Each character name is accompanied by a cc
for a character grouping chosen from a list given below, a short verbal description, and a Unicode hex code if there |
a corresponding sample glyph to be found in ISO 10646, now extended in accordance with the proposal forwarded f
the UTC to ISO WG2 in March 2000. We have excluded, with very few exceptions that seemed to us compelling, othe
characters that may have appeared in the corresponding lists in MathML 1. Those charactkrg thilisbe found

to be used very infrequently in the experience of mathematical publishers, or simply to be completley unacceptabl
for inclusion in Unicode. However MathML 2 does provide thglyph andcsymbol elements to accommodate new
characters that authors may wish to introduce.

The character listings by alphabetical and Unicode order in Se6tibii have now been brought more into line with

the corresponding ISO character sets than was the case in MathML 1.0, in that if some part of a set is included then tl
entire set is included. In addition, the group ISOCHEM has been dropped as more properly the concern of chemist
These changes have also been reflected in the entity declarations in the DTD in Appendix

6.1.6 Special Constants

To commence we list separately a few of the special characters which MathML has seen fit to be a little radical ir
introducing. These have been accorded new Unicode values. There used also the be entries betow;fokfalse;
and&NotANumber ;, but these do not yet have Unicode points assigned to them so have been removed. They can
reintroduced by the character extension mechanisms provided hylihe andcsymbol elements.

218

Entity name Unicode Description

ⅅ 02145 D for use in differentials, e.g. within integrals
ⅆ 02146 d for use in differentials, e.g. within integrals
ⅇ 02147 e for use for the exponential base of the natural logarithms
&Imaginaryl; 02148F i for use as a square root of -1

6.1.7 Alphabetical Lists

The first table offered is a very large ASCII listing of printing entity nanweslered alphabeticallywith upper-case
preceding lower-case as in ASCII order. There is also an ASCII listing of printing characteysed by Unicode
number The Unicode point points are those of the current proposal which will, it is expected eventaully be part of the
next revision, Unicode 4. Unicode 3 has just been published in February 2000. Next we have collections of the entitie
in entity sets which correspond to the groupings in the corresponding ISO documents.

6.1.8 ISO Character Set Groupings

In addition, we list the above material in the groupings used by ISO 9573-13 introduced. This table makes explicit the
entity groupings and provides links to ASCII listings of the groups and HTML tabular listings which display the glyphs,
as well.

6.1.8.1 ISO Symbol Sets

The symbols for mathematics that ISO have considered are organized, for both historical and mnemonic reasons ir
groupings with somewhat descriptive names. In the tables below we reproduce the newly proposed versions of the
groups and give the corresponding Unicode sample glyphs. The entries are organized alphabetically by character nar

It should be noted that the sample glyphs given here are in GIF files intended for viewing on a monitor’'s screen at 72dp
They are not suitable for printing, and in particular do not constitute a set of fonts covering the symbols of mathematic:
Such a set of fonts is under development in more than one context. The MathML Working Group is engaged in th
effort of ensuring that such fonts will be readily publicly available.

This first block of sets includes mostly non-letter symbols, along with a few letters loaded with mathematical semantics

Group Descriptive Name

ISOAMSA Added Math Symbols: Arrows
ISOAMSB Added Math Symbols: Binary Operators
ISOAMSC Added Math Symbols: Delimiters
ISOAMSN Added Math Symbols: Negated Relations
ISOAMSO Added Math Symbols: Ordinary
ISOAMSR Added Math Symbols: Relations
ISOTECH General Technical

ISOPUB Publishing

ISODIA Diacritical Marks

ISONUM Numeric and Special Graphic

ISOBOX Box and Line Drawing

6.1.8.2 ISO Character Sets for Mathematics Alphabets

Mathematical literature displays the common use of particular font styles. Characters representing given letters whic
differ only in the glyph presentation are in principle not different for the purposes of a character registry such as
Unicode, which is not supposed to take into account mere font differences. However usage has meant that both 1ISO &

219

file:byalpha.html
file:bycodes.html
file:bycodes.html
file:isoamsa.html
file:isoamsb.html
file:isoamsc.html
file:isoamsn.html
file:isoamso.html
file:isoamsr.html
file:isotech.html
file:isopub.html
file:isodia.html
file:isonum.html
file:isobox.html

Unicode, like mathematics, recognize them as different entities. Therefore we wish to include lists for Greek, script
open face (also known as double struck or blackboard bold), and fraktur (also known as gothic or German) fonts. Th
UTC has accepted a proposal for the inclusion of alphabetic character runs in Unicode Plane 1 for the express use
mathematics, brought to them by Murray Sargent of Microsoft and supported by the STIX Project as a compromis
solution. However the tenets of the UTC preclude the duplication, if at all possible, of methods for encoding a characte
which conventionally has esentially one glyphic representation. Thus thehelaseat certain points in the alphabetic

runs for mathematical use in Plane 1 coding. These holes will, however, be reserved and not used for anything else, &
so can be used, internally, in the obvious way by an application handling mathematics.

Group Descriptive Name
ISOGRK3 Greek Symbols
ISOMSCR Math Alphabet Script
ISOMOPF Math Alphabet Open Face
ISOMFRK Math Alphabet Fraktur

220

file:isogrk3.html
file:isomscr.html
file:isomopf.html
file:isomfrk.html

Chapter 7

The MathML Interface

To be effective, MathML must work well with a wide variety of renderers, processors, translators and editors. This
chapter addresses some of the interface issues involved in generating and rendering MathML. Since MathML exists p
marily to encode mathematics in Web documents, perhaps the most important interface issues are related to embedc
MathML in HTML [] and XHTML []land | 1.

There are three kinds of interface issues that arise in embedding MathML in other XML documents. First, MathML
must be semantically integrated. MathML markup must be recognized as valid embedded XML content, and not as ¢
error. This is primarily a question of managing namespaces in XiNHnj ik

Second, in the case of HTML/XHTML, MathML rendering must be integrated into browser software. Some browsers
already implement MathML rendering natively, and one can expect more browsers will do so in the future. At the sam:
time, other browsers have developed infrastructure to facilitate the rendering of MathML and other embedded XML
content by third-party software. Using these browser specific mechanisms generally requires some additional interfa
markup of some sort to activate.

Third, other tools for generating and processing MathML must be able to intercommunicate. A number of MathML
tools have been or are being developed, including editors, translators, computer algebra systems, and other scient
software. However, since MathML expressions tend to be lengthy, and prone to error when entered by hand, speci
emphasis must be given to insuring that MathML can be easily generated by user-friendly conversion and authorir
tools, and that these tools work together in a dependable, platform and vendor independent way.

The W3C Math working group is committed to providing support to software vendors developing all kinds of MathML
tools. The working group monitors the public mailing listvw-math@w3.organd will attempt to answer questions
about the MathML specification. The working group works with MathML developer and user groups. For current
information about MathML tools, applications and user support activities, consultatme page of the W3C Math
Working Group

7.1 Embedding MathML in other Documents

While MathML can be used in isolation as a language for exchanging mathematical expressions between MathML
aware applications, the primary anticipated use of MathML is to encode mathematical expression within larger docL
ments. MathML is ideal for embedding math expressions in other applications of XML.

In particular, we focus here on the mechanics of embedding MathML in XHTML. XHTMU]is a recently
released W3C Recommendation formulating a family of current and future XML-based document types and module
that reproduce, subset, and extend HTML 4. While HTML-4|] is the dominant language of the Web today,

one may anticipate a shift from HTML 4 to XHTML. Indeed, XHTML already renders properly in HTML 4 user agents.

Since MathML and XHTML share a common XML framework, namespaces provide a standard mechanism for em
bedding MathML in XHTML. While some popular user agents also support inclusion of MathML directly in HTML 4

221

mailto:www-math@w3.org
http://www.w3.org/Math/
http://www.w3.org/Math/

as "XML data islands," the view point we adopt here is that this is a transitional strategy, and we don'’t elaborate on it
Consult your user agent documentation for specific information on its support for embedding XML in HTML.

7.1.1 MathML and Namespaces

Embedding MathML in XML-based documents in general, and XHTML in particular, is a matter of managing names-
paces. See the W3C Recommendation "Namespaces in XNihf Jdor full details.

An XML namespace is a collection of names identified by a URI resource. The URI for the MathML namespace is:
http://www.w3.0rg/1998/Math/MathML

Using namespaces, embedding a MathML expression in a larger XML document is merely a matter of identifying the
MathML markup as residing in the MathML namespace. This can be accomplished by either explicitly identifying each
MathML element name by attaching a hnamespace prefix, or by declaring a default namespace on an enclosing eleme

To declare a namespace, one usesmms attribute, or an attribute with atmlns prefix. When thexmlns attribute is
used alone, it sets the namespace for the element on which it appears, and for any children elements.

Example:

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...</mrow>
</math>

When thexmlns attribute is used as a prefix, it declares a prefix which can then be used to explicitly associate othe
elements and attributes with a particular namespace.

Example:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:math><m:mrow>...</m:mrow></m:math>

</body>

These two methods of namespace declaration can be used together. For example, by using both an explicit docume
wide namespace prefix, and default namespace declarations on individual math elements, it is possible to locali
namespace related markup to the top-lexseh’ element. This is also important for implementation with some user
agents, since attaching rendering behaviors to element currently requires an explicit namespace prefix in these brows:

At the same time, a number of MathML authoring tools are not yet namespace-aware, and thus the ability to use marku
without prefixes is also desirable in the short term.

Example:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...<mrow>

</m:math>

</body>

222

7.1.1.1 Document Validation Issues

The use of namespace prefixes creates an issue for DTD validation of documents embedding MathML. DTD validatio
requires knowing the literal (possibly prefixed) element names used in the document. However, the Namespaces in XV
Recommendation\[Jallows the prefix to be changed at arbitrary points in the document, since namespace
prefixes may be declared on any element.

The ‘historical’ method of bridging this gap was to write a DTD with a fixed prefix, or in the case of XHTML and
MathML, with no prefix, and mandate that the specified form must be used throughout the document. However, this i
somewhat restricting for a modular DTD that is intended for use in conjunction with another DTD, which is exactly the
situation with MathML in XHTML. In essence, the MathML DTD would have to ‘allocate’ a prefix for itself and hope
no other module uses the same prefix to avoid name clashes, thus losing one of the main benefits of XML namespac

One strategy for addressing this problem is to make every element name in the DTD be accessed by an entity referen
This means that by declaring a couple of entities to specify the prefix before the DTD is loaded, the prefix can be chose
by a document author, and compound DTDs that include several modules can, without changing the module DTD
specify unique prefixes for each module to avoid clashes. The MathML DTD has been designed in this fashion. Se
SectionA.1, [Jand |] for details.

An extra issue arises in the case where explicit prefixes are used on the top-level math element, but a default namesp
is used for other MathML elements. In this case, one wants the MathML module to be included into XHTML with the
prefix set to empty. However, the ‘driver’ DTD file that sets up the inclusion of the MathML module would then need to
define a new element called m:math. This would allow the top-level math element to use an explicit prefix, for attaching
rendering behaviors in current browsers, while the contents would not need an explicit prefix, for ease of interoperabilit
between authoring tools, etc.

7.1.1.2 Compatibility Suggestions

While the use of namespaces to embed MathML in other XML applications is completely described by the relevan
W3C recommendations, a certain degree of pragmatism is still called for at present. Support for XML, namespaces alt
rendering behaviors in popular user agents is not always fully in alignment with W3C Recommendations. In some cas¢
the software predates the relevant standard, and in other cases, the relevant standards are not yet complete.

During the transitional period in which some software may not be fully namespace-aware, a few conventional prac
tices will ease compatibility problems. After surveying a number of user agents and other MathML-aware software
applications, we offer the following suggestions.

1. If you use namespace prefixes with MathML markup, use m: as a conventional prefix for the MathML names-
pace. Using an explicit prefix is probably safer for compatibility in current user agents.

2. If you use namespace prefixes, pick one and use it consistently within a document.

3. Explicitly declare the MathML namespace onmdlth elements.

Examples.

<body>

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>...<m:mrow>
</m:math>

</body>
Or
<body>

223

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...<mrow>
</math>

</body>

Note that these suggestions alone may not be sufficient for creating functional Web pages containing MathML marku
It will generally be the case that some additional document-wide markup will be required. Additional work may also be
required to make all MathML instances in a document compatible with document-wide declarations. This is particularly

true when documents are created by cutting and pasting MathML expressions, since current tools will probably not b
able to query global namespace information.

Consult the/V3C Math Working Groufhomepage for compatibility and implementation suggestions for current browsers
and other MathML-aware tools.

7.1.2 The Top-Levelmath Element

MathML specifies a single top-level or rastth element, which encapsulates each instance of MathML markup within
a document. All other MathML content must be contained inaah element; equivalently, every valid, complete
MathML expression must be contained<dmath> tags. Themath element must always be the outermost element in a
MathML expression; it is an error for omath element to contain another.

Applications that return sub-expressions of other MathML expressions, for example as the result of a cut-and-pas
operation, should always wrap themdmath> tags. ldeally, the presence of enclosigath> tags should be a very

good heuristic test for MathML content. Similarly, applications which insert MathML expressions in other MathML
expressions must take care to removedheth> tags from the inner expressions.

Themath element can contain an arbitrary number of children schemata. The children schemata render by default as
they were contained in@row element.

The attributes of theath element are:

class, id, style Provided for style sheet and DOM compatibility.

macros This attribute provides a way of pointing to external macro definition files. Macros are not part of the MathML
specification, and much of the functionality provided by macros in MathML can be accommodated by XSL
transformations{SLT]. However, thenacros attribute is provided to make possible future development of
more streamlined, MathML-specific macro mechanisms. The value of this attribute is a sequence of URLs o
URIs, separated by whitespace

mode Themode attribute specifies whether the enclosed MathML expression should be rendered in a display style o
an in-line style. Allowed values ar®isplay andinline (default). This attribute isleprecatedn favor of
the newdisplay attribute, or the standardSS2 ‘display’ propertwith the analogouslock andinline
values.

display Thedisplay attribute replaces the deprecatedie element. It specifies whether the enclosed MathML ex-
pression should be rendered in a display style or an in-line style. Allowed valuéd &® and inline
(default).

The attributes of theath element affect the entire enclosed expression. It is, in a sense, ‘inward looking’. However, to

render MathML properly in a browser, and to integrate it properly into an XHTML document, a second collection of
‘outward looking’ attributes are also useful.

While general mechanisms for attaching rendering behaviors to elements in XML documents are under developmer
wide variations in strategy and level of implementation remain between various existing user agents. Consequently, tl
remainder of this section describes attributes and functionality that are desirable for integrating third-party renderin
modules with user agents:

224

http://www.w3.org/Math
http://www.w3.org/TR/CSS2/visuren.html#propdef-display

overflow In cases where size negotiation is not possible or fails (for example in the case of an extremely long equation
this attribute is provided to suggest an alternative processing method to the renderer. Allowed values are
scroll The window provides a viewport into the larger complete display of the mathematical expression.
Horizontal or vertical scrollbars are added to the window as necessary to allow the viewport to be
moved to a different position.
elide The display is abbreviated by removing enough of it so that the remainder fits into the window. For
example, a large polynomial might have the first and last terms displayed with ‘+ ... +' between them.
Advanced renderers may provide a facility to zoom in on elided areas.
truncate The display is abbreviated by simply truncating it at the right and bottom borders. It is recom-
mended that some indication of truncation is made to the viewer.
scale The fonts used to display the mathematical expression are chosen so that the full expression fits in th
window. Note that this only happens if the expression is too large. In the case of a window larger than
necessary, the expression is shown at its normal size within the larger window.
altimg This attribute provides a graceful fall-back for browsers that do not support embedded elements. The value c
the attribute is an URL.
alttext This attribute provides a graceful fall-back for browsers that do not support embedded elements or images. Tt
value of the attribute is a text string.

7.1.3 Invoking MathML Processors

In browsers where MathML is not natively supported, we anticipate that MathML rendering will be carried out via
embedded objects such as plug-ins, applets, or helper applications. The direction which has begun emerging for invoki
third-party rendering and processing software is elucidated in the W3C Working Draft "Behavioral Extensions to CSS'

[I

Behavioral extensions use the linking mechanism of CSS to attach executable components to elements. Typically, t
executable components involve script code which manipulate the DOM to instantiate other MathML processing com
ponents. Using experimental implementations of behavior extensions in current user agents, it is possible to attas
processing componentshiath elements which use applets or plug-ins to render MathML markup in an XHTML page.

Work on on Behavior Extensions to CSS is ongoing at W3C, and existing implementations must be regarded as expe
imental at the time. However, it offers a very promising direction for powerful and flexible invocation of third-party
MathML processors.

MIME types offer an alternative strategy that can also be used in current user agents to invoke a MathML renderer. Th
is primarily useful when referencing separate files containing MathML markup froEMBED or 0BJECT element.

The W3C Math Working Group suggests that generic MathML be assigned the MIME & x-mathm1, and for
browser registry, we suggest the standard file extensian be used. In MathML 1.0text/mathml was given as

the suggested MIME type. However, the assignment of MIME types to XML applications has come into question in
the interim. Thus, beginning with MathML 2.0, we suggest instead using the less-regulated experimental MIME type
text/x-mathml.

Although rendering MathML expressions typically occurs in place in a Web browser, other MathML processing func-
tions take place more naturally in other applications. Particularly common tasks include opening a MathML expressio
in an equation editor or computer algebra system.

At present, there is no standard way of selecting between various applications which might be used to render or proce
embedded MathML. As work progresses on coordination between browsers and embedded elements and the Docum
Object Model [], providing this kind of functionality should be a priority. Both authors and readers should be able

to indicate a preference about what MathML application to use in a given context. For example, one might imagine the
some mouse gesture over a MathML expression causes a browser to present the reader with a pop-up menu, showing
various kinds of MathML processing available on the system, and the MathML processors recommended by the authc

225

Since MathML is most often generated by authoring tools, it is particularly important that opening a MathML expression
in an editor should be easy to do and to implement. In many cases, it will be desirable for an authoring tool to recor
some information about its internal state along with a MathML expression, so that an author can pick up editing wher
he or she left off. The MathML specification does not explicitly contain provisions for recording information about
the authoring tool. In some circumstances, it may be possible to include authoring tool information that applies to al
entire document in the form of meta-data; interested readers are encouraged to consult the W3C Metadata Activity f
current information about metadata and resource definition. For encoding authoring tool state information that applie
to a particular MathML instance, readers are referred to the possible usesafifyet i cs element for this purpose.

In the short term, regardless of the methodology, implementors of embedded MathML processing applications at
encouraged to try to allow for the following kinds of functionality:

° An author wishing to reach an audience as wide as possible might want MathML to be rendered by any
available processor.

° An author targeting a specific audience might want to indicate that a particular MathML processor be used.

° A reader might wish to specify which of several available processors installed locally should be used.

7.1.4 Mixing and Linking MathML and HTML

In order to be fully integrated into XHTML, it should be possible not only to embed MathML in XHTML, but also
to embed XHTML in MathML. However, the problem of supporting XHTML in MathML presents many difficulties.
Moreover, the problems are not specific to MathML; they are problems for XML applications in XHTML generally.
Therefore, at present, the MathML specification does not permit any XHTML elements within a MathML expression,
although this may be subject to change in a future revision of MathML.

In most cases, XHTML elements either do not apply in mathematical contexts (headings, paragraphs, lists, etc.),
MathML already provides equivalent or better functionality specifically tailored to mathematical content (tables, style
changes, etc.). However, there are two notable exceptions.

7.1.4.1 Linking

MathML has no element that corresponds to the XHTML anchor eleméntXHTML, anchors are used both to make
links, and to provide locations to which a link can be made. MathML, as an XML application, defines links by the use of
the mechanism described in the W3C Working Draft "XML Linking Language&'ifik]. The reader is cautioned that

this is at present still a working draft, and is therefore subject to future revision. Since the MathML linking mechanism
is defined in terms of the XML linking specification, the same proviso holds for it as well.

A MathML element is designated as a link by the presence of the atteifbtitek : href. To use the attributel ink : href,
it is also necessary to declare the appropriate namespace. Thus, a typical MathML link might look like:

<mrow xmlns:xlink="http://www.w3.org/1999/x1link"
xlink:href="sample.xml">

</mrow>
MathML designates that almost all elements can be used as XML linking elements. The only elements that cannot ser
as linking elements are those such asgég element, which exist primarily to disambiguate other MathML constructs

and in general do not correspond to any part of a typical visual rendering. The full list of exceptional elements tha
cannot be used as linking elements is given in the table below.

Table 7.1: MathML elements that cannot be linking elements.

mprescripts none sep
malignmark maligngroup

226

Note that the XML Linking J] and XML Pointer Languageq] specifications also define how to lirkto
a MathML expressions. Be aware, however, that such links may or may not be properly interpreted in current software

7.1.4.2 Images

The IMG element has no MathML equivalent. The decision to omit a general mechanism for image inclusion from
MathML was based on several factors. However, the main reason for not providing an image facility is that MathML
takes great pains to make the notational structure and mathematical content it encodes easily available to process
whereas information contained in images is only available to a human reader looking at a visual representation. Thu
for example, in the MathML paradigm, it would be preferable to introduce new glyphs viggtheh element which

at a minimum identifies them as glyphs, rather than simply including them as images.

Finally, apart from the introduction of new glyphs, many of the situations where one might be inclined to use an image
amount to some sort of labeled diagram. For example, knot diagrams, Venn diagrams, Dynkin diagrams, Feynmz
diagrams and complicated commutative diagrams all fall into this category. As such, their content would be bette
encoded via some combination of structured graphics and MathML markup. Because of the generality of the ‘labele
diagram’ construction, the definition of a markup language to encode such constructions extends beyond the scope
the current W3C Math activity. (Seéetp://www.w3.org/Graphicor further W3C activity in this area.)

7.2 Generating, Processing and Rendering MathML

Information is increasingly generated, processed and rendered by software tools. The exponential growth of the W
is fueling the development of advanced systems for automatically searching, categorizing, and interconnecting info
mation. Thus, although MathML can be written by hand and read by humans, the future of MathML is also tied to the
ability to process it with software tools.

There are many different kinds of MathML editors, translators, processors and renderers. What it means to suppc
MathML varies widely between applications. For example, the issues that arise with a MathML-compliant validating
parser are very different from those for a MathML-compliant equation editor.

In this section, guidelines are given for describing different types of MathML support, and for quantifying the extent
of MathML support in a given application. Developers, users and reviewers are encouraged to use these guidelin
in characterizing products. The intention behind these guidelines is to facilitate reuse and interoperability betwee
MathML applications by accurately characterizing their capabilities in quantifiable terms.

7.2.1 MathML Compliance

A valid MathML expression is an XML construct determined by the MathML DTD together with the additional re-
guirements given in the specifications of the MathML document.

We define a ‘MathML processor’ to mean any application that can accept, produce, or ‘roundtrip’ a valid MathML
expression. An example of an application that might round-trip a MathML expression might be an editor that writes &
new file even though no modifications are made.

We specify three forms of MathML compliance:

1. A MathML-input-compliant processor must accept all valid MathML expressions, and faithfully translate all
MathML expressions into application-specific form allowing native application operations to be performed.
2. A MathML-output-compliant processor must generate valid MathML, faithfully representing all application-

specific data.

227

http://www.w3.org/Graphics

3. A MathML-roundtrip-compliant processor must preserve MathML equivalence. Two MathML expressions
are ‘equivalent’ if and only if both expressions have the same interpretation (as stated by the MathML
DTD and specification) under any circumstances, by any MathML processor. Equivalence on an element
by-element basis is discussed elsewhere in this document.

Beyond the above definitions, the MathML specification makes no demands of individual processors. In order to guid
developers, the MathML specification includes advisory material; for example, there are suggested rendering rule
included in ChapteB. However, in general, developers are given wide latitude in interpreting what kind of MathML
implementation is meaningful for their own particular application.

To clarify the difference between compliance and interpretation of what is meaningful, consider some examples:

1. In order to be MathML-input-compliant, a validating parser needs only to accept expressions, and returr
‘true’ for expressions that are valid MathML. In particular, it need not render or interpret the MathML ex-
pressions at all.

2. A MathML computer-algebra interface based on content markup might choose to ignore all presentatior
markup. Provided the interface accepts all valid MathML expressions included those containing presentatiol
markup, it would be technically correct to characterize the application as MathML-input-compliant.

3. A equation editor might have an internal data representation that makes it easy to export some equations :
MathML but not others. If the editor exports the simple equations as valid MathML, and merely displays
an error message to the effect that conversion failed for the others, it is still technically MathML-output-
compliant.

As the previous examples show, to be useful, the concept of MathML compliance frequently involves a judgment abot
what parts of the language are meaningfully implemented, as opposed to parts that are merely processed in a technici
correct way with respect to the definitions of compliance. This requires some mechanism for giving a quantitative
statement about which parts of MathML are meaningfully implemented by a given application. To this end, the W3C
Math working group has provided a test suite of MathML expressioh&at/www.w3.org/Math/testsuite

The test suite consists of a large number of MathML expressions categorized by markup category and domina
MathML element being tested. The existence of this test suite makes is possible, for example, to characterize qua
titatively the hypothetical computer algebra interface mentioned above by saying that it is a MathML-input compli-
ant processor which meaningfully implements MathML content markup, including all of the expressions given undel
http://www.w3.org/Math/testsuite/tests/4

Developers who choose not to implement parts of the MathML specification in a meaningful way are encouraged t
itemize the parts they leave out by referring to specific categories in the test suite.

For MathML-output-compliant processors, there is also a MathML validator onlimgpat/ www.w3.org/Math/validator
Developers of MathML-output-compliant processors are encouraged to verify their output using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the MathML specification are
implemented by an application are encouraged to use the test suites as a part of their decision processes.

7.2.1.1 Deprecated MathML 1.x Features

MathML 2.0 contains a number of MathML 1.x constructs which are now deprecated. We now clarify the relation
between deprecated features and MathML 2.0 compliance.

1. In order to be MathML-output-compliant, authoring tools may not generate MathML markup containing
deprecated features.
2. In order to be MathML-input-compliant, rendering/reading tools must support deprecated features if they are

to be MathML 1.x compliant. They do not have to support deprecated features to be considered MathML 2.C
compliant. However, all tools are encouraged to support the old forms as much as possible.

228

http://www.w3.org/Math/testsuite
http://www.w3.org/Math/testsuite/test/4
http://www.w3.org/Math/validator

3. In order to be MathML-roundtrip-compliant, a processor need only preserve MathML equivalence on expres-
sions containing no deprecated features.

7.2.2 Handling of Errors

If a MathML-input-compliant application receives input containing one or more elements with an illegal number or type
of attributes or child schemata, it should nonetheless attempt to render all the input in an intelligible way, i.e. to rende
normally those parts of the input that were valid, and to render error messages (rendered as if enclogsedrioran
element) in place of invalid expressions.

MathML-output-compliant applications such as editors and translators may choose to geaerateexpressions to
signal errors in their input. This is usually preferable to generating valid, but possibly erroneous, MathML.

7.2.3 Attributes for unspecified data

The MathML attributes described in the MathML specification are necessary for presentation and content markup. Ide
ally, the MathML attributes should be an open-ended list so that users can add specific attributes for specific rendere
However, this cannot be done within the confines of a single XML DTD. Although it can be done using extensions of the
standard DTD, some authors will wish to use non-standard attributes to take advantage of renderer-specific capabiliti
while remaining strictly in compliance with the standard DTD.

To allow this, the MathML 1.0 specification allowed the attribateher on all elements, for use as a hook to pass

on renderer-specific information. In particular, it was intended as a hook for passing information to audio renderers
computer algebra systems, and for pattern matching in future macro/extension mechanisms. The motivation for th
approach to the problem was historical, looking to PostScript, for example, where comments are widely used to pa:
information that is not part of PostScript.

In the mean time, however, the development of a general XML namespace mechanism has made the usaeaf the
attribute obsolete. In MathML 2.0, thecher attribute isdeprecateih favor of the use of namespace prefixes to identify
non-MathML attributes.

For example, in MathML 1.0, it was recommended that if additional information was used in a renderer-specific imple-
mentation for thenaction element (Sectiof8.6.1), that information should be passed in using déhier attribute:

<maction actiontype="highlight" other="color="#ff0000’"> expression </maction>
In MathML 2.0, acolor attribute from another namespace would be used:

<body xmlns:my="http://www.myrenderer.com/MathML/extensions">

<maction actiontype="highlight" my:color="#ff0000"> expression </maction>

</body>

Note that the intent of allowing non-standard attributesdsto encourage software developers to use this as a loop-

hole for circumventing the core conventions for MathML markup. We trust both authors and applications will use
non-standard attributes judiciously.

7.3 Future Extensions

If MathML is to remain useful in the future, it is to be expected that MathML will need to be extended and revised in
various ways. Some of these extensions can be easily foreseen; for example, as work on behavioral extensions to C
proceeds, MathML will likely need to be extended as well.

229

Similarly, there are several kinds of functionality that are fairly obvious candidates for future MathML extensions. These
include macros, style sheets, and perhaps a general facility for ‘labeled diagrams’. However, there will no doubt be othe
desirable extensions to MathML that will only emerge as MathML is widely used. For these extensions, the W3C Matt
working group relies on the extensible architecture of XML, and the common sense of the larger Web community.

7.3.1 Macros and Style Sheets

The development of style-sheet mechanisms for XML is part of the ongoing XML activity of the World Wide Web
Consortium. Both XSL and CSS are working to incorporate greater support for mathematics.

In particular, XSL Transformations<{[5LT] are likely to have a large impact on the future development of MathML.
Macros has traditionally contributed greatly the usability and effectiveness of mathematics encodings. Further wor
developing applications of XSLT tailored specifically to MathML is clearly called for.

Some of the possible uses of macro capabilities for MathML include:

Abbreviation One common use of macros is for abbreviation. Authors needing to repeat some complicated but constat
notation can define a macro. This greatly facilitates hand authoring. Macros that allow for substitution of
parameters facilitate such usage even further.

Extension of Content Markup By defining macros for semantic objects, for example a binomial coefficient, or a
Bessel function, one can in effect extend the content markup for MathML. Such a macro could include
an explicit semantic binding, or such a binding could be easily added by an external applications. Narrowly
defined disciplines should be able to easily introduce standardized content markup by using standard maci
packages. For example, the OpenMath project could release macro packages for attaching OpenMath conte
markup.

Rendering and Style Control Another basic way in which macros are often used is to provide a way of controlling
style and rendering behavior by replacing high-level macro definitions. This is especially important for con-
trolling the rendering behavior of MathML content tags in a context sensitive way. Such a macro capability
is also necessary to provide a way of attaching renderings to user-defined XML extensions to the MathML
core.

Accessibility Reader-controlled style sheets are important in providing accessibility to MathML. For example, a reader
listening to a voice renderer might, by default, hear a bit of MathML presentation markup read as ‘D sub
x sup 2 of f’. Knowing the context to be multi-variable calculus, the reader may wish to use a style sheet
or macro package that instructs the renderer to rendekitisbsup> element as ‘second derivative with
respect to x of f'.

7.3.2 XML Extensions to MathML

The set of elements and attributes specified in the MathML specification are necessary for rendering common mat
ematical expressions. It is recognized that not all mathematical notation is covered by this set of elements, that ne
notations are continually invented, and that sub-communities within mathematics often have specialized notations; al
furthermore that the explicit extension of a standard is a necessarily slow and conservative process. This implies th
the MathML standard could never explicitly cover all the presentational forms used by every sub-community of author:
and readers of mathematics, much less encode all mathematical content.

In order to facilitate the use of MathML by the widest possible audience, and to enable its smooth evolution to encom
pass more notational forms and more mathematical content (perhaps eventually covered by explicit extensions to t
standard), the set of tags and attributes is open-ended, in the sense described in this section.

MathML is described by an XML DTD, which necessarily limits the elements and attributes to those occurring in
the DTD. Renderers desiring to accept non-standard elements or attributes, and authors desiring to include these

230

documents, should accept or produce documents that conform to an appropriately extended XML DTD that has tt
standard MathML DTD as a subset.

MathML-compliant renderers are allowed, but not required, to accept non-standard elements and attributes, and
render them in any way. If a renderer does not accept some or all non-standard tags, it is encouraged either to han
them as errors as described above for elements with the wrong number of arguments, or to render their arguments a
they were arguments to atrow, in either case rendering all standard parts of the input in the normal way.

231

Chapter 8

Document Object Model for MathML

8.1 Introduction

This document extends the Core API of the DOM Level 1 to describe objects and methods specific to MathML element
in documents. The functionality needed to manipulate basic hierarchical document structures, elements, and attribu
will be found in the core document; functionality that depends on the specific elements defined in MathML will be
found in this document.

The actual DOM specification appears in Appendix
The goals of the MathML-specific DOM API are:

° To specialize and add functionality that relates specifically to MathML elements.
. To provide convenience mechanisms, where appropriate, for common and frequent operations on MathMl
elements.

This document includes the following specializations for MathML.:

. A MathMLElement interface derived from the core interfa€eement. MathMLElement specifies the opera-
tions and queries that can be made on any MathML element. MethadstaMLElement include those for
the retrieval and modification of attributes that apply to all MathML elements.

° Various specializations ¢fathMLElement t0 encode syntactical restrictions imposed by MathML.

. Specializations oflathMLElement representing all MathML elements with attributes extending beyond
those specified in th#athMLElement interface. For all such attributes, the derived interface for the ele-
ment contains explicit methods for setting and getting the values.

° Special methods for insertion and retrieval of children of MathML elements. While the basic methods inher-
ited from theNode andElement interfaces must clearly remain available, it is felt that in many cases they may
be misleading. Thus, for instance, tiethMLFractionElement interface provides for accesstamerator
anddenominator attributes; a call t@etDenominator (newNode) is less ambiguous from a calling appli-
cation’s perspective than a callflede: :replaceNode (newNode, Node::childNodes() .item(2)).

MathML specifies rules that are invisible to generic XML processors and validators. The fact that MathML DOM
objects are required to respect these rules, and to throw exceptions when those rules are violated, is an important rea
for providing a MathML-specific DOM extension.

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional
criteria on attribute values. For example, it is not possible in pure XML to require that an attribute value be a positive
integer. The second kind of rule specifies more detailed restrictions on the child elements (for example on ordering
than are given in the DTD. For example, it is not possible in XML to specify that the first child be interpreted one way,
and the second in another. The MathML DOM objects are required to provide this interpretation.

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whit
pace occurring within the content of token elements is ‘trimmed’ from the ends (i.e. all whitespace at the beginning an

232

end of the content is removed), and ‘collapsed’ internally (i.e. each sequence of 1 or more whitespace characters
replaced with one blank character). The MathML DOM elements perform this whitespace trimming as necessary. i
MathML, as in XML, ‘whitespace’ means blanks, tabs, newlines, or carriage returns, i.e. characters with hexadecime
Unicode codes U+0020, U+0009, U+000a, or U+000d, respectively.

8.1.1 MathML DOM Extensions

It is expected that a future version of the MathML DOM may deal with issues which are not resolved here. Some o
these are described here.

8.1.1.1 Style Issues and Implied Attribute Values

The interfaces described to represent MathML elements include access to a number of attributes (in the sense of XM
belonging to those elements. The intent of these methods in the core MathML interfaces (the ‘get’/ ‘set’ pairs) is
only to accessxplicitly specified attributes of the elements, and specifically to access implicit values which may

be application-specific. Calls to these interfaces to get attributes that have not been explicitly specified should retul
nothing (an emptp0oMString).

It seems important to belabor this distinction in light of the nature of the MathML elements and their attributes; all of
the attributes defined for MathML presentation elements are declared in the DTD with a default val®IfED,

for instance. This is particularly relevant for the interface ofitheelement, where theorm attribute may be inferred

from context if not given explicitly, but other attributes are normally collected from an operator dictionary available to
a renderer. The variety of applications which may need to implement the MathML DOM may sometimes be concerne
with validation, computation or other aspects of the document to the exclusion of rendering or editing; such application
do not need to resolve mamyMPLIED attributes, and thus there is no access to such resolution implied in this version
of the MathML DOM.

On the other hand, methods for obtaining the current cascaded and computed values of certain style attributes «
considered desirable due to the need to make frequent calls to discover style information and the current script lev
and display style. Mathematics is characterized by recursive nesting of objects, frequently with implications for the
calculation of style parameters such as font size. As anyone who's implemented math rendering knows, there’s a const
need for this information, and it must be obtained very quickly. Consequently, it might be wise to provide an optional
module in the MathML DOM which would allow style values or implied attributes (e.g., operator dictionary values)
known to the processing application to be ‘attached’ to a DOM instance and subsequently queried.

However, we feel that introducing methods now for dealing with these issues would be premature. CSS and XSL suppc
for mathematics is still evolving, and the mechanisms for handling style issues in MathML documents may well evolve
with them. Additionally, these issues also apply to the core XML DOM. Thus far (XML DOM level 2), issues such
as privacy with regard to user-side style sheets have resulted in no core DOM methods being defined for obtaining t
cascaded, computed or actual style values for a specific element, with DOM access being limited to providing the sty
declarations which are in effect. If a future iteration of the XML DOM were to expand this access, the methods usec
there would apply to the MathML DOM as well, and render any specifications we might make now obsolete.

8.1.1.2 Traversal and Range Interfaces

Additionally, it is likely that a need will become obvious for MathML-specific specializations of interfaces belonging
to the Traversal and Range Modules of XML DOM Level 2. The order of traversal of bound variables, conditions, and
declarations - or whether they should be omitted from a given traversal altogether - offers an example of a potenti
utility for such specializations. Again, however, we feel that it would be premature to specify any such interfaces a
this time. Implementation experience will be necessary in order to discover the appropriate interfaces which should k
specified.

233

Appendix A

Parsing MathML

MathML documents should be validated using ¥iédL DTD for MathML , which is also shown below in Sectidgnl.

Normally. however, a MathML expression does not constitute an entire XML document. MathML is designed to be
used as the mathematics fragment of larger markup languages. In particular it is designed to be useduasia
documents marked up with the XHTML family of markup languages, as definéddd(]]. As a convenience,
aversion of thek<HTML DTD, extended with this MathML modulds also provided as a concrete example. This version
includes all the necessary declarations included into one file. (In contrast to the standalone version of the MathML DTI
which references several files for entity declarations etc.

In some circumstances, when embedding MathML in documents it is necessary, or convenient, to use the mechanisi
described in Chaptef which provide a namespace prefix on MathML element names. The DTD below is designed to
allow this usage. If the parameter entity THML . prefixed is declared to be INCLUDE, using a declaration such as

<!ENTITY % MATHML.prefixed "INCLUDE" >

either in the local subset of the DOCTYPE declaration, or in the DTD file that is including the MathML DTD, then all
MathML elements should be used with a prefix, for examplemrow>, <m: apply>, etc. The prefix defaults te: but
another prefix may be declared by declaring in addition the parameter atitylL. . prefix. For example,

<!ENTITY % MATHML.prefix "math" >
would set the prefix for the MathML namespacentah: .

Note that while thelf }Recommendation provides mechanisms to change the prefix at arbitrary points in the
document, this flexibility isiot provided in this DTD (and is probably not possible to specify in any DTD).

If a MathML fragment is parsed without a DTD, in other words as a well-formed XML fragment, it is the responsibility
of the processing application to treat the whitespace whitespace characters occurring outside of token elements as
significant.

An SGML parser, such assgmls, can be used to validate MathML. In this case an SGML declaration defining the
constraints of XML applicable to an SGML parser must be used. Seetlkeon SGML and XML

The entity declarations for characters are referenced at the end of the DTD. These are linked to the character tables
Chapter6 for each entity set.

Lists of the combined MathML set of character names, orderethlbyeor by Unicode valuere also available.

In order to accommodate XML Namespace prefixes, the DTD does not directly refer to an element namensoeh as
but instead always refers to the name via a parameter entity stjglras. qname ;. The definitions of these parameter
entities are in the filebut are not shown here. They are simply declarations such as the following, one for each MathML
element.

<!ENTITY % mrow.gname "%MATHML . pfx;mrow" >

234

file:dtd/mathml2.dtd
file:dtd/xhtml-math11-f.dtd
http://www.w3.org/TR/NOTE-sgml-xml
file:byalpha.html
file:bycodes.html
file:dtd/mathml2-qname-1.mod

Al The MathML DTD

Here we give the main body of the DTD. The full DTD, as well as the XHTML-Math DTD, is availablezgsachive

KlI== MathML 2.0 DTD ..ttt ittt et it et et ettt ettt et e -=>
<!-- file: mathml2.dtd
-—>

<!-- MathML 2.0 DTD

This is the Mathematical Markup Language (MathML) 2.0, an XML
application for describing mathematical notation and capturing
both its structure and content.

Copyright 1998-2000 World Wide Web Consortium
(Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved.

Permission to use, copy, modify and distribute the XHTML 1.1 DTD and
its accompanying documentation for any purpose and without fee is
hereby granted in perpetuity, provided that the above copyright notice
and this paragraph appear in all copies. The copyright holders make
no representation about the suitability of the DTD for any purpose.

It is provided "as is" without expressed or implied warranty.
Revision: $Id: parsing.xml,v 1.22 2000/03/28 09:53:02 davidc Exp $
This entity may be identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//DTD MathML 2.0//EN"
SYSTEM "mathml?2.dtd"

Revisions: editor and revision history at EOF

<!-- MathML Qualified Names modulecuiiiiiiuennennnnnn -—>
<!ENTITY % mathml-qname.module "INCLUDE" >
<! [Ymathml-gname .module; [
<!ENTITY % mathml-gname.mod
PUBLIC "-//W3C//ENTITIES MathML 2.0 Qualified Names 1.0//EN"
"mathml2-gname-1.mod" >
/mathml-gname.mod;]]>

<!-- if YNS.prefixed; is INCLUDE, include all NS attributes,
otherwise just those associated with MathML

-—>

<! [%NS.prefixed; [

235

file:DTD-MathML-20000328.zip

<!ENTITY % MATHML.NamespaceDecl.attrib
%NamespaceDecl.attrib; >
11>
<!ENTITY 7 MATHML.NamespaceDecl.attrib
"YMATHML.xmlns.attrib;"

<!-- Attributes shared by all elements -—>

<!ENTITY % MATHML.Common.attrib
"%MATHML . NamespaceDecl.attrib;

xlink:href CDATA #IMPLIED

class CDATA #IMPLIED

style CDATA #IMPLIED

id ID #IMPLIED

xref IDREF #IMPLIED

other CDATA #IMPLIED"
>
<!-- Presentation element setc.c.iiiiiiitit i, -—>
<!-- Attribute definitions -->

<IENTITY % att-fontsize

"fontsize CDATA #IMPLIED" >
<!ENTITY % att-fontweight

"fontweight (normal | bold) #IMPLIED" >
<!ENTITY % att-fontstyle

"fontstyle (normal | italic) #IMPLIED" >
<!ENTITY % att-fontfamily

"fontfamily CDATA #IMPLIED" >
<!ENTITY % att-color

"color CDATA #IMPLIED" >

<!ENTITY % att-fontinfo
"%att-fontsize;
%att-fontweight;
%att-fontstyle;
%att-fontfamily;
%att-color;"

<IENTITY % att-form

"form (prefix | infix | postfix) #IMPLIED" >
<!ENTITY % att-fence

"fence (true | false) #IMPLIED" >
<!ENTITY % att-separator

"separator (true | false) #IMPLIED" >

<!ENTITY % att-lspace

236

"lspace CDATA
<!ENTITY % att-rspace

"rspace CDATA
<!ENTITY % att-stretchy

"stretchy (true | false)
<!ENTITY % att-symmetric

"symmetric (true
<!ENTITY % att-maxsize
"maxsize CDATA
<!ENTITY % att-minsize
"minsize CDATA
<!ENTITY % att-largeop
"largeop (true

false)

false)

<IENTITY % att-movablelimits

"movablelimits (true

<IENTITY % att-accent
"accent (true

<!ENTITY % att-opinfo
"%att-form;
Y%att-fence;
%att-separator;
%att-lspace;
%att-rspace;
hatt-stretchy;
%att-symmetric;
%att-maxsize;
Yatt-minsize;
hatt-largeop;
Yatt-movablelimits;
%att-accent;"

<!ENTITY % att-width
"width CDATA

<!ENTITY % att-height
"height CDATA

<!ENTITY % att-depth
"depth CDATA

<IENTITY % att-linebreak

"linebreak CDATA
<IENTITY % att-sizeinfo
"Yatt-width;
%att-height;
%hatt-depth;"

<!ENTITY % att-lquote

"lquote CDATA
<!ENTITY % att-rquote
"rquote CDATA

false)

false)

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

237

<!ENTITY % att-linethickness
"linethickness CDATA

<!ENTITY % att-scriptlevel
"scriptlevel CDATA

<!ENTITY % att-displaystyle
"displaystyle (true | false)

<IENTITY % att-scriptsizemultiplier
"scriptsizemultiplier CDATA

<IENTITY % att-scriptminsize
"scriptminsize CDATA

<IENTITY % att-background
"background CDATA

<!ENTITY % att-open

"open CDATA
<IENTITY % att-close
"close CDATA

<!ENTITY % att-separators
"separators CDATA

<!ENTITY % att-subscriptshift
"subscriptshift CDATA

<!ENTITY % att-superscriptshift
"superscriptshift CDATA

<!ENTITY % att-accentunder
"accentunder (true | false)

<!ENTITY % att-align

"align CDATA
<!ENTITY % att-rowalign
"rowalign CDATA

<IENTITY % att-columnalign
"columnalign CDATA
<IENTITY % att-columnwidth
"columnwidth CDATA
<IENTITY % att-groupalign
"groupalign CDATA
<!ENTITY % att-alignmentscope
"alignmentscope CDATA
<!ENTITY % att-rowspacing
"rowspacing CDATA
<!ENTITY % att-columnspacing
"columnspacing CDATA
<!ENTITY % att-rowlines
"rowlines CDATA
<!ENTITY % att-columnlines
"columnlines CDATA
<!ENTITY % att-frame
"frame (none | solid | dashed)
<!ENTITY % att-framespacing
"framespacing CDATA
<!ENTITY % att-equalrows

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

238

"equalrows CDATA #IMPLIED" >
<!ENTITY % att-equalcolumns
"equalcolumns CDATA #IMPLIED" >

<!ENTITY % att-tableinfo
"fatt-align;
hatt-rowalign;
%att-columnalign;
%att-columnwidth;
%att-groupalign;
%att-alignmentscope;
%att-rowspacing;
%hatt-columnspacing;
%att-rowlines;
Yiatt-columnlines;
%att-frame;
%att-framespacing;
hatt-equalrows;
%att-equalcolumns;
hatt-displaystyle;"

<!ENTITY % att-rowspan

"rowspan CDATA #IMPLIED" >
<!ENTITY % att-columnspan

"columnspan CDATA #IMPLIED" >
<!ENTITY % att-edge

"edge (left | right) #IMPLIED" >
<!ENTITY % att-actiontype

"actiontype CDATA #IMPLIED" >
<IENTITY % att-selection

"selection CDATA #IMPLIED" >

<IENTITY % att-name

"name CDATA #IMPLIED" >
<IENTITY % att-alt

"alt CDATA #IMPLIED" >
<!ENTITY % att-index

"index CDATA #IMPLIED" >

<!ENTITY % att-bevelled
"bevelled CDATA #IMPLIED" >

<!-- Presentation schemata with content -->
<IENTITY % ptoken

"Ymi.gname; | %mn.gname; | %mo.qname;
| %mtext.qname; | %ms.gname;" >

239

<!ATTLIST %mi.qgname;
%MATHML . Common.attrib;
Y%att-fontinfo;

<IATTLIST %mn.qgname;
%MATHML . Common .attrib;
%hatt-fontinfo;

<!ATTLIST %mo.qgname;
%MATHML . Common.attrib;
%att-fontinfo;
%hatt-opinfo;

<!ATTLIST %mtext.gname;
%MATHML . Common .attrib;
%hatt-fontinfo;

<!ATTLIST %ms.qgname;
Y%MATHML .Common.attrib;
%att-fontinfo;
%hatt-lquote;
%att-rquote;

<!-- Empty presentation schemata -->

<IENTITY % petoken
"Ymspace.qgname;" >
<!ELEMENT %mspace.gname; EMPTY >

<IATTLIST %mspace.qname;
Y%att-sizeinfo;
Yatt-linebreak;
%MATHML . Common.attrib;

<!-- Presentation: general layout schemata -->

<!ENTITY % pgenschema

"Jmrow.qname; | %mfrac.qname; | %msqrt.qname; | Ymroot.qgname;
| Y%menclose.qname; | Ymstyle.qname; | Y%merror.gname;
| Y%mpadded.qname; | %mphantom.qname; | %mfenced.gname;" >

<!ATTLIST %mrow.gname;
%MATHML . Common .attrib;

240

<!ATTLIST %mfrac.gname;
%MATHML . Common.attrib;
Y%att-bevelled;
%att-linethickness;

<IATTLIST %msqrt.qname;
7%MATHML . Common . attrib;

<!ATTLIST %menclose.qgname;
%MATHML . Common.attrib;
notation CDATA ’longdiv’ >

<!ATTLIST %mroot.gname;
%MATHML . Common .attrib;

<IATTLIST %mstyle.gname;
%MATHML . Common . attrib;
Y%att-fontinfo;
%hatt-opinfo;
%hatt-lquote;
%att-rquote;
Y%att-linethickness;
%att-scriptlevel;
%att-scriptsizemultiplier;
%att-scriptminsize;
hatt-background;
%att-open;
%att-close;
%att-separators;
%hatt-subscriptshift;
%att-superscriptshift;
%att-accentunder;
Y%att-tableinfo;
%att-rowspan;
hatt-columnspan;
%att-edge;
hatt-actiontype;
Yatt-selection;

<!ATTLIST %merror.qgname;
%MATHML . Common .attrib;

241

<IATTLIST %mpadded.qname;
%MATHML . Common.attrib;
Y%att-sizeinfo;
%att-lspace;

<!ATTLIST %mphantom.qgname;
7%MATHML . Common . attrib;

<IATTLIST %mfenced.qgname;
%MATHML . Common.attrib;
%att-open;
Y%att-close;
%att-separators;

<!-- Presentation layout schemata: scripts and limits -->

<!ENTITY % pscrschema
"Ymsub.qname; | Ymsup.qname; | %msubsup.qname; | %munder.qgname;
| %mover.gqname; | %munderover.qname; | %mmultiscripts.qgname;" >

<VATTLIST %msub.qgname;
%MATHML . Common.attrib;
%att-subscriptshift;

<!ATTLIST %msup.qname;
%MATHML . Common.attrib;
hatt-superscriptshift;

<IATTLIST %msubsup.qname;
%MATHML . Common.attrib;
%att-subscriptshift;
%hatt-superscriptshift;

<!ATTLIST %munder.qgname;
%MATHML . Common . attrib;
%att-accentunder;

<IATTLIST %mover.gname;
%MATHML . Common.attrib;
Y%att-accent;

242

<IATTLIST %munderover.gname;
%MATHML . Common.attrib;
Y%att-accent;
%att-accentunder;

<IATTLIST Ymmultiscripts.qname;
%MATHML . Common . attrib;
hatt-subscriptshift;
%att-superscriptshift;

<!-- Presentation layout schemata:

<!ENTITY % pscreschema

empty elements for scripts -—>

"Ymprescripts.qname; | J%none.qgname;" >

<!ELEMENT Ymprescripts.qname; EMPTY >

<IATTLIST Y%mprescripts.qgname;
%MATHML . xmlns.attrib; >

<!ELEMENT %none.qgname; EMPTY >
<!ATTLIST %none.qgname;
%MATHML . xmlns.attrib; >

<!-- Presentation layout schemata: tables -—>

<!ENTITY % ptabschema
"Ymtable.qname; | Ymtr.qname;

<!ATTLIST %mtable.qgname;
%MATHML . Common.attrib;
%att-tableinfo;

<!ATTLIST %mtr.qgname;
%MATHML . Common.attrib;
hatt-rowalign;
%att-columnalign;
hatt-groupalign;

<IATTLIST %mlabeledtr.qgname;
%MATHML . Common.attrib;
%att-rowalign;
%hatt-columnalign;
%hatt-groupalign;

| %mlabeledtr.gname;

| %mtd.qgname;"

243

<!ATTLIST %mtd.gname;
%MATHML . Common.attrib;
%hatt-rowalign;
hatt-columnalign;
hatt-groupalign;
%att-rowspan;
hatt-columnspan;

>
<!ENTITY % plschema
"Yipgenschema; | %pscrschema; | %ptabschema;" >
<!-- Empty presentation layout schemata -->
<!ENTITY % peschema
"Ymaligngroup.qname; | Y%malignmark.qgname;" >
<!ELEMENT %malignmark.qname; EMPTY >
<IATTLIST %malignmark.gname;
fatt-edge; >
<!ELEMENT %maligngroup.qname; EMPTY >
<IATTLIST %maligngroup.qname;
%MATHML . Common.attrib;
hatt-groupalign;
>
<!ELEMENT Y%mchar.qname; EMPTY >
<!ATTLIST %mchar.gname;
Y%att-name; >
<!ELEMENT %mglyph.gname; EMPTY >
<IATTLIST %mglyph.qgname;
hatt-alt;
%hatt-fontfamily;
%att-index; >
<!-- Presentation action schemata -->

<!ENTITY % pactions
"Ymaction.qname;" >

<IATTLIST %maction.qgname;
%MATHML . Common.attrib;
%att-actiontype;
%att-selection;

<!-- The following entity for substitution

into

244

content constructs excludes elements that
are not valid as expressions.
-—>

<!ENTITY % PresInCont
"%ptoken; | Y%petoken; |
%plschema; | %peschema; | %pactioms;" >

<!-- Presentation entity: all presentation constructs -->

<IENTITY % Presentation

"Yiptoken; | Ypetoken; | Y%pscreschema; |

%plschema; | %peschema; | %pactions;">
<!-- Content element seto -=>
<!-- Attribute definitions -—>

<IENTITY % att-base

"base CDATA 107" >
<!ENTITY % att-closure

"closure CDATA ’closed’" >
<!ENTITY % att-definition

"definitionURL CDATA o>
<!ENTITY % att-encoding

"encoding CDATA >
<!ENTITY % att-nargs

"nargs CDATA >
<IENTITY % att-occurrence

"occurrence CDATA ’function-model’" >
<!ENTITY % att-order

"order CDATA ’numeric’" >
<!ENTITY % att-scope

""'scope CDATA ’local’" >
<IENTITY % att-type

"type CDATA #IMPLIED" >

<!-- Content elements: leaf nodes -->

<!ENTITY % ctoken
"Yicsymbol.qgname; | %ci.qname; | %cn.gname;" >

<IATTLIST %ci.qname;
%MATHML . Common.attrib;
hatt-type;
%att-definition;
hatt-encoding;

245

<IATTLIST %csymbol.qgname;
%MATHML . Common.attrib;
%att-encoding;
%att-type;
%att-definition;

<!ATTLIST Y%cn.gname;
%MATHML . Common .attrib;
hatt-type;
%att-base;
Y%att-definition;
hatt-encoding;

<!-- Content elements: specials -->

<!ENTITY % cspecial
"%kapply.qname; | %reln.gname; |
%lambda.qname;" >

<IATTLIST %apply.qname;
%MATHML . Common.attrib;

<!ATTLIST %reln.gname;
%MATHML . Common .attrib;

<!ATTLIST %lambda.qgname;
%MATHML . Common .attrib;

<!-- Content elements: others -->

<!ENTITY % cother
"J%condition.qname; | %declare.gname;

<I!ATTLIST %condition.gname;
%MATHML . Common .attrib;

<IATTLIST %declare.qname;
%MATHML . Common.attrib;
hatt-type;
hatt-scope;
%att-nargs;
%att-occurrence;
%att-definition;

| %sep.qgname;" >

246

%att-encoding;

<I|ELEMENT %sep.qname; EMPTY >
<IATTLIST Y%sep.qname;
%MATHML . xmlns.attrib; >

<!-- Content elements: semantic mapping -->

<IENTITY % csemantics

"%semantics.gname; | %annotation.gname; |

%annotation-xml.gname;" >

<IATTLIST Y%semantics.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ATTLIST %annotation.gname;
%MATHML . Common.attrib;
hatt-encoding;

<IATTLIST %annotation-xml.qname;
%MATHML . Common.attrib;
%hatt-encoding;

<!-- Content elements: constructors -->

<I1ENTITY % cconstructor

"%interval.qname; | %list.qname; | %matrix.gname;

| Ymatrixrow.gname; | %set.qname;

<!ATTLIST %interval.qgname;
%MATHML . Common.attrib;
%att-closure;

<!ATTLIST Y%set.gname;
%MATHML . Common .attrib;
hatt-type;

<VATTLIST %1list.qname;
%MATHML . Common.attrib;
%att-order;

| %vector.gname;"

247

<IATTLIST Y%vector.qgname;
%MATHML . Common .attrib;

<IATTLIST %matrix.qname;
%MATHML . Common .attrib;

<IATTLIST %matrixrow.gname;
%MATHML . Common.attrib;

<!-- Content elements: symbols -->

<!ENTITY % cOary
"%integers.qname; |
%reals.qgname; |
f%rationals.qgname; |
%naturalnumbers.qgname; |
%complexes.qname; |
%primes.qname; |
%exponentiale.qgname; |
%imaginaryi.qname; |
%notanumber.qgname; |
%true.qgname; |
%false.qgname; |
%hemptyset.qname; |
%pi.qname; |
%eulergamma.qgname; |
%infinity.qname;" >

<!-- Content elements: operators ——>

<!ENTITY % cfuncoplary
"Yinverse.qname; | %ident.qname;" >

<!ELEMENT %inverse.qname; EMPTY >

<IATTLIST %inverse.qname;
%MATHML . Common .attrib;
Yiatt-definition;
%hatt-encoding;

<!ENTITY % cfuncopnary
"%fn.gname; | %compose.gname;" >

<VATTLIST %fn.qgname;
%MATHML . Common .attrib;

248

Yatt-definition;
hatt-encoding;

<!ELEMENT %ident.qgname; EMPTY >

<!ATTLIST %ident.gname;
%MATHML . Common.attrib;
Yatt-definition;
hatt-encoding;

<!ELEMENT Y%compose.qname; EMPTY >

<IATTLIST %compose.qname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ENTITY % carithoplary
"%abs.qname; | %conjugate.qname; | %exp.qname;

| %factorial.qgname;

%arg.qname; | Yreal.qname; | %imaginary.qname;" >

<!ELEMENT %exp.qname; EMPTY >

<VATTLIST %exp.qname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT %abs.qgname; EMPTY >
<IATTLIST %abs.gname;
%MATHML .Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %arg.qname; EMPTY >

<IATTLIST Y%arg.qname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %real.qname; EMPTY >

<IATTLIST Y%real.gname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

249

<!ELEMENT %imaginary.qname; EMPTY >
<IATTLIST %imaginary.qname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%conjugate.qname; EMPTY >
<IATTLIST %conjugate.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %factorial.qname; EMPTY >
<IATTLIST %factorial.gname;
%MATHML . Common.attrib;
Yiatt-definition;
%hatt-encoding;

<!ENTITY % carithoplor2ary
"Yminus.qgname;" >

<!ELEMENT %minus.gname; EMPTY >

<!ATTLIST %minus.gname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<IENTITY % carithop2ary
"Yquotient.qname; | %divide.qname; | Y%power.qname;

<!ELEMENT Y%quotient.gname; EMPTY >
<!ATTLIST %quotient.gname;
%MATHML . Common.attrib;
Yiatt-definition;
%hatt-encoding;

<!ELEMENT Y%divide.qname; EMPTY >
<IATTLIST %divide.qname;
%MATHML .Common.attrib;
%att-definition;
%att-encoding;

| Yrem.gname;" >

250

<!ELEMENT Y%power.qgname; EMPTY >

<!ATTLIST %power.qgname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT Y%rem.gname; EMPTY >
<!ATTLIST %rem.gname;
Y%MATHML .Common.attrib;
%att-definition;
%att-encoding;

<!ENTITY % carithopnary
"Yplus.qname; | Jtimes.qname; | %max.qname;
| %min.gname; | %gcd.gname; | %lcm.gname;" >

<!ELEMENT Y%plus.qname; EMPTY >
<IATTLIST %plus.gname;
Y%MATHML .Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %max.qname; EMPTY >

<!ATTLIST %max.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %min.gname; EMPTY >

<!ATTLIST %min.gname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT Y%times.qname; EMPTY >

<IATTLIST %times.gname;
%MATHML . Common .attrib;
Yatt-definition;
%hatt-encoding;

<!ELEMENT %gcd.qgname; EMPTY >
<VATTLIST %gcd.qgname;
%MATHML . Common.attrib;

251

Yatt-definition;
hatt-encoding;

<!ELEMENT %lcm.gname; EMPTY >

<!ATTLIST %lcm.gname;
%MATHML . Common.attrib;
Yatt-definition;
hatt-encoding;

<!ENTITY % carithoproot
"Yroot.qgname;" >

<!ELEMENT Y%root.gname; EMPTY >

<IATTLIST %root.gname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<IENTITY % clogicopquant
"Yexists.qname; | %forall.qgname;" >

<!ELEMENT Y%exists.qname; EMPTY >

<IATTLIST %exists.qname;
%MATHML . Common .attrib;
Yiatt-definition;
%hatt-encoding;

<!ELEMENT %forall.qname; EMPTY >
<!ATTLIST %forall.qgname;
%MATHML .Common.attrib;
%att-definition;
%att-encoding;

<!ENTITY % clogicopnary
"%and.qname; | %or.gname; | %xor.gname;" >

<!ELEMENT %and.qgname; EMPTY >

<IATTLIST %and.gname;
%MATHML . Common.attrib;
Yatt-definition;
hatt-encoding;

<!ELEMENT %or.qgname; EMPTY >

252

<IATTLIST %or.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %xor.qname; EMPTY >

<!ATTLIST %xor.gname;
%MATHML . Common .attrib;
Yatt-definition;
hatt-encoding;

<!ENTITY % clogicoplary
"%not.qname;" >

<!ELEMENT %not.gname; EMPTY >

<IATTLIST %not.gname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ENTITY % clogicop2ary
"Yimplies.qgname;" >

<!ELEMENT %implies.qgname; EMPTY >

<!ATTLIST %implies.qgname;
%MATHML . Common .attrib;
Yiatt-definition;
hatt-encoding;

<!ENTITY % ccalcop
"%log.qname; | %int.qname; | %diff.qname; | %partialdiff.qname; |
%divergence.qname; | %grad.qname; | %curl.gname; | %laplacian.qname;" >

<!ELEMENT Y%divergence.qname; EMPTY >
<IATTLIST %divergence.qgname;
%MATHML . Common .attrib;
Yiatt-definition;
%hatt-encoding;

<!ELEMENT %grad.qname; EMPTY >

<VATTLIST %grad.qname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

253

<!ELEMENT %curl.qname; EMPTY >

<VATTLIST %curl.qgname;
%MATHML . Common.attrib;
Yiatt-definition;
hatt-encoding;

<!ELEMENT %laplacian.qname; EMPTY >
<!ATTLIST %laplacian.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %log.qgname; EMPTY >

<IATTLIST %log.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %int.qname; EMPTY >

<!ATTLIST %int.qname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %diff.qname; EMPTY >

<!ATTLIST %diff.qgname;
%MATHML . Common . attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %partialdiff.qgname; EMPTY >
<VATTLIST %partialdiff.qname;
%MATHML . Common .attrib;
Yatt-definition;
%hatt-encoding;

<!ENTITY % ccalcoplary
"%ln.qname;" >

<!ELEMENT %1n.gname; EMPTY >
<IATTLIST %ln.gname;

254

%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ENTITY % csetoplary
"J%card.qname;" >

<!ELEMENT %card.qgname; EMPTY >

<IATTLIST Y%card.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ENTITY % csetop2ary
"Ysetdiff.qname;" >

<!ELEMENT Y%setdiff.qname; EMPTY >

<IATTLIST %setdiff.qname;
Y%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ENTITY % csetopnary
"Junion.qname; | %intersect.gname;" >

<!ELEMENT %union.qgname; EMPTY >

<!ATTLIST %union.gname;
%MATHML . Common .attrib;
Yatt-definition;
hatt-encoding;

<!ELEMENT %intersect.qname; EMPTY >
<IATTLIST %intersect.qgname;
%MATHML . Common.attrib;
Yiatt-definition;
%hatt-encoding;

<IENTITY % cseqop
"Y%sum.qname; | %product.gname; | %limit.gname;" >

<!ELEMENT Y%sum.qgname; EMPTY >

<!ATTLIST Y%sum.qgname;
%MATHML . Common.attrib;
%att-definition;

255

%att-encoding;

<!ELEMENT Y%product.qname; EMPTY >

<IATTLIST Y%product.qname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %1limit.gname; EMPTY >

<IATTLIST %limit.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ENTITY % ctrigop
"%sin.qgname; | %cos.qname; | %tan.gname;
| %sec.gname; | %csc.qname; | J%cot.gname;
| %sinh.qname; | %cosh.gname; | %tanh.qgname;
| %sech.qname; | %csch.qname; | %coth.qgname;
| %arcsin.gname; | %arccos.qname; | %arctan.gname;" >

<!ELEMENT %sin.qgname; EMPTY >

<!ATTLIST %sin.qgname;
%MATHML . Common.attrib;
Yiatt-definition;
%hatt-encoding;

<!ELEMENT Y%cos.qgname; EMPTY >
<!ATTLIST Y%cos.gname;
%MATHML .Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %tan.qgname; EMPTY >

<!ATTLIST Y%tan.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%sec.qname; EMPTY >

<IATTLIST Y%sec.qgname;
%MATHML . Common.attrib;
%att-definition;

256

%att-encoding;

<!ELEMENT Y%csc.qname; EMPTY >

<!ATTLIST Y%csc.gname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %cot.qgname; EMPTY >

<!ATTLIST Y%cot.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %sinh.qgname; EMPTY >

<!ATTLIST %sinh.qgname;
%MATHML . Common .attrib;
Yatt-definition;
hatt-encoding;

<!ELEMENT Y%cosh.qgname; EMPTY

<VATTLIST %cosh.qgname;
%MATHML . Common.attrib;
Yiatt-definition;
%hatt-encoding;

A\

<!ELEMENT %tanh.qgname; EMPTY >
<!ATTLIST %tanh.qgname;
%MATHML .Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %sech.qname; EMPTY >

<IATTLIST Y%sech.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%csch.qname; EMPTY >

<IATTLIST Y%csch.qgname;
%MATHML . Common.attrib;
%att-definition;

257

%att-encoding;

<!ELEMENT Y%coth.gname; EMPTY >

<IATTLIST Y%coth.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %arcsin.gname; EMPTY >

<IATTLIST %arcsin.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT Y%arccos.qname; EMPTY >

<IATTLIST %arccos.qgname;
%MATHML . Common .attrib;
Yatt-definition;
hatt-encoding;

<!ELEMENT Y%arctan.qname; EMPTY >

<I!ATTLIST %arctan.qgname;
%MATHML . Common.attrib;
Yiatt-definition;
%hatt-encoding;

<!ENTITY % cstatopnary
"Ymean.qname; | %sdev.qgname; |
%variance.qname; | %median.qname;
%mode.qgname;" >

<!ELEMENT %mean.qname; EMPTY >

<!ATTLIST %mean.gname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %sdev.qgname; EMPTY >

<!ATTLIST %sdev.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

258

<!ELEMENT %variance.qname; EMPTY >
<!ATTLIST %variance.qname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %median.gname; EMPTY >

<IATTLIST %median.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %mode.qname; EMPTY >

<!ATTLIST %mode.qgname;
%MATHML . Common.attrib;
Yiatt-definition;
%hatt-encoding;

<!ENTITY % cstatopmoment
"Ymoment .gname;" >

<!ELEMENT %moment.qname; EMPTY >

<IATTLIST %moment.qname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<IENTITY % clalgoplary
"Yideterminant.qname; |
%transpose.qgname;" >

<!ELEMENT Y%determinant.qname; EMPTY >
<IATTLIST %determinant.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%transpose.qname; EMPTY >
<!ATTLIST %transpose.gname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

259

<!ENTITY % clalgop2ary
"Yivectorproduct.qname;
| %scalarproduct.qname;
| %outerproduct.gname;" >

<!ELEMENT Y%vectorproduct.qname; EMPTY >
<IATTLIST %vectorproduct.qname;
%MATHML . Common .attrib;
Yatt-definition;
%hatt-encoding;

<!ELEMENT Y%scalarproduct.qname; EMPTY >
<IATTLIST %scalarproduct.qname;
%MATHML . Common.attrib;
Yiatt-definition;
%hatt-encoding;

<!ELEMENT Y%outerproduct.qname; EMPTY >
<IATTLIST Y%outerproduct.qgname;
%MATHML .Common.attrib;
%att-definition;
%att-encoding;

<!ENTITY % clalgopnary
"Yiselector.qgname;" >

<!ELEMENT Y%selector.qname; EMPTY >
<!ATTLIST %selector.gname;
%MATHML . Common.attrib;
Yatt-definition;
hatt-encoding;

<!-- Content elements: relations -->

<!ENTITY % cgenrel2ary
"%neq.qname;" >

<!ELEMENT %neq.qgname; EMPTY >

<!ATTLIST %neq.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

260

<!ENTITY % cgenrelnary
"%eq.qname; | %leq.qname; | %lt.gname; | %geq.gname;
| %gt.qgname;| %equivalent.gname; | %approx.qname;" >

<!ELEMENT %eq.qname; EMPTY >

<IATTLIST %eq.qname;
%MATHML . Common.attrib;
Yatt-definition;
hatt-encoding;

<!ELEMENT Y%equivalent.qname; EMPTY >
<VATTLIST %equivalent.gname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT %approx.qgname; EMPTY >

<IATTLIST %approx.qname;
Y%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %gt.qgname; EMPTY >

<IATTLIST %gt.qname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %1t.gname; EMPTY >

<IATTLIST %1lt.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %geq.qname; EMPTY >

<!ATTLIST Y%geq.qgname;
%MATHML . Common .attrib;
Yatt-definition;
%hatt-encoding;

<!ELEMENT %leq.qgname; EMPTY >
<!ATTLIST %leq.qgname;
%MATHML . Common.attrib;

261

Yatt-definition;
hatt-encoding;

<!ENTITY % csetrel2ary
"%in.gname; | %notin.gname; | %notsubset.gname;

<!ELEMENT %in.gname; EMPTY >
<IATTLIST %in.qgname;
Y%MATHML .Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %notin.gname; EMPTY >

<!ATTLIST %notin.gname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %notsubset.qname; EMPTY >
<IATTLIST %notsubset.gname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %notprsubset.qname; EMPTY >
<IATTLIST %notprsubset.qgname;
%MATHML . Common .attrib;
Yatt-definition;
hatt-encoding;

<!ENTITY % csetrelnary
"Ysubset.qname; | %prsubset.qgname;" >

<!ELEMENT Y%subset.qname; EMPTY >

<IATTLIST Y%subset.qname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%prsubset.qgname; EMPTY >

<!ATTLIST Y%prsubset.qgname;
%MATHML . Common.attrib;
%att-definition;

| %notprsubset.gname;" >

262

%att-encoding;

<!ENTITY % cseqrel2ary
"Yitendsto.qname;" >

<!ELEMENT Y%tendsto.qname; EMPTY >
<IATTLIST %tendsto.qname;
%MATHML . Common.attrib;
Yatt-definition;
%hatt-encoding;
hatt-type;

<!-- Content elements: quantifiers -->

<!ENTITY % cquantifier
"%lowlimit.qname; | %uplimit.qgname; | %bvar.qname;
| %degree.gname; | %logbase.gname;" >

<IATTLIST %lowlimit.gname;
%MATHML . Common.attrib;

<IATTLIST %uplimit.qname;
%MATHML . Common . attrib;

<IATTLIST %bvar.gname;
7%MATHML . Common . attrib;

<IATTLIST Y%degree.qname;
%MATHML . Common.attrib;

<IATTLIST %logbase.qname;
%MATHML . Common .attrib;

<!-- QOperator groups -->

<!ENTITY % coplary
"Yicfuncoplary; | %carithoplary; | J%clogicoplary; |
%ccalcoplary; | Yctrigop; | %clalgoplary; |
%hcsetoplary;" >

<!ENTITY % cop2ary
"Yicarithop2ary; | %clogicop2ary;| %clalgop2ary; | %csetop2ary;" >

263

<!ENTITY % copnary
"Ycfuncopnary; | %carithopnary; | %clogicopnary; |
%csetopnary; | %cstatopnary; | %clalgopnary;" >

<!ENTITY % copmisc

"Y%carithoproot; | %carithoplor2ary; | Y%ccalcop; |
%cseqop; | %cstatopmoment; | J%clogicopquant;" >
<!-- Relation groups -->

<!ENTITY % crel2ary
"Yicgenrel2ary; | %csetrel2ary; | %cseqrel2ary;" >

<!ENTITY % crelnary
"kcgenrelnary; | Jicsetrelnary;" >

<!-- Content constructs: all -->

<IENTITY % Content
"Yictoken; | Ycspecial; | Y%cother; | Y%csemantics; | %cOary;
| %cconstructor; | Jcquantifier; | %coplary; | Y%cop2ary;
| %copnary; |%copmisc; | %crel2ary; | %crelnary;" >

<!-- Content constructs for substitution in presentation structures -->
<!ENTITY % ContInPres

"%ci.qname; |%csymbol.qname;| %cn.qname; |
%happly.qname; | %fn.qgname; |

%lambda.qname; | %reln.gname; |
hinterval.gname; | %list.gname; |
Jmatrix.qname; | %matrixrow.gname; |
%set.qgname; | Yvector.qname; |

%semantics.qname; |%declare.qname;" >

D -=>
<!-- Recursive definition for content of expressions. Include
presentation constructs at lowest level so presentation
layout schemata hold presentation or content elements.
Include content constructs at lowest level so content
elements hold PCDATA or presentation elements at leaf
level (for permitted substitutable elements in context)

-—>

<!ENTITY % ContentExpression
"(%Content; | %PresInCont;)*" >
<!ENTITY % PresExpression
"(%Presentation; | %ContInPres;)*" >
<!ENTITY % MathExpression

264

"(%PresInCont; | %ContInPres;)*" >

<!-- PCDATA or MathML character elements -->

<IENTITY % MathMLCharacters

"#PCDATA | Ymchar.gname; | %mglyph.qname; " >

<!-- Content elements: tokens -—>

<!-- (may contain embedded presentation constructs) -->
<!ELEMENT Y%ci.qname; (#MathMLCharacters; |
<!ELEMENT %csymbol.qgname; (%MathMLCharacters; |
<!ELEMENT Y%cn.qgname; (%#MathMLCharacters; |

<!-- Content elements: special -->
<!ELEMENT %apply.qgname;
<!ELEMENT Y%reln.qgname;
<!ELEMENT %lambda.qname;

<!-- Content elements: other -->

<!ELEMENT %condition.qgname;
<!ELEMENT Y%declare.qname;

<!-- Content elements: semantics -->

<!ELEMENT Y%semantics.qgname;

(%ContentExpression;)
(%ContentExpression;)
(%ContentExpression;)

(%ContentExpression;)
(%ContentExpression;)

(%ContentExpression;)

<IENTITY % Annotation.content "(#PCDATA)" >

<!ELEMENT Y%annotation.gname;

%Annotation.content; >

<IENTITY % Annotation-xml.content "ANY" >

<!ELEMENT %annotation-xml.qname;
<!-- Content elements: constructors -->

<!ELEMENT %interval.qgname;
<!ELEMENT Y%set.qgname;
<!ELEMENT %list.qname;
<!ELEMENT %vector.qgname;
<!ELEMENT %matrix.qname;
<!ELEMENT %matrixrow.qgname;

(%ContentExpression;)
(%ContentExpression;)
(%ContentExpression;)
(%ContentExpression;)
(%ContentExpression;)
(%ContentExpression;)

<!-- Content elements: operator (user-defined) -->

<!ELEMENT %fn.qgname;
<!-- Content elements: quantifiers -->

<!ELEMENT %lowlimit.qname;

(%ContentExpression;)

(%ContentExpression;)

%PresInCont;)* >
%PresInCont;)* >

%sep.qname; | %PresInCont;)* >

vV V V

vV Vv

>

Y%Annotation-xml.content; >

V V. V V Vv V

265

<!ELEMENT %uplimit.qname; (%ContentExpression;) >
<!ELEMENT %bvar.qname; (%ContentExpression;) >
<!ELEMENT Y%degree.qname; (%ContentExpression;) >
<IELEMENT %logbase.qname; (%ContentExpression;) >
Kl o e e e e e e e e e e e -—=>
<!-- Presentation layout schemata contain tokens,
layout and content schemata.
-—>
<!ELEMENT Ymstyle.qgname; (%PresExpression;) >
<!ELEMENT %merror.qname; (%PresExpression;) >
<!ELEMENT %mphantom.qgname; (%PresExpression;) >
<!ELEMENT Y%mrow.qname; (%PresExpression;) >
<!ELEMENT %mfrac.gname; (%PresExpression;) >
<!ELEMENT %msqrt.qgname; (%PresExpression;) >
<!ELEMENT %menclose.qname; (%PresExpression;) >
<!ELEMENT Y%mroot.qname; (%PresExpression;) >
<!ELEMENT %msub.qgname; (%PresExpression;) >
<!ELEMENT %msup.qgname; (%PresExpression;) >
<!ELEMENT %msubsup.qname; (%PresExpression;) >
<!ELEMENT Ymmultiscripts.qgname; (%PresExpression;) >
<!ELEMENT %munder.qgname; (%PresExpression;) >
<!ELEMENT %mover.qgname; (%PresExpression;) >
<!ELEMENT %munderover.qgname; (%PresExpression;) >
<!ELEMENT %mtable.qgname; (%PresExpression;) >
<!ELEMENT %mtr.qgname; (%PresExpression;) >
<!ELEMENT %mlabeledtr.qgname; (%PresExpression;) >
<!ELEMENT %mtd.qgname; (%PresExpression;) >
<!ELEMENT %maction.qname; (%PresExpression;) >
<!ELEMENT Ymfenced.qgname; (%PresExpression;) >
<!ELEMENT Y%mpadded.qname; (%PresExpression;) >
<!-- Presentation elements contain PCDATA or malignmark constructs. -->
<!ELEMENT %mi .qgname; (%MathMLCharacters; |
Jmalignmark.qgname;)* >
<!ELEMENT %mn.qgname; (#MathMLCharacters; |
%malignmark.qname;)* >
<IELEMENT %mo.qname; (%MathMLCharacters; |
%malignmark.qgname;)* >
<!ELEMENT Y%mtext.qname; (%MathMLCharacters; |
%malignmark.qname;)* >
<!ELEMENT %ms.qname; (%MathMLCharacters; |
#malignmark.qname;)* >
<!-- Browser interface definition -=>
<!-- Attributes for top-level element "math" -->

266

<IENTITY % att-macros

"macros CDATA #IMPLIED" >
<IENTITY % att-mode
"mode CDATA #IMPLIED" >

<IENTITY % att-topinfo
"Y%MATHML .Common.attrib;
%att-macros;
Yatt-mode;" >

<!-- Attributes for browser interface element -->

<!ENTITY % att-baseline

"baseline CDATA #IMPLIED" >
<!ENTITY % att-overflow

"overflow (scroll | elide | truncate | scale) ’scroll’" >
<!ENTITY % att-altimg

"altimg CDATA #IMPLIED" >
<IENTITY % att-alttext
"alttext CDATA #IMPLIED" >

<!ENTITY % att-browif
"%att-type;
%att-name;
hatt-height;
%att-width;
Yiatt-baseline;
%att-overflow;
%att-altimg;
Y%att-alttext;" >

D -—>
<!-- The top-level element "math" contains MathML encoded
mathematics. The "math" element has the browser info
attributes iff it is also the browser interface element.
-—>
<!ELEMENT %math.qgname; (%MathExpression;) >
<!ATTLIST %math.qgname;
hatt-topinfo;
Yatt-browif; >
<!I-— MathML Character Entitiesottt ittt ittt eii e -—>

<!ENTITY % mathml-charent.module "INCLUDE" >
<! [%mathml-charent.module; [
<!-- Entity sets from ISO Technical Report 9573-13 -=>

267

<!ENTITY Y
PUBLIC

Y%ent-isoamsa;

<!ENTITY %
PUBLIC

%ent-isoamsb;

<!ENTITY %
PUBLIC

%ent-isoamsc;

<!ENTITY Y%
PUBLIC

%ent-isoamsn;

<!ENTITY Y
PUBLIC

%ent-isoamso;

<!ENTITY Y%
PUBLIC

%ent-isoamsr;

<!ENTITY %
PUBLIC

hent-isogrk3;

<!ENTITY Y
PUBLIC

Y%ent-isomfrk;

<!ENTITY Y
PUBLIC

%hent—-isomopf ;

<!ENTITY Y%
PUBLIC

%ent-isomscr;

ent-isoamsa
"-//W3C//ENTITIES
"isoamsa.ent" >

ent-isoamsb
"-//W3C//ENTITIES
"jsoamsb.ent" >

ent-isoamsc
"-//W3C//ENTITIES
"isoamsc.ent" >

ent-isoamsn
"-//W3C//ENTITIES
"isoamsn.ent" >

ent-isoamso
"-//W3C//ENTITIES
"isoamso.ent" >

ent-isoamsr
"-//W3C//ENTITIES
"jsoamsr.ent" >

ent-isogrk3
"-//W3C//ENTITIES
"isogrk3.ent" >

ent-isomfrk
"-//W3C//ENTITIES
"isomfrk.ent" >

ent-isomopf
"-//W3C//ENTITIES
"isomopf.ent" >

ent-isomscr
"-//W3C//ENTITIES
"jsomscr.ent" >

Added

Added

Added

Added

Added

Added

Greek

Math

Math

Math

Math

Math

Math

Symbols: Arrow Relations for MathML 2.0//EN"

Symbols: Binary Operators for MathML 2.0//EN"

Symbols: Delimiters for MathML 2.0//EN"

Symbols: Negated Relations for MathML 2.0//EN"

Symbols: Ordinary for MathML 2.0//EN"

Symbols: Relations for MathML 2.0//EN"

Symbols for MathML 2.0//EN"

Math Alphabets: Fraktur for MathML 2.0//EN"

Math Alphabets: Open Face for MathML 2.0//EN"

Math Alphabets: Script for MathML 2.0//EN"

268

file:isoamsa.html
file:isoamsb.html
file:isoamsc.html
file:isoamsn.html
file:isoamso.html
file:isoamsr.html
file:isogrk3.html
file:isomfrk.html
file:isomopf.html
file:isomscr.html

<!ENTITY Y%

ent-isotech

PUBLIC "-//W3C//ENTITIES General Technical for MathML 2.0//EN"

%ent-isotech;

<!-- Entity sets from informative annex to ISO 8879:1986 (SGML)

<!ENTITY %
PUBLIC

Jent-isobox;

<!ENTITY Y%
PUBLIC

hent-isocyril;

<!ENTITY Y
PUBLIC

hent-isocyr2;

<!ENTITY ¥
PUBLIC

%ent-isodia;

<!ENTITY %
PUBLIC

Y%ent-isolati;

<!ENTITY Y
PUBLIC

Y%ent-isolat?2;

<!ENTITY %
PUBLIC

%ent-isonum;

<!ENTITY %
PUBLIC

Jent-isopub;

<!-- MathML aliases for characters defined above

"isotech.ent" >

ent-isobox
"-//W3C//ENTITIES
"isobox.ent" >

ent-isocyrl
"-//W3C//ENTITIES
"isocyrl.ent" >

ent-isocyr2
"-//W3C//ENTITIES
"isocyr2.ent" >

ent-isodia
"-//W3C//ENTITIES
"isodia.ent" >

ent-isolatl
"-//W3C//ENTITIES
"isolatl.ent" >

ent-isolat?2
"-//W3C//ENTITIES
"isolat2.ent" >

ent-isonum
"-//W3C//ENTITIES
"isonum.ent" >

ent-isopub
"-//W3C//ENTITIES
"isopub.ent" >

Box and Line Drawing for MathML 2.0//EN"

Russian Cyrillic for MathML 2.0//EN"

Non-Russian

Diacritical

Added Latin

Added Latin

Numeric and

Cyrillic for MathML 2.0//EN"

Marks for MathML 2.0//EN"

1 for MathML 2.0//EN"

2 for MathML 2.0//EN"

Special Graphic for MathML 2.0//EN"

Publishing for MathML 2.0//EN"

file:isotech.html
file:isobox.html
file:isocyr1.html
file:isocyr2.html
file:isodia.html
file:isolat1.html
file:isolat2.html
file:isonum.html
file:isopub.html

<IENTITY % ent-mmlalias
PUBLIC "-//W3C//ENTITIES Aiases for MathML 2.0//EN"
"mmlalias.ent" >
<!--%ent-mmlalias;-—>

<!-- New characters defined by MathML -—=>

<IENTITY % ent-mmlextra
PUBLIC "-//W3C//ENTITIES Extra for MathML 2.0//EN"
"mmlextra.ent" >
<!--%ent-mmlextra;-—>

<!-- end of MathML Character Entity section -->]]1>
<!-- Revision History:

Initial draft (syntax = XML) 1997-05-09
Stephen Buswell

Revised 1997-05-14
Robert Miner

Revised 1997-06-29 and 1997-07-02
Stephen Buswell

Revised 1997-12-15
Stephen Buswell

Revised 1998-02-08
Stephen Buswell

Revised 1998-04-04
Stephen Buswell

Entities and small revisions 1999-02-21
David Carlisle

Added attribute definitionURL to ci and cn 1999-10-11
Nico Poppelier

Additions for MathML 2 1999-12-16
David Carlisle

Namespace support 2000-01-14
David Carlisle

XHTML Compatibility 2000-02-23
Murray Altheim

New content elements 2000-03-26
David Carlisle

-—>

<!--end of MathML 2.0 DTD i et -—>
K o e -—>

270

Appendix B

Content Markup Validation Grammar

Informal EBNF grammar for Content Markup structure validation

// Notes

//

// This defines the valid expression trees in content markup
//

// ** it does not define attribute validation -

// ** this has to be done on top

//

// Presentation_tags is a placeholder for a valid

// presentation element start tag or end tag

//

// #PCDATA is the XML parsed character data

//

// symbols beginning with ’_’ for example _mmlarg are internal symbols
// (recursive grammar usually required for recognition)

//

// all-lowercase symbols for example ’ci’ are terminal symbols
// representing MathML content elements

//

// symbols beginning with Uppercase are terminals

// representating other tokens

//

// revised sb 3.nov.97, 16.nov.97 and 22.dec.1997

// revised sb 6.jan.98, 6.Feb.1998 and 4.april.1998

// whitespace definitions including presentation_tags

Presentation_tags ::= "presentation" //placeholder
Space 1= #x09 | #x0A | #xoD | #x20 //tab, 1f, cr, space characters
S ::= (Space | Presentation_tags)* //treat presentation as space

// only for content validation
// characters
Char ::= Space | [#x21 - #xFFFD]
| [#x00010000 - #x7FFFFFFFF] //valid XML chars
// start and end tag functions
// start(\%x) returns a valid start tag for the element \%x
// end(\%x) returns a valid end tag for the element \/x
// empty(\%x) returns a valid empty tag for the element \%x

271

//

// start(ci) = "<cid>"

// end(cn) 1i= "</en>"
// empty(plus) = "<plus/>"

//

// The reason for doing this is to avoid writing a grammar
// for all the attributes. The model below is not complete
// for all possible attribute values.

_start (\%x) pi= "<\%x" (Char - ’>’)* ">"

// returns a valid start tag for the element \Jx

_end (\%x) ::= "<\Jx" Spacex ">"

// returns a valid end tag for the element \%x

_empty (\%x) ii= "<\¥%x" (Char - ’>7)x "/>"

// returns a valid empty tag for the element \Jx

_sg(\%x) S _start (\%x)

// start tag preceded by optional whitespace

_eg(\%x) ::= _end(\%x) S

// end tag followed by optional whitespace

_ey (\%x) ::= 8 _empty(\%x) S

// empty tag preceded and followed by optional whitespace
// mathml content constructs

// allow declare within generic argument type so we can insert it anywhere

_mmlall ::= _container | _relation | _operator | _qualifier | _other
_mmlarg ::= declare*x _container declare*

_container ::= _token | _special | _constructor

_token ::=ci | cn | csymbol

_special ::= apply | lambda | reln | fn

_constructor ::= interval | list | matrix | matrixrow | set | vector
_other ::= condition | declare | sep

_qualifier ::= lowlimit | uplimit | bvar | degree | logbase

// relations

_relation ::= _genrel | _setrel | _seqrel2ary

_genrel ::= _genrel2ary | _genrelnary

_genrel2ary ::= ne

_genrelnary t:=eq | leq | 1t | geq | gt

_setrel ::= _seqrel2ary | _setrelnary

_setrel2ary ::= in | notin | notsubset | notprsubset

_setrelnary ::= subset | prsubset

_seqrel2ary ::= tendsto

//operators

_operator = _funcop | _sepop | _arithop | _calcop

| _seqop | _trigop | _statop | _lalgop
| _logicop | _setop

_funcop ::= _funcoplary | _funcopnary
_funcoplary = inverse | ident
_funcopnary = fn| compose // general user-defined function is n-ary

// arithmetic operators
// (note minus is both lary and 2ary)
_arithop ::= _arithoplary | _arithop2ary | _arithopnary | root

272

_arithoplary abs | conjugate | exp | factorial | minus

_arithop2ary = quotient | divide | minus | power | rem
_arithopnary = plus | times | max | min | gcd

// calculus

_calcop = _calcoplary | log | int | diff | partialdiff
_calcoplary ::=1n

// sequences and series

_seqop ::= sum | product | limit

// trigonometry

_trigop ::=sin | cos | tan | sec | csc | cot | sinh

| cosh | tanh | sech | csch | coth
| arcsin | arccos | arctan
// statistics operators

_statop ::= _statopnary | moment

_statopnary ::= mean | sdev | variance | median | mode

// linear algebra operators

_lalgop ::= _lalgoplary | _lalgopnary

_lalgoplary = determinant | transpose

_lalgopnary = selector

// logical operators

_logicop ::= _logicoplary | _logicopnary | _logicop2ary | _logicopquant

_logicoplary ::= not

_logicop2ary ::= implies

_logicopnary = and | or | xor

_logicopquant = forall | exists

// set theoretic operators

_setop ::= _setop2ary | _setopnary

_setop2ary = setdiff

_setopnary ::= union | intersect

// operator groups

_unaryop ::= _funclary | _arithoplary | _trigop | _lalgoplary
| _calcoplary | _logicoplary

_binaryop ::= _arithop2ary | _setop2ary | _logicop2ary

_naryop ::= _arithopnary | _statopnary | _logicopnary
| _lalgopnary | _setopnary | _funcopnary

_ispop ::= int | sum | product

_diffop ::= diff | partialdiff

_binaryrel ::= _genrel2ary | _setrel2ary | _seqrel2ary

_naryrel ::= _genrelnary | _setrelnary

//separator

sep = _ey(sep)

// leaf tokens and data content of leaf elements
// note _mdata includes Presentation constructs here.
_mdatai ::= (#PCDATA | Presentation_tags)x*

_mdatan = (#PCDATA | sep | Presentation_tags)x*
ci = _sg(ci) _mdatai _eg(ci)
cn = _sg(cn) _mdatan _eg(cn)

// condition - constraints constraints. contains either
// a single reln (relation), or

273

// an apply holding a logical combination of relatiomns, or
// a set (over which the operator should be applied)

condition ::= _sg(condition) reln | apply | set _eg(condition)
// domains for integral, sum , product
_ispdomain ::= (lowlimit uplimit?)

| uplimit

| interval

| condition

// apply construc
apply ::= _sg(apply) _applybody _eg(apply)

_applybody = (_unaryop _mmlarg)
//1-ary ops

| (_binaryop _mmlarg _mmlarg)
//2-ary ops

| (_naryop _mmlargx)
//n-ary ops, enumerated arguments

| (_naryop bvar* condition _mmlarg)
//n-ary ops, condition defines argument list

| (_ispop bvar? _ispdomain? _mmlarg)
//integral, sum, product

| (_diffop bvar* _mmlarg)
//differential ops

| (log logbase? _mmlarg)
//1logs

| (moment degree? _mmlargk)
//statistical moment

| (root degree? _mmlarg)
//radicals - default is square-root

| (1imit bvar* lowlimit? condition? _mmlarg)
//limits

| (_logicopquant bvar+ condition? (reln | apply))
//quantifier with explicit bound variables
// equations and relations - reln uses lisp-like syntax (like apply)
// the bvar and condition are used to construct a "such that" or
// "where" constraint on the relation
reln ::= _sg(reln) _relnbody _eg(reln)
_relnbody (_binaryrel bvar* condition? _mmlarg _mmlarg)

| (_naryrel bvar* condition? _mmlarg*)

// fn construct

fn ::= _sg(fn) _fnbody _eg(fn)

_fnbody ::= Presentation_tags | container

// lambda construc - note at least 1 bvar must be present

lambda = _sg(lambda) _lambdabody _eg(lambda)

_lambdabody = bvar+ _container //multivariate lambda calculus
//declare construct

declare ::= _sg(declare) _declarebody _eg(declare)
_declarebody = ci (fn | constructor)?

// constructors

interval = _sg(interval) _mmlarg _mmlarg _eg(interval)

274

//start, end define interval

set = _sg(set) _lsbody _eg(set)
list ::= _sg(list) _lsbody _eg(list)
_lsbody 1:= _mmlarg* //enumerated arguments
| (bvar* condition _mmlarg) //condition constructs arguments
matrix ::= _sg(matrix) matrixrow* _eg(matrix)
matrixrow ::= _sg(matrixrow) _mmlall* _eg(matrixrow)
//allows matrix of operators
vector ::= _sg(vector) _mmlargx _eg(vector)

//qualifiers - note the contained _mmlarg could be a reln

lowlimit = _sg(lowlimit) _mmlarg _eg(lowlimit)
uplimit = _sg(uplimit) _mmlarg _eg(uplimit)
bvar = _sg(bvar) ci degree? _eg(bvar)
degree = _sg(degree) _mmlarg _eg(degree)
logbase = _sg(logbase) _mmlarg _eg(logbase)

//relations and operators
// (one declaration for each operator and relation element)

_relation = _ey(\Jrelation) //for example <eq/> <1t/>
_operator ::= _ey(\operator) //for example <exp/> <times/>
//the top level math element

math ::= _sg(math) mmlall* _eg(math)

275

Appendix C

Content Element Definitions

C.l1 About Content Markup Elements

The primary role of MathML content elements is to provide a mechanism for recording the fact that a particular nota-
tional structure has a particular mathematical meaning. To this end, every content element must have a mathemati
definition associated with it in some form. The purpose of this appendix is to prawidelt definitions. (An index to

the definitions is provided later in this document.) The author may adapt the notation to their own particular needs b
using the "definitionURL" to override these default definitions for selected content elements.

The mathematical definitions are not restricted to any one format. There are several reasons for allowing this flexibility
nearly all derived from the fact that if it is extremely important to allow authors to make use of existing definitions from
the mathematical literature.

1. There is no suitable notation in common use. For example, the mathematical libraries of even the mos
extensive mathematical computation systems in use today capture only a small fraction of the mathematic:
liturature and even then, not all of mathematics is computational.

2. In most cases, the translation of a mathematical definition into a new denotational language is an inappropriaf
use of an author’s energy and time.
3. The task of designing a new machine readable language suitable for recording semantic descriptions is ¢

onerous one that goes substantially beyond the scope of this particular recommendation. It also overlar
substantially with efforts groups such as the OpenMath Consortium. (See also: North American OpenMatt
Initiative, and The European OpenMath Consortium)

The key issues for both archival and computational purposes is that there be a definition and that the author have
mechanism to specify which definition is to be used for a given instance of a notational construct. This denotatione
requirement is important without regard to the existence of an implementation of a particular concept or object in :
mathematical computation system. The definition may be as vague as claiming tHat,isayn unknown, but differ-
entiable function from the real numbers to the real numbers, or as complicated as requirlagdhz an elaborate
function or operation as defined in some recent (or classical) research paper. The important thing is that the reac
always have a way of determining how the notation is being used.

C.l1l1 The Default Definitions

An author’s decision to use content elements is a decision to used defined objects. In order to make this task le
onerous, default definitions are provided. In this way, an author only needs to provide explicit definitions where thei
usage differs from the default usage.

Where possible the default definitions have been chosen to reflect common usage in the same way that most well writt
mathematical communications (in any format) benefit substantially from the author’s use of widely used and understoa
terms.

276

Definitions are overridden in a particular instance by making use odi¢liénitionURL attribute. The format of the
content of that URL is unspecified. It may even be the case that the definitionURL is just a name invented by the authc
in which case it serves to warn the reader (and computational systems) that the author is using their own definition.
may be the URL of a mathematical paper whose whole purpose is to define a new operator, or even a reference tc
traditional text in which the construct is defined. If the author's mathematical operator matches exactly with an operatc
in a particular computational system, an appropriate definition might be in terms of a MatbMintics element
establishing a correspondence between two encodings. Whatever format is chosen, the only requirement is that so
sort of definition be indicated.

This rest of this appendix provides detailed descriptions of the default semantics associated with each of the MathM
content elements. Since this is exactly the role intended for the encodings under development by the OpenMath Cc
sortium and one of our goals is to foster international cooperation in such standardization efforts we have presented t
default definitions in a format modeled on OpenMaitvatent dictionaries. While the actual details differ somewhat
from the OpenMath specification, the underlying principles are the same.

C.1.2 The Structure of an MMLdefinition.

Each MathML element is described using an XML format. The top elementligefinition. The sub-elements
identify the various parts of the description and include:

name PCDATA providing the name of the MathML element.
description A CDATA description of the object that an element represents. This will often include cross-references to
more traditional texts or papers or existing papers on the Web.
classification Each MathML element must be classified according to its mathematical role.
punctuation Some elements exist simply as an aid to parsing. For exampleethelement is used to
separate th€DATA defining a rational number into two parts in a manner that is easily parsed by an
XML application. These objects are refered tgasctuation.
descriptor Some elements exist simply to modify the properties of an existing element or mathematical
object. For example th@eclare construct is used to reset the default attribute values, or to associate
a name with a specific instance of an object. These kinds of elements are referrelddaiasors and
the type of the resulting object is the same as that of element being modified, but with the new attribute
values. No signhature is provided for descriptors.
constructor The remaining objects that ‘contain’ sub-elements are all oljettructors of some sort or
another. They combine the sub-elements into a compound mathematical object such as a constant, s
list, or a function application. For example, thembda elementconstructs a function definition from
a list of variables and an expression. while #ly element constructs function application. By
function application we mean the result of applying the first element of the apply (the function) to the
zero or more remaining elements (the argumentsjuiftion application represents an object in the
range of the function. For each given combination of type and order of XML children, the signature of
a constructor indicates the type (and sometimes subtype) of the resulting object.
function (operator) The traditional mathematical functions and operators are represented in MathML by
empty XML elements such gslus andsin. Thesefunction definitions are parameterized by their
XML attribute values (for example, they may be of type vector) and are either used as is, for example
when discussing the properties of a particular function or operator, or theapplied to arguments
using theapply. The latter case is referred to as function application. Functions are classified according
to how they are used. For example the emgpiy element represents thiary mathematical function
sine. Theplus element is amary operator. Theignature of a function (see below) describes how it
is to be used a mathematical function insideapply element. Each combination of types of function
arguments used inside apply gives rise to arpply element of a given type.

277

MMLattribute Some of the XML attributes of a MathML content element have a direct impact on the mathematical

semantics of the object. For example thge attribute of thecn element is used to determine what type of
constant (integer, real, etc.) is being constructed. Only those attributes that affect the mathematical propertie
of an object are listed here and typically these also appear explicitly in the signature.

signature The signature is a systematic representation that associates the types of different possible combinations of

tributes and function arguments to type of mathematical object that is constructed. The possible combination
of parameter and argument types (the left-hand side) each result in an object of some type (the right-han
side). In effect, it describes how to resolve operator overloading. For constructors, the left-hand side of the
signature describes the types of the child elements and the right-hand side describes the type of object th
is constructed. For functions, the left-hand side of the signature indicates the types of the parameters ar
arguments that would be expected when it is applied, or used to construct a relation, and the right-hand sid
represents the mathematical type of the object constructed apflier. Modifiers modify the attributes of

an existing object. For examplesambol might become aymbol of type vector. The signature must be able

to record specific attribute values and argument types on the left, and parameterized types on the right.. Tt
syntax used for signatures is of the general form:

[<attribute name>=<attributevalue>](<list of argument types>)

--> <mathematical result type>(<mathematical subtype>) _
The MMLattributes, if any, appear in the forrmame>=<value>. They are separated notationally from the

rest of the arguments by square braces. The possible values are usually taken from an enumerated list, a
the signature is usually affected by selection of a specific value. For the actual function arguments and name
parameters on the left, the focus is on the mathematical types involved. The function argument types ar
presented in a syntax similar to that used for a DTD, with the one main exception. The types of the namec
parameters appear in the signature<asementname>=<type> in a manner analogous for that used for
attribute values. For example, if the argument is named te@4x) then it is represented in the signature by

an equation as in:

[<attribute name>=<attributevalue>](bvar=symbol,<argument list>) -->

<mathematical result type>(<mathematical subtype>) .
No mathematical evaluation ever takes place in MathML. Every MathML content element either refers to a

defined object such as a mathematical function or it combines such objects in some way to build a new objec
For purposes of the signature, the constructed object represents an object of a certain type parameterized ty|
For example the result of applyingus to arguments is an expression that represents a sum. The type of the
resulting expression depends on the types of the operands, and the values of the MathML attributes.

example Examples of the use of this object in MathML are included in these elements.

property

This element describes the mathematical properties of such objects. For simple associations of values wi
specific instances of an object, the first child is an instance of the object being defined. The second is
value Or approx (approximation) element that contains a MathML description of this particular value. More
elaborate conditions on the object are expressed using the MathML syntax.

comment These elements contain only PCDATA and can occur as a child of the MMLDefinition at any point.

C.2 Definitions of MathML Content Elements
c.21 Leaf Elements

C2.1.1 cn

<MMLdefinition>

<name> cn </name>

<description>
A numerical constant. The mathematical type of number

278

is given as an attribute. The default type is "real".
Numbers such as rational, complex or real, require two
parts for a complete specification. The parts of such
a number are separated by an empty "sep" element.
There are a number of pre-defined constants including:
π &Exponential; &ComplexI &true; &false; &Nal;

the properties of some of which are outlined below.
The &NaN; is IEEE’s "Not a Number", as defined in
IEEE 854 standard for Floating point arithmetic.
</description>
<functorclass> constant </functorclass>
<MMLattribute>

<name> type </name>

<value> integer | rational | complex-cartesian

| complex-polar | real

</value>

<default> real </default>
</MMLattribute>
<MMLattribute>

<name> base </name>

<value> positive_integer </value>

<default> 10 </default>
</MMLattribute>

<signature> [type=integer] (numstring) -> constant(integer) </signature>
<signature> [base=basevalue] (numstring) -> constant(integer) </signature>
<signature> [type=rational] (numstring,numstring) -> constant(rational) </signature>

<signature> [type=complex-cartesian] (numstring,numstring) -> constant(complex) </signature>

<signature> [type=rational] (numstring,numstring) -> constant(rational) </signature>
<signature> [type=real] (π) -> constant(real) </signature>
<signature> [definition] (numstring,numstring) -> constant(userdefined) </signature>

<signature> (γ) -> constant</signature>
<example> <cn> 245 </cn> </example>
<example> <cn type="integer"> 245 </cn> </example>

<example> <cn type="integer" base="16"> A </cn></example>
<example> <cn type="rational"> 245 <sep> 351 </cn> </example>
<example> <cn type="complex-cartesian"> 1 <sep/> 2 </cn> </example>

<example> <cn> 245 </cn> </example>
<property> <approx>
<cn> π </cn>
<cn> 3.141592654 </cn>
</approx></property>
<property> <approx>
<cn> γ </cn>
<cn> .5772156649 </cn>
</approx> </property>
<property> <reln><identity/>
<cn>4Imaginaryl; </cn>
<apply><root><cn>-1</cn><cn>2</cn></apply>
</reln>

279

</property>
<property> <reln><approx>

<cn> ⅇ </cn><cn>2.718281828 </cn>

</reln> </property>
<property> <apply><forall/>

<bvar><ci type=boolean>p</ci></bvar>

apply><and/>

<ci>p</ci><cn>&true;</cn></apply>

<ci>p</ci>
</apply>
</property>
<property> <apply><forall/>

<bvar><ci type=boolean>p</ci></bvar>

<apply><or/>

<ci>p</ci><cn>&true;</cn></apply>

<cn>&true;</cn>
</apply>
</property>

<bvar><ci type=boolean>p</ci></bvar>

<apply><or/>

<ci>p</ci><cn>&true;</cn></apply>

<cn>&true;</cn>
</apply>
</property>
<property>
<identity>

<apply><not/><cn> &true; </apply>

<cn> &false; </cn>
</identity>
</property>
<property> <reln><identity/>
<cn base="16"> A </cn> <cn>
<property> <reln><identity/>
<cn base="16"> B </cn> <cn>
<property> <reln><identity/>
<cn base="16"> C </cn> <cn>
<property> <reln><identity/>
<cn base="16"> D </cn> <cn>
<property> <reln><identity/>
<cn base="16"> E </cn> <cn>
<property> <reln><identity/>
<cn base="16"> F </cn> <cn>
</MMLdefinition>

C212 «ci

<MMLdefinition>
<name> ci </name>
<description>

10

11

12

13

14

15

</cn>

</cn>

</cn>

</cn>

</cn>

</cn>

</reln> </property>
</reln></property>
</reln></property>
</reln></property>
</reln></property>

</reln></property>

280

A symbolic name constructor. The type attribute can
be set to any valid MathML type.
</description>
<functorclass> constructor , unary </functorclass>
<MMLattribute>
<name> type </name>
<value> constant | matrix | set | vector | list | MathMLtype </value>
<default> real </default>
</MMLattribute>
<signature> ({string|mmlpresentation}) -> symbol(constant) </signature>
<signature> [type=MathMLType] ({string|mmlpresentation}) -> symbol(MathMLType) </signature>
<example><ci> xyz </ci> </example>
<example><ci> type="vector"> V </ci> </example>
</MMLdefinition>

c.2.2 Basic Content Element
C22.1 apply

<MMLdefinition>

<name> apply </name>

<description>

This is the MathML constructor for function application.

The first argument is applied to the remaining arguments.

It may be the case that some of the child elements are
named elements. (See the signature.)

</description>

<functorclass> constructor , nary </functorclass>
<signature> (function,anything*) -> application </signature>
<example><apply><plus/><ci>x</ci><cn>1</cn></apply></example>
<example><apply><sin/><ci>x</ci></apply></example>
</MMLdefinition>

C222 reln

<MMLdefinition>

<name> reln </name>

<description>

This is the MathML constructor for expressing a relation between

two or more mathematical objects. The first argument indicates

the type of "relation" between the remaining arguments. (See the signature.)
No assumptions are made about the truth value of such a relation.

Typically, the relation is used as a component in the construction

of some logical assertion. Relations may be combined into
sets, etc. just like any other mathematical object.
</description>

<functorclass> constructor </functorclass>

<signature> (function,anything*) -> reln </signature>
<example><reln><and/><ci>P</ci><ci>Q</ci></reln></example>
<example><reln><1t/><ci>x</ci><ci>y</ci></reln></example>

281

</MMLdefinition>

C223 fn

<MMLdefinition>
<name> fn </name>
<description>
This is the MathML constructor for building new function
names. The "name" can be a general MathML content element.
It identifies that object as "usable" in a function
context.
By setting its definitionURL value, you can
associate it with a particular function definition.
Use the MathML Declare to associate a name with a lambda
construct.
</description>
<MMLattribute>
<name>definitionURL</name>
<value> URL </value>
<default> none </default>
</MMLattribute>
<functorclass> constructor </functorclass>
<signature> (anything) -> function </signature>
<signature> [definitionURL=functiondef] (anything) ->
function(definitionURL=functiondef)
</signature>
<example><fn><ci>F</ci></fn></example>
<example><fn definitionURL="http://www.w3c/...">
<1t/><ci>G</ci></fn>
</example>
<!--Declaring Id to be the identity function.-->
<example>

<declare><fn><ci>Id</ci></fn><lambda><ci>x</ci><ci>x</ci></declare>

</example>
</MMLdefinition>

C224 interval

<MMLdefinition>
<name> interval </name>
<description>

This is the MathML constructor element for building an interval

on the real line. While an interval could be expressed by

combining relations appropriately, they occur explicitly because

of their frequence of occurrence in common use.
</description>
<MMLattribute>

<name>type</name>

<value> closed | open | open-closed | closed-open </value>

282

<default> closed </default>
</MMLattribute>
<functorclass> constructor , binary </functorclass>
<signature> [type=intervaltype] (expression,expression) -> interval </signature>
<example><reln><and/><ci>x</ci><cn>1</cn></reln></example>
<example><reln><1t/><ci>x</ci></reln></example>
</MMLdefinition>

C.2.2.5 inverse

<MMLdefinition>
<name> inverse </name>
<description>
This MathML element is applied to a function in order to
construct a new function that is to be interpreted as the
inverse function of the original function. For a particular
function F, inverse(F) composed with F behaves like the
identity map on the domain of F and F composed with inverse(F)
should be an identity function on a suitably restricted
subset of the Range of F.
The MathML definitionURL attribute should be used to resolve
notational ambiguities, or to restrict the inverse to a
particular domain or make it one-sided.
</description>
<MMLattribute>
<name>definitionURL</name>
<value> CDATA </value>
<default> none </default>
<!--none corresponds to using the default MathML definition ...-->
</MMLattribute>
<functorclass> operator, unary </functorclass>
<signature> (function) -> function </signature>
<signature> [definitionURL=URL] (function) ->
function(definition) </signature>
<example><apply><inverse/><sin/></apply></example>
<example>
<apply>
<inverse definitionURL="www.w3c.org/MathML/Content/arcsin"/>
<sin/>
</apply>
</example>
<property><apply><forall/>
<bvar><ci>y</ci></bvar>
<apply><sin/>
<apply>
<apply><inverse/><sin/></apply>
<ci>y</ci>
</apply>
</apply>

283

<value><ci>y</ci></value>
</apply>
</property>
<property>
<apply>
<apply><inverse/><sin/></apply>
<apply>
<sin/>
<ci>x</ci>
</apply>
</apply>
<value><ci>x</ci></value>
</property>
<property>F (inverse(F) (y))<value>y</value></property>
</MMLdefinition>

C226 sep

<MMLdefinition>
<name> sep </name>
<description>

This is the MathML infix constructor used to sub-divide PCDATA into
separate components. for example, this is used in the description of
a multipart number such as a rational or a complex number.

</description>
<functorclass> punctuation </functorclass>

<example><cn type="complex-polar">123<sep/>456</cn></example>

<example><cn>123</cn></example>
</MMLdefinition>

C.2.2.7 condition

<MMLdefinition>
<name> condition </name>
<description>
This is the MathML constructor for building conditiomns.
A condition differs from a relation in how it is used.
A relation is simply an expression, while a condition
is wused as a predicate to place a conditions on a bound
variables.
For a compound condition use relations or apply
operators such as "and" or "or" or a set of
relations).
</description>
<functorclass> constructor, unary </functorclass>
<signature> ({reln|applyl|set}) -> predicate </signature>
<example>
<condition>

<reln><1t/>

284

<app1y><power/>
<ci>x</ci><cn>5</cn>
</apply>
<cn>3</cn>
</reln>

</condition>
</example>
</MMLdefinition>

C.228 declare

<MMLdefinition>

<name> declare </name>

<description>

This is the MathML constructor for redefining the properties and

values with mathematical objects. For example V may be a name

delcared to be a vector, or V may be a name that stands for a

particular vector.

The attribute values of the declare statement are assigned as the

corresponding default attribute values of the first object.

</description>

<functorclass> modifier , (unary | binary) </functorclass>

<MMLattribute>

<name>definitionURL</definition>

<value> Any valid URL </value>

</MMLattribute>

<MMLattribute>

<name>type</name><value> MathMLType </value>

</MMLattribute>

<MMLattribute>

<name>nargs</name><value> number of arguments for an object of type fn </value>
</MMLattribute>

<signature> [attributename=attributevalue] (anything) -> anything(attributevalue) </signature>
<!-- The two argument form updates the properties of the first

object to be those of the second. The attribute values override the

properties of the "value".

-—>

<signature> [attributename=attributevalue] (anything,anything) -> anything(attributevalue) </sig:
<example><reln><and/><ci>x</ci><cn>1</cn></reln></example>
<example><reln><1t/><ci>x</ci></reln></example>

</MMLdefinition>

C.2.29 1lambda

<MMLdefinition>

<name> lambda </name>

<description> The operation of lambda calculus that makes a
function from an expression and a variable. The definition
at this level uses only one variable. Lambda is a binary

285

function, where the first argument is the variable and
the second argument is a the expression.
Lambda(x, F) is written as \lambda x [F] in the lambda
calculus literature.
The lambda function can be viewed as the inverse of function
application.
Although the expression F may contain x, the lambda expression
is interpreted to be free of x. That is, the x variable is
a variable local to the environment of the definition of
the function or operator. Formally, lambda(x,F) is free of
x, and any substitutions, evaluations or tests for x in
lambda(x,F) should not happen.
A lambda expression on an arbitrary function applied to a
simple argument is equivalent to the arbitrary function.
E.g. lambda(x, f(x)) == f. This is a common shortcut.
</description>
<functorclass> Nary , Constructor </functorclass>
<property>
<lambda><ci>x</ci>
<apply><fn><ci>F</ci></fn><ci>x</ci></apply>
</lambda>
<value> <fn><ci>F</ci></fn> </value>
</property>
<!-- Constructing a variant of the sine function -->
<example>
<lambda>
<ci> x </ci>
<apply><sin/>
<apply><plus/>
<ci> x </ci>
<cn> 3 </cn>
</apply>
</lambda>
</example>
<!-- the identity operator -->
<example>
<lambda><ci> x </ci> <ci> x </ci> </lambda>
</example>
<property>
<reln><identity/>
<lambda><ci>x</ci>
<apply><fn><ci>F</ci></fn><ci>x</ci></apply>
</lambda>
<fn><ci>F</ci></fn>
</reln>
</property>
<MMLdefinition>

286

C.2.2.10 compose

<MMLdefinition>

<name> compose </name>

<description>
This is the MathML constructor for composing functions.
In order for a composition to be meaningful, the range of

the first function must be the domain of the second function,

etc. .

The result is a new function whose domain is the domain of
the first function and whose range is the range of the last
function and whose definition is equivalent to applying
each function to the previous outcome in turn as in:

(fegHlilx) == f(gx).
This function is often denoted by a small circle infix
operator.
</description>

<functorclass> Nary , Operator </functorclass>
<signature> (fnx) -> fn </signature>
<example>
<apply><compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>
</apply></example>
<property>
<apply><forall>
<bvar><ci>x</ci></bvar>
<reln><eq/>
<apply>
<apply><compose/>
<ci>f</ci>
<ci>g</ci>
</apply>
<ci>x</ci>
</apply>
<apply><ci>f</ci>
<apply><ci>g</ci>
<ci>x</ci>
</apply>
</apply>
</reln>
</apply>
</property>
</MMLdefinition>

C2.2.11 ident

<MMLdefinition>
<name> ident </name>
<description>

287

This is the MathML constructor for the identity function.
This function has the property that
f(x) =x, for all x in its domain.
</description>
<functorclass> Nary , Operator </functorclass>
<signature> (symbol) -> symbol </signature>
<example>
<apply><ident/>
<ci> f </ci>
<ci> x </ci>
</apply>
</example>
<property>
<apply><forall>
<bvar><ci>x</ci></bvar>
<reln><eq/>
<apply><ident/>
<ci>f</ci>
<ci>x</ci>
</apply>
<ci>x</ci>
</reln>
</apply>
</property>
</MMLdefinition>

c.23 Arithmetic, Algebra and Logic
C.2.3.1 quotient

<MMLdefinition>

The binary function used to represent

the quotient of two integers.

division. For arguments a and b, such that

sign of a, its value would be q.
classification=function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

<default>integer</default>

</MMLattribute>

<signature> (integer, integer) -> integer </signature>
<signature> [type=integer] (symbolic, symbolic) -> symbolic </signature>

288

<property><apply><forall/>
<bvar><ci>a</ci>
</bvar>
<bvar><ci>b</ci>
</bvar>

<reln/>

<eq/>

<ci>a</ci>
<apply><plus/>
<apply><times/>
<ci>b</ci>
<apply><quotient/>
<ci>a</ci>
<ci>b</ci>

</apply>

</apply>
<apply><rem/>
<ci>a</ci>
<ci>b</ci>

</apply>

</apply>

<apply/>
</apply></property>
<property><apply><ident/>
<apply><quotient/>
<ci>b</ci>
<ci>4</ci>

</apply>

<ci>1</ci>
</apply></property>

<name> quotient </name>

<description> Integer quotient, the result of integer
division. For arguments a and b, it returns q,

where a = b*xq+r, |r| <

Ibl and a*r >= 0 (or

the sign of r is the same as the sign of a).

</description>

<functorclass> Binary, Function </functorclass>
<signature> (integer, integer) -> integer </signature>
<signature> (symbolic, symbolic) -> symbolic -> => → </signature>

<property>
<description>

ForAll(bvar(a,b),identity(a ,b*Quotient(a,b) + Remainder(a,b))

</description>
<apply><forall/>

<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>

<reln/><eq/>
<ci>a</ci>

289

<apply><plus/>
<apply><times/>
<ci>b</ci>
<apply><quotient/><ci>a</ci><ci>b</ci></apply>
</apply>
<apply><rem/><ci>a</ci><ci>b</ci></apply>
</apply>
<reln>
</apply>
</property>
<property>
<description>
1 = quotient(5,4)
</description>
<apply><identity/>
<apply><quotient/>
<ci>b</ci>
<ci>4</ci>
</apply>
<ci>1</ci>
<apply>
</property>
</MMLdefinition>

C232 exp

<MMLdefinition>

The exponential function.

<reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.2]</reference>
classification=function

<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>
</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

any MathML Type

</values>

<default>real</default>

</MMLattribute>

<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property><apply><eq/>

<apply><exp/>

<cn>0</cn>

</apply>

290

<cn>1</cn>
</apply></property>
<property><apply><ident/>
<apply><exp/>

<ci>x</ci>

</apply>

<apply><power/>
<cn>ExponentialE;</cn>
<ci>x</ci>

</apply>
</apply></property>
<property> exp(x) = limit((1+x/n) n, n, infinity) </property>
</MMLdefinition>

C.2.3.3 factorial

<MMLdefinition>
This element is used to construct factorials
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
any MathML Type
</values>
<default>integerl</default>
</MMLattribute>
<signature> (algebraic) -> algebraic </signature>
<signature>(integer)->integer</signature>
<property><apply><forall/>
<bvar><ci>n</ci></bvar>
<condition><apply><gt/>
<ci>n</ci>
<cn>0</cn>
</apply>
</condition>
<apply><eq/>
<apply><factorial/><ci>n</ci></apply>
<apply><times/>
<ci>n</ci>
<apply><factorial/>
<apply><minus/><ci>n</ci><cn>1</cn></apply>
</apply>
</apply>
</apply>

2901

</apply>

</property>
<example><apply><factorial/>
<ci>n</ci>
</apply></example>
</MMLdefinition>

C.234 divide

<MMLdefinition>

This is the binary MathML operator that is used to construct

the mathematical expression a "divided by" b. In
general, it constructs the expression that
is equivalent to right multiplication by
the multiplicative inverse of b.
classification=function
<MMLattribute>
<attname> type </attname>
<attvalue> anything <sep/>non-commutative</attvalue>
<attdefault> real </attdefault>
</MMLattribute>
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<signature> (complex, complex) -> complex </signature>
<signature> (real, real) -> real </signature>
<signature> (rational, rational) -> rational </signature>
<signature> (integer, integer) -> rational </signature>
<signature> (symbolic, symbolic) -> symbolic </signature>
<property><apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><divide/>
<ci> a </ci>
<ci> 0 </ci>
</apply>
<apply><ci>Error</ci>
<ci>Division by 0</ci>
</apply>
</apply>
</apply>
</property>
<property>whenever not(a=0) then a/a = 1 </property>
<example><apply><divide/>
<ci> a </ci>
<ci> b </ci>
</apply></example>

292

</MMLdefinition>

C.2.3.5 max

<MMLdefinition>

Represent the maximum of a set of elements. The elements
may be listed explicitly or they may be described by a
condition, e.g., the maximum over all x in

the set A.

To be well defined, the elements must all be
comparable.

classification= function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

any MathML Type

</values>

<default>real</default>

</MMLattribute>

<signature> (ordered_set_element *) -> ordered_set_element </signature>
<signature> (bvar,condition,anything) -> ordered_set_element </signature>

<example><apply><max/>
<cn>2</cn>
<cn>3</cn>
<cn>5</cn>
</apply></example>
<example><apply>
<max/>
<bvar><ci>y</ci></bvar>
<condition>
</condition>
<apply>
<power/>
<ci> y</ci>
<cn>x </cn>
</apply>
</apply>
</example>
</MMLdefinition>

C.2.3.6 min

<MMLdefinition>
Represent the maximum of a set of elements. The elements

293

may be listed explicitly or they may be described by a
condition, e.g., the maximum over all x in
the set A.
To be well defined, the elements must all be
comparable.
classification= function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
any MathML Type
</values>
<default>real</default>
</MMLattribute>
<signature> (ordered_set_element *) -> ordered_set_element </signature>
<signature> (bvar,condition,anything) -> ordered_set_element </signature>
<example><apply><min/>
<cn>2</cn>
<cn>3</cn>
<cn>b</cn>
</apply></example>
<example><apply>
<min/>
<bvar><ci>x</ci></bvar>
<condition>
</condition>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>
</apply>
</apply>
</example>
</MMLdefinition>

C.2.3.7 minus

<MMLdefinition>
The subtraction operator for an additive group.

If one argument is provided this constructs the additive
inverse of that group element.

If two arguments, say a and b, are provided it
constructs the mathematical expression a - b.
classification=function

294

<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>

<MMLattribute>
<name>type</name>

<values>

any MathML Type

</values>
<default>real</default>
</MMLattribute>

<signature>[type=typevalue] (typevalue,typevaluel) -> typevalue </signature>
<signature>[type=typevalue] (typevalue)->typevalue </signature>

<property><apply><eq/>
<bvar><ci>n</ci>

</bvar>

<apply><minus/>
<cn>1</cn>

</apply>

<cn>-1</cn>
</apply></property>
<example><apply><minus/>
<cn>3</cn>

<cn>5</cn>
</apply></example>
<example><apply><minus/>
<cn>3</cn>
</apply></example>
</MMLdefinition>

C.2.3.8 plus

<MMLdefinition>

The N-ary addition operator of an algebraic structure.
If no operands are provided, the expression represents
the additive identity.

If one operand, a, is provided the expression would
evaluate to "a".

If two or more operands are provided, the expression
represents the group element corresponding to a left
associative binary pairing of the operands.

Issues with regard to the "value" of mixed operands
are left up to the target system. If the author wishes
to refer to specific type coercion rules, then

the definitionURL attribute should be used to refer

to a suitable specification.

classification=function

<MMLattribute>

295

<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>

<MMLattribute>
<name>type</name>

<values>

Any MathML type

</values>
<default>real</default>
</MMLattribute>

<signature>[type=typevalue] (typevalue*) -> typevalue </signature>

<property> plus() = O </property>
<property> +(a) = a </property>
<property> ForAll(a,Commutative, a + b = b + a)</property>
<example><apply><plus/>

<cn>3</cn>

</apply></example>
<example><apply><plus/>

<cn>3</cn>

<cn>5</cn>

</apply></example>
<example><apply><plus/>

<cn>3</cn>

<cn>5</cn>

<cn>7</cn>

</apply></example>
</MMLdefinition>

C.2.3.9 power

<MMLdefinition>

The binary powering operator used to construct expressions
such as a "to the power of" b. In particular, it is the
operation for which a "to the power of" 2 is equivalent
to a * a.

classification=function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

<default>real</default>

</MMLattribute>

296

<signature> (complex complex) -> complex </signature>

<signature> (real real) -> complex </signature>

<signature> (rational rational) -> complex </signature>

<signature> (rational integer) -> rational </signature>

<signature> (integer integer) -> rational </signature>

<signature> (symbolic symbolic) -> symbolic </signature>

<signature> [type=typevalue] (typevalue,typevalue) -> typevalue </signature>
<property> ForAll(a,Condition(a_NE_0),a"0=1) </property>

<property> ForAll(a,a"1=a) </property>
<property> ForAll(a,1%a=1) </property>
<property>ForAll(a,0~0=Undefined)</property>
</MMLdefinition>

C.2.3.10 rem

<MMLdefinition>

Integer remainder, the result of integer
division. For arguments a and b, such that
the same as the sign of a, its value would be r.
classification= binary, function
<MMLattribute>
<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>
</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

<default>integer</default>

</MMLattribute>

<signature> (integer integer) -> integer </signature>
<signature> (symbolic symbolic) -> symbolic </signature>
<signature>[type=typevalue] (typevalue,typevalue)->typevalue</signature>

<property> a = bx*rem(a,b) + rem(a,b) </property>
<property>rem(a,0) = Division_by_Zero</property>
</MMLdefinition>

C.23.11 times

<MMLdefinition>

The n-ary multiplication operator of a
ring.

classification=function

<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>

297

</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

<default>real</default>

</MMLattribute>

<signature> (complex *) -> complex </signature>

<signature> (real*) -> real </signature>

<signature> (rational*) -> rational </signature>

<signature> (integer*) -> integer </signature>

<signature> (symbolic#*) -> symbolic </signature>

<property>ForAll (bvars(a,b),condition(in({a,b},Commutative)) ,a*b=b*a)</property>
<property>ForAll(bvars(a,b,c) ,Associative,ax(b*c)=(a*b)*c), associativity </property>
<property> a*l=a </property>

<property> l*xa=a </property>

<property> ax0=0 </property>

<property> O*a=0 </property>

</MMLdefinition>

C.2.3.12 root

<MMLdefinition>

Construct the nth root of an object.

The first argument "a" is the object and the

second object "n" denotes the root, as in

(a) "~ (1/n)

classification= binary , function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<attname> type </attname>

<attvalue> real <sep/> complex <sep/> principle_branch </attvalue>
<attdefault> real </attdefault>

</MMLattribute>

<signature> (anything , anything) -> root </signature>
<property> Forall(bvars(a,n),root(a,n) = a~(1/n)) </property>
<example><apply><root/>

<ci> a </ci>

<ci> n </ci>

</apply></example>

</MMLdefinition>

C23.13 gcd

<MMLdefinition>

298

This operator is used to construct an expression
which represents the greatest common divisor

of its arguments.

classification=function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

<default>integer</default>

</MMLattribute>

<signature> [type=typevaluel] (typevalue*) ->typevalue </signature>
<property>Forall(p,q, (is(p,prime) and is(q,prime)) , gcd(p,q)=1 </property>
<example><apply><gcd/>

<cn>12</cn>

<cn>17</cn>

</apply></example>

</MMLdefinition>

C.2.3.14 and

<MMLdefinition>

This is the n-ary 1logical "and" operator. It is used
to construct the logical expression which has

a value of "true" when all of its operands

have a truth value of "true", and "false" otherwise.
classification=function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<attname> type </attname>

<attvalue> any MathML type</attvalue>

<attdefault> complex </attdefault>

</MMLattribute>
<signature> (boolean*) -> boolean </signature>
<signature> [type="boolean"] (symbolicx*) -> boolean </signature>

<property> identity(true and p , p) </property>
<property> identity(p and q , q and p) </property>
<example><apply><and/>

<ci>p</ci>

<ci>q</ci>

299

</apply></example>
</MMLdefinition>

C23.15 or

<MMLdefinition>

The logical "or" operator. The constructed expression

has a truth value of true if at least one of its arguments is true.
classification=function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

<default>boolean</default>

</MMLattribute>

<signature> (boolean*) -> boolean </signature>

<signature> [type="boolean"] (symbolicx*) -> boolean </signature>
<property> ...</property>

</MMLdefinition>

C23.16 xor

<MMLdefinition>

The logical "xor" operator. The constructed expression

has a truth value of true if exactly one of its arguments is true.
classification=function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

<default>boolean</default>

</MMLattribute>

<signature> (boolean*) -> boolean </signature>

<signature> [type="boolean"] (symbolicx*) -> symbolic </signature>
</MMLdefinition>

300

C.2.3.17 not

<MMLdefinition>

The logical "not" operator negates the truth value
of its single argument. e.g., not P
classification=function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>
</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

<default>boolean</default>

</MMLattribute>

<signature> (boolean) -> boolean </signature>
<signature> [type="boolean"] (symbolic) -> symbolic </signature>
</MMLdefinition>

C.2.3.18 implies

<MMLdefinition>

The implies operator. This represents

the construction of the logical expression
"A implies B".

classification= Binary, relation

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

<default>boolean</default>

</MMLattribute>

<signature> (boolean,boolean) -> boolean </signature>

<property><apply><forall/>

<bvar><ci>A</ci>

</bvar>

<bvar><ci>B</ci>

</bvar>

<apply><eq/>

<apply><implies/>

<ci>A</ci>

301

<ci>B</ci>
</apply>
<apply><or/>
<ci>B</ci>
<apply><not/>
<ci> A </ci>
</apply>
</apply>
</apply>
</apply></property>
</MMLdefinition>

C.23.19 forall

<MMLdefinition>

The logical "For all" quantifier is applied to arguments
to construct a predicate. The bound variables are
tagged using bvar, and the last argument is the boolean
predicate that is asserted to be true.
classification=function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

<default>boolean</default>

</MMLattribute>

<signature> (bvar*,condition?,apply) -> boolean </signature>
<signature> (bvar*,condition?,(reln)) -> boolean </signature>
</MMLdefinition>

C.2.3.20 exists

<MMLdefinition>

This is the MathML operator that is used to
assert existance, as in "There exists an x such
that x is real and x is positive."

It expects three arguments.

The first argument indicates the bound variable,
The second argument places conditions on that
bound variable. The last argument is the expression
that is asserted to be true.
classification=function

<MMLattribute>

302

<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>
<default>boolean</default>
</MMLattribute>

<signature> (element,set) ->boolean </signature>
</MMLdefinition>

C.2.3.21 abs

<MMLdefinition>

A unary operator which represents the absolute value of its argument.

In the complex case this is often referred to as the modulus.
classification=function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

any MathML Type

</values>

<default>real</default>

</MMLattribute>

<signature>(real)->real</signature>
<signature>(complex)->real</signature>

<property>for all x and y, abs(x) + abs(y) >= abs(x+y)
</property>
<example><apply><abs/><ci>x</ci></apply></example>
</MMLdefinition>

C.2.3.22 conjugate

<MMLdefinition>

The "conjugate" arithmetic operator is

used to represent the complex conjugate of its
argument. In particular, conjugate(ImaginaryI)
classification=function

<MMLattribute>

<attname>definitionURL</attname>

<attvalue> CDATA </attvalue>

303

<attdefault> none </attdefault>

</MMLattribute>

<MMLattribute>

<attname> type </attname>

<attvalue> anything </attvalue>

<attdefault> complex </attdefault>
</MMLattribute>

<signature> (algebraic) -> algebraic </signature>
<signature>(complex)->complex</signature>
</MMLdefinition>

C2323 arg

<MMLdefinition>

The "arg" operator is used to construct an
expression which represents the
"argument" of a complex number.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>

<MMLattribute>

<name>type</name>

<values>

any MathML Type

</values>

<default>real</default>
</MMLattribute>
<signature>(compex)->real</signature>
<property>?77</property>

<ci>a</cn>

<ci>&epsilon</cn>
<ci><mrow><msup><mi>a</mi><mi>b</mi><mrow></cn>
<ci>v</ci>

</MMLdefinition>

C.2.3.24 real

<MMLdefinition>

An operator used to construct an expression
representing the "real" part of a complex number.
classification=unary

<MMLattribute>

<name>type</name>

<values>

Any MathML type

</values>

304

<default>real</default>
</MMLattribute>

<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<signature>(complex)->real</signature>
<ci>a</cn>

<ci>&epsilon</cn>
<ci><mrow><msup><mi>a</mi><mi>b</mi><mrow></cn>
<cid>v</ci>

</MMLdefinition>

C.2.3.25 imaginary

<MMLdefinition>

A name used as a symbolic identifier.
classification=constant

<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<signature>(complex)->real</signature>
<example><cn type="constant">&Imaginary;</cn></example>
</MMLdefinition>

cC.24 Relations
C24.1 eq

<MMLdefinition>

<Name> eq </Name>

<description> The equality operator. </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>

<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

C.24.2 neq

<MMLdefinition>

<Name> neq </Name>

<description> The notequals operator. </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>

<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

305

C243 gt

<MMLdefinition>

<Name> gt </Name>

<description> The equality operator. </description>
<functorclass> binary, relation </functorclass>
<property> Commutative </property>

<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

C244 1t

<MMLdefinition>

<Name> 1t </Name>

<description> The inequality equality operator "<" </description>
<functorclass> binary, relation </functorclass>

<property> Commutative </property>

<signature> (symbolic, symbolic*) -> boolean </signature>
</MMLdefinition>

C245 geq

<MMLdefinition>

<Name> geq </Name>

<description> The inequality operator. >= </description>
<functorclass> Nary, relation </functorclass>

<signature> (symbolic, symbolic*) -> boolean </signature>
<property> ... Commutative 7 ... </property>
</MMLdefinition>

C246 leq

<MMLdefinition>

<Name> leq </Name>

<description> The inequality operator </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>

<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

C.25 Calculus
C251 1n

<MMLdefinition>

<name>1n</name>

<description>

The logarithmic function. Also called the natural logarithm. The inverse
of the exponential function.

<Reference> M. Abramowitz and I. Stegun, Handbook of

306

Mathematical Functions, [4.1]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<property>

Error("logarithm has a singularity at 0")
</property>
<signature> Intersect(real,positive) -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> 1ln(1l) = O </property>
<property> ln(exp(x)) = x, "for real x" </property>
<property> exp(ln(x)) = x, always </property>
</MMLdefinition>

C252 log

<MMLdefinition>
<Name> log </Name>
<description> The logarithmic function (base 10), or any
any other user specified base. Also called
the natural logarithm.
The inverse of the exponential function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.1]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> (real,logbase) -> real </signature>
<signature> symbolic -> symbolic </signature>

<property>
Error("logarithm has a singularity at 0")
</property>
</MMLdefinition>
C.253 int
<MMLdefinition>
<Name> int </Name>
<description>

The definite or indefinite integral of a function or algebraic
expression.
There are several forms of calling sequences depending on
the nature of the areguments, and whether or not it is a
definite integral.

</description>

<functorclass> Binary , Function </functorclass>

<signature> (function) -> function </signature>

<signature> (algebraic,bvar) -> algebraic </signature>

<signature> (algebraic,bvar,interval) -> algebraic </signature>

307

<signature> (algebraic,bvar,condition) -> algebraic </signature>
</MMLdefinition>

C254 diff

<MMLdefinition>
<Name> diff </Name>
<description>
For expressions, this represents the derivative of
its first argument evaluated at the second argument.
For Unary functions (only one argument) it represents
£,
</description>
<functorclass> (Unary | Binary) , Function </functorclass>
<signature> (algebraic,bvar) -> algebraic </signature>
<property>Forall(x,diff(sin(x) , x) = cos(x)) </property>
<property>Forall(x,diff(x , x) = 1) </property>
<property>Forall(x,diff(x"2 , x) = 2x) </property>
<property>identity(diff(sin) , cos) </property>
</MMLdefinition>

C255 partialdiff

<MMLdefinition>
<Name> partialdiff </Name>
<description>
For expressions, this represents the derivative of
its first argument evaluated at the second argument.
For Unary functions (only one argument) it represents
£,
</description>
<functorclass> (Binary) , Function </functorclass>
<signature> (algebraic,bvar) -> algebraic </signature>
<property>Forall(x,diff(sin(x*y) , x) = cos(x)) </property>
<property>Forall(x,y,diff(xxy , x) = diff(x,x)*y + diff(y,x)*x) </property>
<property>Forall(x,a,b,diff(a + b , x) = diff(a,x) + diff(b,x)) </property>
<property>identity(diff(sin) , cos) </property>
</MMLdefinition>

C256 lowlimit

<MMLdefinition>
<Name> lowlimit </Name>
<description> Construct a lower limit. Limits
are used in some integrals as alternative way
of describing the region over which an integral
is computed. (i.e. a connected component of the
real line.)
</description>

308

<functorclass> Constructor </functorclass>
<signature> (anythingx*) -> list </signature>
</MMLdefinition>

C25.7 uplimit

<MMLdefinition>
<Name> uplimit </Name>
<description> Construct a an upper limit. Limits
are used in some integrals as alternative way
of describing the region over which an integral
is computed. (i.e. a connected component of the
real line.)
</description>
<functorclass> Constructor </functorclass>
<signature> (anything*) -> list </signature>
</MMLdefinition>

C.25.8 bvar

<MMLdefinition>
<Name> bvar </Name>
<description>
The bvar element is the container element
for the "bound variable" of an operation.
For example, in an integral it specifies the
variable of integration. In a derivative, it
indicates which variable with respect to
which a function is being differentiated.
When the bvar element is used to quantifiy a derivative,
the bvar element may contain a child degree element that
specifies the order of the derivative with respect to that
variable. The bvar element is also used for the internal
variable in sums and products.
</description>
<functorclass> Constructor </functorclass>
<signature> (symbol) -> symbol </signature>
<example> <bvar><ci>x</ci></bvar></example>
</MMLdefinition>

C.2.59 degree

<MMLdefinition>
<Name> degree </Name>
<description> A parameter used by some
MathML data-types to specify that, for example,
a bound variable is repeated several times.
</description>
<functorclass> Constructor </functorclass>

309

<signature> (algebraic) -> algebraic </signature>
<example> <degree><ci>x</ci></degree></example>
<property> ... </property>

</MMLdefinition>

C.2.6 Theory of Sets
C.26.1 set

<MMLdefinition>
<Name> set </Name>
<description> Construct a set. </description>
<functorclass> Nary, Constructor </functorclass>
<signature> (anything*) -> set </signature>
</MMLdefinition>

C262 list

<MMLdefinition>
<Name> list </Name>
<description> Construct a list. </description>
<functorclass> Nary, Constructor </functorclass>
<signature> (anything*) -> list </signature>
</MMLdefinition>

C.2.6.3 union

<MMLdefinition>
<Name> union </Name>
<description> The union of two sets. </description>
<functorclass> Binary, Function </functorclass>
<signature> (set*) -> set </signature>
</MMLdefinition>

C.2.6.4 intersect

<MMLdefinition>
<Name> intersection </Name>
<description> The intersection of two sets. </description>
<functorclass> Binary, Function </functorclass>
<signature> (set set) -> set </signature>

</MMLdefinition>

C265 in

<MMLdefinition>
<Name> in </Name>
<description>
The membership testing operation (also commonly
called "in" or "including"). Returns true if the first

310

argument is part of the second argument. The second

argument must be a set.
</description>
<functorclass> Binary, Function </functorclass>

<signature> (anything, set) -> boolean </signature>

</MMLdefinition>

C.2.6.6 notin

<MMLdefinition>
<Name> notin </Name>
<description>

The membership exclusion operation (also commonly

called "notin" or "including").
It is defined as "not in".
</description>
<functorclass> Binary, Function </functorclass>

<signature> (anything set) -> boolean </signature>

</MMLdefinition>

C.2.6.7 subset

<MMLdefinition>
<Name> subset </Name>
<description>
Boolean function whose value is determined by
whether or not one set is a subset of another.
</description>
<functorclass> Binary, Function </functorclass>
<signature> (set*) -> boolean </signature>
</MMLdefinition>

C.2.6.8 prsubset

<MMLdefinition>
<Name> prsubset </Name>
<description>
Boolean function whose value is determined by

whether or not one set is a proper subset of another.

</description>
<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>

</MMLdefinition>

C.2.6.9 notsubset

<MMLdefinition>
<Name> notsubset </Name>

311

<description>
Boolean function whose value is the complement
of "subset".
</description>
<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>
</MMLdefinition>

C.2.6.10 notprsubset

<MMLdefinition>
<Name> notprsubset </Name>
<description>
Boolean function whose value is the complement
of "proper subset".
</description>
<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>
</MMLdefinition>

C26.11 setdiff

<MMLdefinition>
<Name> setdiff </Name>
<description>

Function indicating the difference of two sets.
</description>
<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> set </signature>
<property>...</property>
</MMLdefinition>

c.2.7 Sequences and Series
C.2.7.1 sum

<MMLdefinition>

<Name> sum </Name>

<description>

The sum element denotes the summation operator. Upper and lower

limits for the sum, and more generally a domains for the bound variables
are specified using uplimit, lowlimit or a condition on the bound
variables. The index for the summation is specified by a bvar element.
The sum element takes the attribute definition that can be used to
override the default semantics.

</description>

<functorclass> Unary, Function </functorclass>

<signature> (bvar*, ((lowlimit,uplimit) |condition),algebraic) -> sum </signature>

312

<signature> ... </signature>
</MMLdefinition>

C.2.7.2 product

<MMLdefinition>

<Name> product </Name>

<description>

The product element denotes the product operator. Upper and lower
limits for the product, and more generally a domains for the bound
variables are specified using uplimit, lowlimit or a condition on the
bound variables. The index for the product is specified by a bvar
element.

The product element takes the attribute definition that can be used
to override the default semantics.

</description>

<functorclass> Unary, Function </functorclass>

<signature> (bvar*,((lowlimit,uplimit) |condition),algebraic) -> product </signature>
<signature> ... </signature>

<signature> ... </signature>

</MMLdefinition>

C273 1limit

<MMLdefinition>

<Name> limit </Name>

<description>

The sum element denotes the summation operator.

Upper and lower limits for the sum, and more

generally a domains for the bound variables are

specified using uplimit, lowlimit or a condition

on the bound variables. The index for the summation is

specified by a bvar element.

</description>

<functorclass> Nary, Function </functorclass>

<signature> (bvar*, (lowlimit | condition*),algebraic) -> limit </signature>
</MMLdefinition>

C2.74 tendsto

<MMLdefinition>

<Name> tendsto </Name>

<description> tendsto is used to specify how a limit is

computed. It accepts a type attribute that determines the

manner in which it tends to a value.

</description>

<functorclass> binary, Function </functorclass>

<signature> (symbol,anything) -> condition(limit) </signature>

<signature> [type=direction] (symbol,anything) -> condition(limit) </signature>
</MMLdefinition>

313

c.2.8 Trigonometry
C.2.8.1 sin

<MMLdefinition>
<Name> sin </Name>
<description> The circular trigonometric function sine
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sin(0) = 0 </property>
<property> sin(integer*Pi) = 0 </property>
<property> sin((Z+1/2)*Pi) (-1)"Z, "for integer Z" </property>
<property> -1 <= sin(real) </property>
<property> sin(real) <= 1 </property>
<property> sin(3*x)=-4*sin(x) "3+3*sin(x), "triple angle formula"
<Reference> ditto, [4.3.27] </Reference>
</property>
</MMLdefinition>

C282 cos

<MMLdefinition>
<Name> cos </Name>
<description> The cosine function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cos(0) = 1 </property>
<property> cos(integer*Pi+Pi/2) = 0 </property>
<property> cos(Z*Pi) = (-1)"Z, "for integer Z" </property>
<property> -1 <= cos(real) </property>
<property> cos(real) <= 1 </property>
</MMLdefinition>

C283 tan

<MMLdefinition>
<Name> tan </Name>
<description> The tangent function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

314

</Reference>

</description>

<functorclass> Unary, Function </functorclass>

<signature> real -> real </signature>

<signature> symbolic -> symbolic </signature>

<property> tan(integer*Pi) = 0 </property>

<property> tan(x) = sin(x)/cos(x) </property>
</MMLdefinition>

C284 sec

<MMLdefinition>
<Name> sec </Name>
<description> The secant function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sec(x) = 1/cos(x) </property>
</MMLdefinition>

C285 csc

<MMLdefinition>
<Name> csc </Name>
<description> The cosecant function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> csc(x) = 1/sin(x) </property>
</MMLdefinition>

C.2.8.6 cot

<MMLdefinition>
<Name> cot </Name>
<description> The cotangent function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>

315

<signature> real -> real </signature>

<signature> symbolic -> symbolic </signature>

<property> cot(integer*Pi+Pi/2) = 0 </property>

<property> cot(x) = cos(x)/sin(x) </property>
</MMLdefinition>

C.2.8.7 sinh

<MMLdefinition>
<Name> sinh </Name>
<description> The hyperbolic sine function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>
</MMLdefinition>

C288 cosh

<MMLdefinition>
<Name> sinh </Name>
<description> The hyperbolic sine function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>
</MMLdefinition>

C.289 tanh

<MMLdefinition>
<Name> tanh </Name>
<description> The hyperbolic tangent function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>
</MMLdefinition>

316

C.2.8.10 sech

<MMLdefinition>
<Name> sech </Name>
<description> The hyperbolic secant function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>
</MMLdefinition>

C.28.11 csch

<MMLdefinition>
<Name> csch </Name>
<description> The hyperbolic cosecant function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>
</MMLdefinition>

C.28.12 coth

<MMLdefinition>
<Name> coth </Name>
<description> The hyperbolic cotangent function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>
</MMLdefinition>

C.28.13 arcsin

<MMLdefinition>
<Name> arcsin </Name>
<description> The inverse of the sine function.

317

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sin(arcsin(x)) = x </property>
<property> arcsin(sin(x)) = x, "for x between -Pi/2 and Pi/2" </property>
</MMLdefinition>

C.28.14 arccos

<MMLdefinition>
<Name> arccos </Name>
<description> The inverse of the cosine function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cos(arccos(x)) = x </property>
<property> arccos(cos(x)) = x, "for x between O and Pi" </property>
</MMLdefinition>

C28.15 arctan

<MMLdefinition>
<Name> arctan </Name>
<description> The inverse of the tangent function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> tan(arctan(x)) = x </property>
<property> arctan(tan(x)) = x, "for x between -Pi/2 and Pi/2" </property>
</MMLdefinition>

C.2.9 Statistics
C.29.1 mean

<MMLdefinition>
<Name> mean </Name>
<description>

318

Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the mean is computed as:
mean(al, a2, ... an) Sum(ai, i=1... n)/ n.
(see section 7.7 in CRC’s Standard Mathematical tables and Formulae).
More generally, if the first argument is a symbol X of type
"discrete_random_variable", this is the 1st moment of the
random variable X and is defined as
E[L X] = Sum(x*xf(x), x in S)
where the probability that x = x_i is P(x = x_i) = f(x_1i)
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and
k dimenions following the definitions provided in the reference:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]
</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>
</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar (type=data)*) -> scalar</signature>
<signature>(symbol (type=random_variable)*) -> scalar</signature>
<signature>(symbol (type=continuous_random_variable)*) -> scalar</signature>
<property> </property>
</MMLdefinition>

C.2.9.2 sdev

<MMLdefinition>
<Name> sdev </Name>
<description>
This represents the standard deviation.
Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the "standard deviation" is
computed as the square root of the second moment about the mean U.
sdev(al, a2, ... an)"2 =E(X -1U)"2).
If the first argument is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the second moment
about the mean is computed as
Sum((x_i - U)"2 % f(x_1i) , x_i in S)
as
where the probability that x = x_i is P(x = x_i) = f(x_1i)
The arguments are either all data, all discrete random variables,
or all continuous random variables.

319

The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]
</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>
</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar (type=data)*) -> scalar</signature>
<signature>(symbol (type=discrete_random_variable)*) -> scalar</signature>
<signature>(symbol (type=continuous_random_variable)*) -> scalar</signature>
<property> </property>
</MMLdefinition>

C.2.9.3 variance

<MMLdefinition>
<Name> variance </Name>
<description>
This computes the second centered moment, also known as the variance.
Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the "variance" is
computed as the second moment about the mean U.
variance(al, a2, ... an) =E(X -U)"2).
If the first argument is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the second moment
about the mean is computed as in section [7.7] (see reference below.)
Sum((x_i - U)"2 % f(x_1i) , x_i in S)
as
where the probability that x = x_i is P(x = x_i) = f(x_1i)
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]
</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>
</MMLattribute>

320

<functorclass>Nary , Operator </functorclass>

<signature>(scalar*) -> scalar</signature>

<signature>(scalar (type=data)*) -> scalar</signature>

<signature>(symbol (type=discrete_random_variable)*) -> scalar</signature>

<signature>(symbol (type=continuous_random_variable)*) -> scalar</signature>
</MMLdefinition>

C.2.94 median

<MMLdefinition>
<Name> median </Name>
<description>
This represents the median of n data values.
If n =2k + 1 then the mode is x_k.
If n 2k then the median is (x_k + x_(k+1)/2).
(Note this discription assumes that the data has been
sorted into ascending order.)
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.7]
</Reference>
</description>
<functorclass>Nary , Operator</functorclass>
<signature>(scalar*) -> scalar</signature>
</MMLdefinition>

C.2.9.5 mode

<MMLdefinition>
<Name> mode </Name>
<description>
This represents the mode of n data values.
The mode is the data value that occurs with the
greatest frequency.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.7]
</Reference>
</description>
<functorclass>Nary , Operator</functorclass>
<signature>(scalar*) -> scalar</signature>
</MMLdefinition>

C.2.9.6 moment

<MMLdefinition>
<Name> moment </Name>
<description>
This computes the ith moment of a set of data, or a random variable..
Given k scalar arguments of unspecified type, they are treated
as equiprobable values of a random variable. and the "moments" are

321

computed as the second moment about the mean U.
moment (degree=i, scalarx)= E(X71i).
If the first data argument x1 is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the ith moment
about the mean is computed as
Sum((x)"i * £f(x) , x in S)
where the probability that x = x_i is P(x = x_i) = f(x_1)
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2]
</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>
</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(degree,scalarx) -> scalar</signature>
<signature>(degree,scalar(type=data)*) -> scalar</signature>
<signature>(degree,symbol (type=discrete_random_variable)*) -> scalar</signature>
<signature>(degree, symbol(type=continuous_random_variable)*) -> scalar</signature>
</MMLdefinition>

C.2.10 Lineary Algebra
C.2.10.1 vector

<MMLdefinition>
<Name> vector </Name>
<description>
A vector is an ordered n-tuple of values
representing an element of an n-dimensional
vector space. The "values" are all from the
same ring, typically real or complex. They may
be numbers, symbols, or general algebraic expressions.
The type attribute can be used to specify the type of
vector that is represented.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4]
</Reference>
</description>
<MMLattribute>
<name> type </name>
<value> real | complex | symbolic | anything </value>
<default> real </default>

322

</MMLattribute>

<MMLattribute>
<name> other </name>
<value> row | column </value>
<default> row </default>

</MMLattribute>
<functorclass> constructor , N-ary </functorclass>
<signature>
((cnlcilapply)*) -> vector(type=real)
</signature>
<signature>
[type=vectortype] ((cnl|cilapply)*) -> vector(type=vectortype)
</signature>
<!-- Note that there is a notational need for expressing a sequence
vl, v2, ... vn with an in-explicit value of n . Also, in the
following property, it should be clarified that b,vl, and v2 are all
elements of the same ring. -->
<property> <!-- scalar multiplication-->
<apply><forall/>

<bvar><ci>b</ci></bvar>
<bvar><ci>vi1</ci></bvar>
<bvar><ci>v2</ci></bvar>
<reln>
<apply><times/>
<ci>cid>b</ci>
<vector><ci>ci>vi</ci><ci>ci>v2</ci></vector>
</apply>
<vector>
<apply><ci>b</ci><ci>v1</ci></apply>
<apply><ci>b</ci><ci>v2</ci></apply>
</vector>
</reln>
</apply>
</property>
<property> vector addition </property>
<property> distributive over scalars</property>
<property> associativity.</property>
<property> Matrix * column vector </property>
<property> row vector * Matrix </property>
</property>
</MMLdefinition>

C.2.10.2 matrix

<MMLdefinition>
<Name> matrix </Name>
<description>
This is the constructor for a matrix. The matrix is
constructed from matrix rows. The type and properties

323

spell out the normal interaction with vectors and
scalars.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.1]
</Reference>
</description>
<MMLattribute>
<name>type</name>
<value>real | complex | integer | symbolic | anything </value>
<default> real </default>
</MMLattribute>
<functorclass>constructor , N-ary </functorclass>
<signature>(matrixrow*) -> matrix</signature>
<signature>
[type=matrixtype] (matrixrow*) ->
matrix (type=matrixtype)</signature>
<property>scalar multiplication </property>
<property>Matrix*column vector</property>
<property>Addition</property>
<property>Matrix*Matrix</property>

</MMLdefinition>

C.2.10.3 matrixrow

<MMLdefinition>

<Name> matrixrow </Name>

<description>
This is a constructor for describing the rows of a matrix.
This only occurs inside a matrix. Its "type" is determined
from the containing matrix element.

</description>

<functorclass>constructor , N-ary</functorclass>

<signature>(cnlcilapply)->matrixrow </signature>

</MMLdefinition>

C.2.104 determinant

<MMLdefinition>

<Name>determinant</Name>

<description>The "determinant" of a matrix.
<Reference> CRC Standard Mathematical Tables and Formulae,

editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.4]

</Reference>

</description>

<functorclass>Unary, operator</functorclass>

<signature>(matrix)-> scalar </signature>

</MMLdefinition>

324

C.2.10.5 transpose

<MMLdefinition>
<Name> transpose </Name>
<description>The transpose of a matrix or vector.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4] and [2.5.1]
</Reference>
</description>
<functorclass>Unary, Operator</functorclass>
<signature>(vector)->vector (other=row)</signature>
<signature>[other=column] (vector)->vector (other=row)</signature>
<signature>[other=row] (vector)->vector (other=column)</signature>
<signature>(matrix)->matrix</signature>
<property>transpose(transpose(A))= A</property>
<property>transpose(transpose(V))= V</property>
</MMLdefinition>

C.2.10.6 selector

<MMLdefinition>
<Name> selector </Name>
<description>
The operator used to extract sub-objects from vectors, matrices
matrix rows and lists.
Elements are accessed by providing one index element for each
dimension. For Matrices, sub-matrices are selected by providing
one fewer index items. For a matrix A and a column vector V
select(i,j , A) is the 1i,j th element of A.
select(i , A) is the matrixrow formed from the ith row of A.
select(i , V) is the ith element of V.
select(V) is the sequence of all elements of V.
select(A) is the sequence of all elements of A, extracted row
by row.
select(i,L) is the ith element of a list.
select(L) is the sequence of elements of a list.
</description>
<functorclass>N-ary, operator)</functorclass>
<signature>(scalar,scalar,matrix)->scalar</signature>
<signature>(scalar,matrix)->matrixrow</signature>
<signature>(matrix)->scalar* </property>
<signature>(scalar, (vector|list|matrixrow))->scalar</signature>
<signature>(vector|list|matrixrow)->scalar*</signature>
<property>
Forall(
bvar (A(type=matrix)),bvar (V(type=vector)),
select(A) = select(V)
)
</property>
<property>For all vectors V, V = vector(select(V))</property>

325

</MMLdefinition>

326

Appendix D

Operator Dictionary (Non-Normative)

The following table gives the suggested dictionary of rendering properties for operators, fences, separators, and acce
in MathML, all of which are represented g elements. For brevity, all such elements will be called simply ‘operators’
in this Appendix.

D.1 Format of operator dictionary entries

The operators are divided into groups, which are separated by blank lines in the listing below. The grouping, and th
order of the groups, is significant for the proper grouping of sub-expressions usfiag> (Section3.3.1); the rule
described there is especially relevant to the automatic generation of MathML by conversion from other formats fo
displayed mathematics, such gXTwhich do not always specify how sub-expressions nest.

The format of the table entries is: tk@o> element content between double quotes (start and end tags not shown),
followed by the attribute list in XML format, starting with tiferm attribute, followed by the default rendering attributes
which should be used fato elements with the given content afierm attribute.

Any attribute not listed for some entry has its default value, which is given in parentheses in the table of attributes ir
Section3.2.4

Note that the characters & and < are represented in the following table entries by the entity refesapcend< ;
respectively, as would be necessary if they appeared in the content of anmacalaiment (or any other MathML or
XML element).

For example, the first entry,

"(" form="prefix" fence="true" stretchy="true" lspace="Oem" rspace="Oem"

could be expressed as aa element by:

<mo form="prefix" fence="true" stretchy="true" lspace="Oem" rspace="Oem"> (</mo>

(note the lack of double quotes around the content, and the whitespace added around the content for readability, whi
is optional in MathML).

This entry means that, for MathML renderers which use this suggested operator dictionary, giving the element
form="prefix"> (</mo> alone, or simplykmo> (</mo> in a position for whichf orm="prefix" would be in-
ferred (see below), is equivalent to giving the element with all attributes as shown above.

327

D.2 Indexing of operator dictionary

Note that the dictionary is indexed not just by the element content, but by the element contestmattribute value,
together. Operators with more than one possible form have more than one entry. The MathML specification describe
how the renderer chooses (‘infers’) which form to use wheti ¢xm attribute is given; see Sectié2.4.7

Having made that choice, or with tHerm attribute explicitly specified in themo> element’s start tag, the MathML
renderer uses the remaining attributes from the dictionary entry for the appropriate single form of that operator, ignorin
the entries for the other possible forms.

D.3 Choice of entity names

Extended characters in MathML (and in the operator dictionary below) are represented by XML-style entity reference
using the syntatcharacter—-name; the complete list of characters and character names is given in Cléapiany
characters can be referred to by more than one name; often, memorable names composed of full words have be
provided in MathML, as well as one or more names used in other standards, such as Unicode. The characters in t
operators in this dictionary are generally listed under their full-word names when these exist. For example, the integr:
operator is named below by the one-character sequehtesgral ;, but could equally well be nameint ;. The

choice of name for a given character in MathML has no effect on its rendering.

It is intended that every entity named below appears somewhere in Clgapitéhis is not true, it is an error in this
specification. If such an error exists, the abovementioned chapter should be taken as definitive, rather than this appenc

D.4 Notes onlspace and rspace attributes

The values forlspace andrspace given here range from O teerythickmathspace, which has a default value of

6/18 em. For the invisible operators whose contedilisvisibleTimes; or ⁡, it is suggested that
MathML renderers choose spacing in a context-sensitive way (which is an exception to the static values given in th
following table). Forkmo>⁡</mo>, the total spacinglispace+rspace) in expressions such as ‘sth

(where the right operand doesn’t start with a fence) should be greater than zetao¥@InvisibleTimes; </mo>,

the total spacing should be greater than zero when both operands (or the nearest tokens on either side, if on the basel
are identifiers displayed in a non-slanted font (i.e. under the suggested rules, when both operands are multi-charac
identifiers).

Some renderers may wish to use no spacing for most operators appearing in scripts (i.ecwifpenevel is greater
than 0; see Sectioh 3.4, as is the case ingK.

D.5 Operator dictionary entries

328

L o0, =0oedsx

Lo, =0oedsT

,onIq, =Lyoqe1as

,ONIY,=00UST

WXTJ3sod, =wIoF

yooedsyjewyoTysy,=ooeds1 ,ooedsyrewyoTyl,=90edsT WXTIUT,=WIOJ w=/u
,9oedsyjeuwyo1Y3,=9oedsa ,eoedsylrewdoTys,=00edsT LXTJUT,=WIOF w=+u
yooedsyjeuyo 1Yy, =ooedsa ,eoedsyjzewoTys,=00edsT JXTJUT,=WIOF fp—
yooedsyjewyo1ys,=ooedsa ,ooedsyjewyoTys,=ooedsT JXTJUT,=WIOF w=%4

L8 ,=0o0edsx ,eoedsyjewsoTys,=ooedsT ,x1y3sod,=wIoJ WBu
Looedsyjems(doTy3,=ooedsi ,we(,=9oedsT JXTFoad, =wIoF WBa

,9oedsyjeuyo1Ys ,=0oedsa ,eoedsylrewdoTys,=0oedsT LXTJUT,=WIOF 4 STUOTODR,
,ooedsyjewyoTyy,=ooeds1 ,ooedsyrewyoTyl,=90edsST WXTJIUT,=WIOJ w//u
,0oedsyjemwo T3, =0oedsx ,ooedsyleuws(dTy3,=00edsT ,onI3,=Ayo3eI13s ,XTJUT,=WIOF , fx03e1edogQTROTIIONR,,
pooedsyjewydotysy,=ooedss ,ooedsyjewydTyl,=90edsST WXTFUT,=WIOJ . fex0FoIOYLY,
yooedsyjewyotysy,=ooeds1 ,ooedsysewyoTyl,=90edsST WXTIUT,=WIOJ . fosneoagy,
yooedsyjewyoTysy,=ooeds1 ,ooedsyrewyoTyl,=90edsT WXTJIUT,=WIOJ . Sultssyy,
,ooedsyjeuwyo1ys,=0oedsa ,eoedsyjrewdoTys,=00edsT JXTJUT,=WIOF u=ta
Lue0,=0oedsx ,we(Q,=0o0evdsST ,onI3,=10qeredss ,x1I1sod,=wIoF wéin
,ooredsyjewyo1ysy, =0oedsa ,weQ,=00edsT ,onI3,=1ojeredss WXTFUT,=WIOJ wéin
,ue(0,=0oedsx ,we(Q,=ooedsT ,0,=0ZTSUTW ,o0I3,=Lyd30I13S WXTIUT, =WIOJ 4 SOUTTTROTIIONR,
W90, =0oeds1 ,weQ,=ooedsT ,0,=9ZISUIW ,oNI3},=AYyd38I13s ,XTJUT,=WIOF 4 {OUTTTRIUOZTIONR,
yooedsyjewiotysfisan,=eoedsa ,we(Q,=9oedsT ,oni3,=1ojeredes JXTJUT,=WIOF w
,ueQ,=0o0edsa ,weQ,=o0edsT ,oni3,=xojeredss ,XTJUT,=WIOJ . BUWODSTYISTAUTIR,
,ueQ,=0oedsx ,we(Q,=00edsST ,onI3,=90uUsF ,XTF3sod,=wIoF , fU030TOYSIUSTUR,,

,ueQ,=ooedsx ,we(Q,=9oedsST ,oni3,=oousy ,xT1y0xd,=wIOJ 4 U01eToYSITOTR,

Lue(0,=0oedsx ,we(Q,=0o0edsT ,onI3,=Lys39I3s ,ONI3,=00UdJ ,XTFasod, =WIOF , $I00TI2YSTYUR,,

. Teg8uT1eoRIgeTANOqIUYS THR,

L0, =0o0edsa ,weQ,=o0edsT ,oni3,=Lyoieils ,oniq,=o0usy ,XTF3sod,=wIoF . £1930eIgeTQNOQIYSTHR,
L0, =0oedsx ,we(Q,=00edsT ,oni3,=£yoleils ,oniy,=o0usy ,XTF3sod,=wIOF . fButTTenlySTUR.,
L0, =0oedsx ,weQ,=00edsT ,oni3,=£yoleils ,oniy,=o0usy ,XTF3sod,=wIoF . f TRgSUT1e30ReIgIUS TR,
Lue(0,=ooedsx ,we(Q,=oo0edsT ,onI3,=£yd39I3s ,ONI3,=00UdJ ,XTFasod, =wIOF . SaoyoeageTSuyayITyR,,

Lue0,=0oedsx ,we(Q,=0oedsT ,onI3,=00Ud] ,XTFoI1d,=WIOF . $oronhLTangusdpy,,

,ueQ,=ooedsx ,we(Q,=ooedsST ,oni3,=odousF ,XIjoxd,=wIOF . f9zonpeTqnogitanyuadpy,,
L0, =0o0edsx ,weQ,=00edsT ,oni3,=Lyoieiys ,oniy,=e0usy ,XTyo1d,=wIOF 4 I00TA2FOTR.
L0, =0oedsx ,we(Q,=00edsT ,oni3,=£yojeiys ,oniy,=oousy ,xTjo1d,=wIoF . f TegSuTieoeIgeTqnoga FoIn.,
Lue(0,=ooedsx ,we(Q,=oo0edsT ,oni3,=Lyos3eI13s ,oNI13,=00UdF ,XTFoIid, =wI0oF . SaeyoreIge TqnOQaFoIR,
L0, =0oedsx ,we(Q,=00edsT ,oni3,=Lys39I3s ,oNnI3,=900UdJ] ,XTFoId, =WIOF W f8utTTenazen,
,ueQ,=ooevdsx ,we(Q,=9oedsT ,oni3,=LAys1e1ls ,oni3,=oousF ,XT1Joxd,=wIOF . f Teg8utiexoeagaioTy.,
,ue(0,=0oedsx ,we(Q,=0o0edsT ,oni3,=Lyso3eiis ,oniy,=oousl ,XTFo1d,=wIOT . SaeyoeigeTIuyaIoR.,

L0, =0oedsx ,we(Q,=0oedsST ,oniI3,=90usF ,XTF3sod,=wIoF . f930npATIND9S0TOR,

,eQ,=eoedsx ,we(Q,=ooedsT ,oni3,=oousl ,XxTy3isod,=wIOJ . fezonheTqnogATIn)esorny,
Lue(0,=0oedsx ,we(Q,=0o0edsT ,oni3,=Lys39I3s ,ONI3,=00UdJ ,XTF3sod, =wIOF a{n
Lue(0,=0oedsx ,we(Q,=0o0edsT ,oni3,=Lyso3eIris ,oniy,=o0uUsy ,XTFoI1d, =WIOF aFa
,ue(0,=0oedsx ,we(Q,=0o0edsT ,oni3,=Lyos03eIis ,oniy,=oouUsI ,XTI1sod, =wIOT w[n
Lue0,=0o0edsx ,we(Q,=00edsT ,oniy,=Lys03eixis ,oniy,=oousl ,XTFoxd,=wIoT w1
L0, =0oedsx ,weQ,=00edsT ,oni3,=£yoleils ,oniy,=o0usy ,XTF3sod,=wIoF e

Lo, =ooedsx

Lo, =0oedsT

,onIq, =LyoqeIas

,ONIY,=00UdT

JXTFoad, =wIoF

__v:

329

yooedsyjeuyoTys,=ooedsa
,ooedsyjeuwo1ys,=9oedsa
wooedsyqemyo Tyl ,=ededsx
wooedsylem(oTy],=ooedsx
,ooedsyjeuyo1ys, =ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuo1Ys,=9oedsa
,9oedsyjewyoTyy,=ooedsa
wooedsyiemyo Ty, =ededsx
,ooedsyjeu{doTy],=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
,ooedsyjewyo1ys,=ooedsa
wooedsyqemo Ty, =eoedsx
,9oedsyjeudoTys,=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,ooedsyjeuyoTys,=ooedsa
,ooedsyjeuwyo1Ys,=ooedsa
wooedsyqemyo Tyl ,=eoedsx
wooedsylem(oTy],=ededsx

,ooedsyjewyoTysy,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyotyy,=ooedsT
wooedsyjemyotyy,=ooedsT
,ooedsyjeuo1ys ,=ooedsT
wooedsyjemwyoTyy ,=ooedst
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyoTys,=ooedsT
wooedsyjewyotyy,=ooedsT
yooedsyjewsdotysy,=ooedsT
wooedsyjewyo Tyl ,=ooedst
,ooedsyjewyoTysy,=ooedsT
wooedsyremyo Tyl ,=eoedsT
,ooedsyjewyotyy,=ooedsT
yooedsyjewyoTysl,=ooedsT
wooedsyjewyoTyy ,=ooedsT
yooedsyjewyoTysy,=ooedsT
,ooedsyjewyoTys,=ooedsT
yooedsyjewyotyy,=ooedsT
,ooedsyjewyotyy,=ooedsT

,ooedsyjewyo1ysy,=ooeds1 ,we(,=00edsT
,ooedsylewyo1ysy,=ooedsi ,we(,=0oedsT
,ooredsyjewyotysy,=0oeds1 ,weQ,=00edsST
,ooredsyjewyo1ysy,=0oeds1 ,weQ,=00edsST
yooedsyjewyo1ys,=ooedss ,we(Q,=90edsT

pooedsyjewydotyy,=ooedss ,ooedsyjewydTyl,=90edsST
,oordsyjeuwntpau, =ooedsI ,ooedsSylRUUNTPOW,=90edsST
,9oedsyjewyoTysy,=ooeds1 ,ooedsyrewyoTyl,=90edsST
,ooedsyjeuumipau,=ooeds1 ,eoedsyjeuwnIpau, =ooedsT
,ooredsyjeuuntpau, =ooeds1 ,ooedsyreuumIpau,=9oedsT
pooedsyjewydTyy,=ooedss ,ooedsyrewydTyl,=90edsST

yooedsyjewyoTys,=ooedsa

yooedsyjewyoTysy,=ooedsi ,ooedsyrewyoTyl,=90edsT

,ooedsyjeuwyo1Ys,=9oedsa
,9oedsyjeuwyoTyy,=ooedsa
wooedsyiem(oTy],=eoedsx
,ooedsyjeuyo1ys,=ooedsa
wooedsyjemwyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa

,onIq, =Ayoieaas
,onxy,=Ayoieias

,onxgy,=Ayoieias
,ooedsyjewyoTyy ,=ooedsT
,onIq, =£Ayoyeaas
,ooedsyjewyoTys,=ooedsT
,ooedsylewyoTysy,=ooedsT
wooedsyjewyotyy,=ooedsT
,ooedsyjeuyo 1Yy, =ooedsT
wooedsyjewyoTyy ,=ooedsT
,ooedsyjewyoTys,=ooedsT

Lo, =0oedsx ,eoedsyjewuwntpsu,=ooedsT
,ue(0,=0o0edsx ,eoedsyjeuuwnrtpau,=ooedsT

,9oedsyjeudoTyy,=ooedsa
yooedsyjeuwyoTys,=ooedsa

Looedsyjewsdo1Tysy,=ooedsT
,ooredsyjewyoTyy,=ooeds|

WXTJIUT,=WI0T
WXTJUT, =WIOoF
WXTJUT, =WI0T
W XTJUT, =WI0J
WXTFUT, =WI0F
WXTJIUT,=WI0T
WXTJUT, =WIOoF
WXTJUT, =WIOoF
W XTJUT, =WI0T
WXTJUT, =WIoF
WXTJUT, =WIof
WXTJIUT,=WI0T
WXTJUT, =WIOoF
W XTJUT, =WI0T
WXTJUT, =WIoF
WXTJUT, =WwIoy
WXTJIUT,=WI0T
WXTJUT, =WIOoF
WXTJUT, =WIoT
WXTJUT, =WI0J
WXTFoxd, =uwroF
WXTFoxd, =wroF
WXTyoad, =wrog
WXTFoxd, =wxoF
WXTJouad, =wxoF
WXTJUT, =WIoF
WXTJUT, =WIoz
WXTJIUT,=WI0T
WXTJUT, =WIOoF
W XTJUT, =WI0T
WXTJUT, =WIoF
WXTJUT, =WwIoy
WXTJIUT,=WI0T
WXTJUT, =WIOoF
WXTJUT, =WI0T
W XTJUT, =WI0J
WXTJFUT, =10}
WXTJIUT,=WI0oT
WXTJIUT,=WI0T
WXTJ3sod, =wxoF
W XTJ3sod, =wIoF
WXTJUT, =WIoF
WXTJUT, =WIoz

., S Tenbgyesiadngy,,

. 19szedngy,,

.« ¢ Tenbgresqngy,
:mpmw@ﬂmé:

. { Tenbgaesaadngexenbgy,
. $aeszedngexenbgy,,

. ¢ Tenbgiesqngexenbgy,
. $1esqngerenbgn,,

. S JUOWOTHOSIDADYR,

. { TenbgieszedngioNg,
. $aesaadngionN®,,

« { TenbglesqngloNg,

. f19sSqngaIoNR®,

. ¢ Tenbgaesiadngexenbgiony,

. $1esxadngexenbgiony,,
. ¢ TenbgaesqngexenbgionNg,
. $aesqngexenbgaoNy,,

. S AUSWETHOSISADYIONS,,
W - YUSWOTHIONR

u - AUSWOTHR,,

u - SISTXHIONR,

w - TTVIO0AR,,

" mmu.m.ﬁummg:

" m POZQ%:

" _ "

_—u%:

" MUHH<NM:

__MMV%:

" M.HOQM:

:__:

, SsoTTdurpunoys,,

u ‘setTdursy,

u £2913USTYUR,
ws9913I0TR,

. feorLuUMO(R,,

« f©913USTYeTqnoQs,
u - 9913F9ToTqnoaRn,
w - FRYLYONGR,,

330

yooedsyjeuyoTys,=ooedsa
,ooedsyjeuwo1ys,=9oedsa
wooedsyqemyo Tyl ,=ededsx
wooedsylem(oTy],=ooedsx
,ooedsyjeuyo1ys,=ooedsa

,ooedsyjewyoTysy,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyotyy,=ooedsT
wooedsyjemyotyy,=ooedsT
,ooedsyjeuo1ys ,=ooedsT

,ooedsyjewyoTysy,=ooeds1 ,ooedsyreuyoTyl,=0oedsT

,9oedsyjeuyo1Ys ,=0oedsa ,eoedsylrewdoTys,=0oedsT
,ooedsyjewyoTyy,=ooeds1 ,ooedsyrewyoTyl,=90edsST
yooedsyjewyotyy,=0oedss ,ooedsyrewyoTyl,=90edsST

yooedsyjewso1ysy, =ooedsa ,ooedsyrewyoTyl,=00edsST

yooedsyjewyoTysy,=ooedsi ,ooedsyrewyoTyl,=90edsT

,9oedsyjeuyoTys,=ooedsa
yooedsylemwo Ty, =0oedsI

,9oedsyjeuwyoTyy,=ooedsa
,9oedsyjeudoTys,=ooedsa

wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
,ooedsyjeuo1Ys,=9oedsa
wooedsyqemyo Tyl ,=ededsx
wooedsyjemoTy],=eoedsx
,ooedsyjeuo1ys,=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
,9oedsyleuwyoTyy,=ooedsa
wooedsylemyo Ty, =eoedsx
,9oedsyleu{doTy],=ooedsa
wooedsyjemwyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
yooedsyjeuwyo1Ys,=9oedsa
wooedsyjemyo Tyl ,=eoedsa
,9oedsyleu{doTy],=ooedsa
wooedsyjewyo 1yl ,=ooedsa
,ooedsyjeuyoTys,=ooedsa
,ooedsyjeuo1ys,=9oedsa
,9oedsyleuyo Tyl ,=ooedsa
wooedsyjemoTy],=ooedsx
,ooedsyjeuo1ys,=ooedsa
wooedsyjemwyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
,9oedsylewyo Ty, =ooedsa
wooedsyqemyoTy],=eoedsa
,9oedsyleu{dTy],=9oedsa
wooedsyjewyo Tyl ,=ooedsa

,ooedsyjewyoTysy,=ooedsT
yooedsyjeuwyo1ys,=ooedsT

wooedsyjewyoTyy ,=ooedst
,ooedsyjewyoTysy,=ooedsT
,9oedsyjewyoTysy,=ooedsT
,ooedsyjewyotyy,=ooedsT
wooedsyjewyoTyy,=ooedsT
yooedsyjeuo1ys ,=ooedsT
wooedsyjewyo Tyl ,=ooedst
,9oedsyjewyoTysy,=ooedsT
,9oedsylewyoTysy,=ooedsT
wooedsyjemyoTyy,=ooedsT
yooedsyjewsdo Ty, =ooedsT
wooedsyjewyo Tyl ,=ooedst
,ooedsyjewyoTysy,=ooedsT
,9oedsyjewyoTys,=ooedsT
,ooedsyjewyotyy,=ooedsT
yooedsylewyoTysy,=ooedsT
wooedsyjewyoTyy ,=ooedst
,ooredsyjewyoTysy,=ooedsT
,9oedsyjewyoTysy,=ooedsT
,9oedsylewyoTysy,=ooedsT
nooedsyjewyotyy,=ooedsT
yooedsyjeuyo1ys ,=ooedsT
wooedsyjewyoTyy ,=ooedst
,ooedsyjewyoTys,=ooedsT
,9oedsylewyoTysy,=ooedsT
,ooedsyjewyotyy,=ooedsT
yooedsylewsdo Ty, =ooedsT
wooedsyjewyo Tyl ,=ooedst

,onIq, =Ayoyeias
,onxgy,=Ayoyeias

yooedsyjewyoTysy,=ooedsT
yooedsyjewyoTysl,=ooedsT

,onIq,=Ayoyeaas
,onIq, =£Aysyeaas
,onxay,=Ayoieias
,onIq, =Ayoieias
,onxgy,=£Ayoieias
,onxgy,=Ayoieias
,onIq, =Ayoyeaas
,onxa,=Ayoieias
,onIq, =Ayoieias
,onxgy,=LAyoieias
,onxgy,=Ayoieias
,onIq, =Ayoieaas
,onIq, =Ayoieias
,onxy,=Ayoieias
,onIq, =Ayoieias
,onxgy,=Ayoieias
,onIq, =Ayoyeaas
,onIq, =£Ayoyeaas
,onxay,=Ayoieias
,onIq, =Ayoqeias
,onxgy,=£Ayoieias
,onxgy,=Ayoieias
,onIq, =Ayoyeaas
,onIq, =Ayoieias
,onIq, =Ayoieias
,onIq, =Ayoieaas
,onxgy,=Ayoieias
,onIq, =Ayoieaas

WwXTJUT,=WI0T
WXTFUT, =WIO0F
W XTJUT, =WI0J
WXTJUT, =WI0J
WXTJUT, =WIoF
WwXTJUT,=WIoJ
WXTFUT, =WIO0F
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJUT, =WI0F
WXTFUT, =WI0F
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJIUT, =WIoZ
WXTFUT, =10}
WwXTJUT,=WI0T
WXTFUT, =WI0F
WXTJUT, =WI0J
WXTJUT, =WI0J
WXTJUT, =WIoF
WwXTJUT,=WI0T
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJIUT, =WIog
WXTFUT, =WI0F
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTIUT, =WIoZ
WXTFUT, =WI0F
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJUT, =WI0J
WXTJUT, =WIoF
WwXTJUT,=WI0T
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTIUT, =WIoZ
WXTFUT, =WI0F

. fIRgTesTaI9 A0 TqNOoQOR,
« { Tenbgaoqy,

, $dendnoy,

. S queni8uony,,

w=<u

w=>u

w=iu

__A:

__V:

2 Smoxayaystyxeddny,,

» $moxxyazeTxeddny,

u ¢ MOIIYIYSTYIIOUSH,

u {MOIIYIFOTIIOUSR,

o § TegI090871YSTYUR,

« $T0200\1USTUR,

u { 10300)\883USTYR,

o {MOIIYOOLIYSTYR,

4 SMOXIYQ IO TMOIIYAYSTUR,
o { TRGMOIIYAYSTYR,

o $MOIIYIUSTYUR,

4 {MoIIYAYSTYISOMOTR,

4 {MOXIYQTOTIOMOTR,

o {IRGI00B)\LFOTR,

. < I03009)\1FOTR,,

u 103098813793,

4 CMOXIYOR 13 IR,

u {20308\ 1YBTYIFO TR,

u {MOXIYIUBTYIFOIR,

u {MOIIYIYSTYMOIIYIFOTR,,
u { IRGMOIIYIFOTR,

u $MOIIYATOTR,

. £ IegI0100\1YSTYUMOQR,
. £ 109007 USTYUMOIR,

. I03108)00 13YSTHUMOQR,
u - TegI0108 3 FoTUMO(QR,,
« £ 101091 F9TUMOQR,

. fI03100\00 1 FOTUMOQR,,
u £ 203081y TY FOTUMOQR,,
u {MOIIYIYSTYOTANOQR,,

u {MOIIYIUSTYIFOTOTANOAR,
u fMOIIYIFOTOTqNOQR,,

331

yooedsyjeuyoTys,=ooedsa
,ooedsyjeuwo1ys,=9oedsa
wooedsyqemyo Tyl ,=ededsx
wooedsylem(oTy],=ooedsx
,ooedsyjeuyo1ys, =ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuo1Ys,=9oedsa
,9oedsyjewyoTyy,=ooedsa
wooedsyiemyo Ty, =ededsx
,ooedsyjeu{doTy],=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
,ooedsyjewyo1ys,=ooedsa
wooedsyqemo Ty, =eoedsx
,9oedsyjeudoTys,=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,ooedsyjeuyoTys,=ooedsa
,ooedsyjeuwyo1Ys,=ooedsa
wooedsyqemyo Tyl ,=eoedsx
wooedsylem(oTy],=ededsx
,ooedsyjeuo1ys,=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
,9oedsyjewyoTys,=ooedsa
wooedsyiemo Ty, =ededsx
,9oedsyjeudoTys,=ooedsa
wooedsyjemwyo Tyl ,=ooedsa
,ooedsyjeuwyoTys,=ooedsa
,ooedsyjewyo1Ys,=ooedsa
wooedsyqemyo Ty, =eoedsa
,9oedsyjeudoTys,=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuwyoTys,=ooedsa
,ooedsyjeuwyo1Ys,=9oedsa
,9oedsyjeuwyoTyy,=ooedsa
wooedsyiem(oTy],=eoedsx
,ooedsyjeuyo1ys,=ooedsa
wooedsyjemwyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
,ooedsyjewyoTys,=ooedsa

,9oedsyjeudoTys,=ooedsa
yooedsyjeuwyoTys,=ooedsa

,ooedsyjewyoTysy,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyotyy,=ooedsT
wooedsyjemyotyy,=ooedsT
,ooedsyjeuo1ys ,=ooedsT
wooedsyjemwyoTyy ,=ooedst
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyoTys,=ooedsT
wooedsyjewyotyy,=ooedsT
yooedsyjewsdotysy,=ooedsT
wooedsyjewyo Tyl ,=ooedst
,ooedsyjewyoTysy,=ooedsT
wooedsyremyo Tyl ,=eoedsT
,ooedsyjewyotyy,=ooedsT
yooedsyjewyoTysl,=ooedsT
wooedsyjewyoTyy ,=ooedsT
yooedsyjewyoTysy,=ooedsT
,ooedsyjewyoTys,=ooedsT
yooedsyjewyotyy,=ooedsT
,ooedsyjewyotyy,=ooedsT
,ooedsyjeuo1ys ,=ooedsT
wooedsyjewyoTyy ,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsylewyoTys,=ooedsT
wooedsyjemyotyy,=ooedsT
yooedsyjewsdotysy,=ooedsT
wooedsyjewyo Tyl ,=ooedst
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyotyy,=ooedsT
yooedsylewydTysy,=ooedsT
,ooedsyjewyoTyy ,=ooedsT
,ooedsyjewyoTysy,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsylewyoTysy,=ooedsT
wooedsyjewyotyy,=ooedsT
,ooedsyjeuyo 1Yy, =ooedsT
wooedsyjewyoTyy ,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsylewyoTysy,=ooedsT

yooedsyjewyoTysy,=ooedsa ,ooedsyrewyoTyl,=ooedsT ,oniq,=Lydisias

yooedsyjewsdo1Tysy,=ooedsT
,ooredsyjewyoTyy,=ooeds|

WwXTJUT,=WI0T
WXTFUT, =WIO0F
W XTJUT, =WI0J
WXTJUT, =WI0J
WXTJUT, =WIoF
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJIUT, =WIog
WXTJFUT, =WI0F
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJIUT, =WIoZ
WXTFUT, =10}
WwXTJUT,=WI0T
WXTFUT, =WI0F
WXTJUT, =WI0J
WXTJUT, =WI0J
WXTJUT, =WIoF
WwXTJUT,=WI0T
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJIUT, =WIog
WXTFUT, =WI0F
WwXTJUT,=WI0T
WXTFUT, =WI0F
WXTJUT, =WIOJ
WXTIUT, =WIoZ
WXTFUT, =WI0F
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJFUT, =WIOJ
WXTJUT, =WI0J
WXTJUT, =WIoF
WwXTJUT,=WI0T
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJIUT, =WIoZ
WXTFUT, =WI0F

., S TenbgsseTioN®,,
=mmm®APOZ£:

« {TenbgeT8ueTIL1I0TIONS,
o { TRgeTSURTILIFOTIONR,
o {OTSURTILIFOTIONR,

« ¢ Tenbgdungaonsg,

. ¢ dungunoqdumyaoN®

u {OPTTLISIRSIDIONR,

« { TenbgjuergIeteeInIONR,
u f SSOTIDIRDINIONR,,

. S I93BOINIDIRDINIONY,,

. S TenbdTTnJIo1ReIHI0NT,
. ¢ TenbgaejesinioNy,

. I93e0IHIONR,,

« $OPTTLTRNbIIONS,

« { TenbaloNg,

u § TRgTROTAIS\STANOJIONT,,
a {depdnpionz,,

. S 1uena8uonioN®,,

. { SsoIssoTpolsaNg,

. f I91RBINIDIRDINPOISONYG,,
u $ODPTTISSOTR,

« ¢ TenbgauerssseTy,

. SSsoTsseTR,

. S I9QeeInsseIy,

o { TenbgTInissoTR,

. SI9qeeInTenbygssey,

" m mHV%:

« { TenbgeT8ueTIL1FoTR,

o TegeTSuRTILIFO TR,
u{OTSURTILIFOIR,

. S Tenbgdunyy,

, S dungumoqdunyz,,

u $OPTTILI®3®8IDY,,

. { TenbyjuergIsieeIny,,

. {SseTIsqesany,

. S I9jeaInIsleaIny,

S TenbaTIniIo3ROINY,,

. fSseTTenbgisgesany,,

. ¢ Tenbgasqesiny,,
JfuntaqrrInbyy,

. fOpTTLTRNbHR,

« { Tenbazy,

332

wooedsyjeuyo Ty,

yooedsyjeuyoTys,=ooedsa
,ooedsyjeuwyo1ys,=ooedsa
wooedsyqemyo Tyl ,=ededsx
wooedsylem(oTy],=ooedsx
,ooedsyjeuyo1ys, =ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuo1Ys,=9oedsa
,9oedsyjewyoTyy,=ooedsa
wooedsyiemyo Ty, =ededsx
,ooedsyjeu{doTy],=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
,ooedsyjewyo1ys,=ooedsa
=ooedsz ,ooedsyrewyoTyl,
,9oedsyjeudoTys,=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,ooedsyjeuyoTys,=ooedsa
,ooedsyjeuwyo1Ys,=ooedsa
wooedsyqemyo Tyl ,=eoedsx
wooedsylem(oTy],=ededsx
,ooedsyjeuo1ys,=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
,9oedsyjewyoTys,=ooedsa
wooedsyiemo Ty, =ededsx
,9oedsyjeudoTys,=ooedsa
wooedsyjemwyo Tyl ,=ooedsa
,ooedsyjeuyoTys ,=ooedsa
,ooedsyjewyo1Ys,=ooedsa
wooedsyqemyo Ty, =eoedsa
,9oedsyjeudoTys,=ooedsa
wooedsyjewyo Tyl ,=ooedsa
,9oedsyjeuwyoTys,=ooedsa
,ooedsyjeuwyo1Ys,=9oedsa
,9oedsyjeuwyoTyy,=ooedsa
wooedsyiem(oTy],=eoedsx
,ooedsyjeuyo1ys,=ooedsa
wooedsyjemwyo Tyl ,=ooedsa
,9oedsyjeuyoTys,=ooedsa
,ooedsyjewyoTys,=ooedsa
wooedsyqemo Tyl ,=eoedsx
,9oedsyjeudoTys,=ooedsa
wooedsyjewyo Tyl ,=ooedsa

,ooedsyjewyoTysy,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyotyy,=ooedsT
wooedsyjemyotyy,=ooedsT
,ooedsyjeuo1ys ,=ooedsT
wooedsyjewyoTyy ,=ooedst
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyoTys,=ooedsT
wooedsyjewyotyy,=ooedsT
yooedsyjewsdotysy,=ooedsT
wooedsyjewyo Tyl ,=ooedst
,ooedsyjewyoTysy,=ooedsT
wooedsyremyo Tyl ,=eoedsT
=ooedsT ,onxa,=£Lyoieils
yooedsyjewyoTysl,=ooedsT
wooedsyjewyoTyy ,=ooedsT
yooedsyjewyoTysy,=ooedsT
,ooedsyjewyoTys,=ooedsT
yooedsyjewyotyy,=ooedsT
,ooedsyjewyotyy,=ooedsT
,ooedsyjeuo1ys ,=ooedsT
wooedsyjewyoTyy ,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsylewyoTys,=ooedsT
wooedsyjemyotyy,=ooedsT
yooedsyjewsdotysy,=ooedsT
wooedsyjewyo Tyl ,=ooedst
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsyjewyotyy,=ooedsT
yooedsylewydTysy,=ooedsT
,ooedsyjewyoTyy ,=ooedsT
,ooedsyjewyoTysy,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsylewyoTysy,=ooedsT
wooedsyjewyotyy,=ooedsT
,ooedsyjeuyo 1Yy, =ooedsT
wooedsyjewyoTyy ,=ooedsT
,ooedsyjewyoTys,=ooedsT
,ooedsylewyoTysy,=ooedsT
,ooedsyjewyoTyy,=ooedsT
yooedsyjewsdo1Tysy,=ooedsT
wooedsyjewyoTyy ,=ooedsT

WwXTJUT,=WI0T
WXTFUT, =WIO0F
W XTJUT, =WIOJ
WXTJUT, =WI0J
WXTJUT, =WIoF
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJIUT, =WIog
WXTJFUT, =WI0F
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJIUT, =WIoZ
WXTFUT, =10}
WwXTJUT,=WI0T
WXTFUT, =WI0F
WXTJUT, =WI0J
WXTJUT, =WI0J
WXTJUT, =WIoF
WwXTJUT,=WI0T
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJIUT, =WIog
WXTFUT, =WI0F
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WIOJ
WXTIUT, =WIoZ
WXTFUT, =WI0F
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJUT, =WI0J
WXTJUT, =WIoF
WwXTJUT,=WI0T
WwXTJUT,=WI0T
WXTFUT, =WIO0F
WXTJUT, =WI0J
WXTJIUT, =WIoZ
WXTFUT, =WI0F

. s IegTedoT3IoNg,,

« fe91dnz,

W OPTTLOPTTLR

o {TenbITTnIePTTLR,

u {TenbgepTTLR,
w-OPTTLR,

u -OPTTLSPe®2oNgR,

. TenbyaueTgspesoongy,
. ¢ Tenbgspesoongy,,

. Speeoongy,

u { TenbgeT8uRTILIYSTYR,,
u ¢ TegoTSURTILIYSTHR,

o {OTSURTILIYBTYR,
,funtiqriTinbgesisnsyy,
. S Teuotqzodoxdn,,

, fuotqaodoxdn,,

u -OPTTLSOpPad21dR,

. S TenbgjueTgsepeseidy,
. { Tenbysepeoexdy,

. Sopeoaxdyn,

- TegTedT3IONIONR,

W OPTTLOPTTLIONR,

o {TenbI TTnIePTTLIONR,
u {TenbgepTIIIONS.,

W *OPTTILIONS,

w +@PTTLSPo82ONGIONR,,

« ¢ Tenbgiue1gspeedongIoNg,,

. S TenbgspesoongioN®,
. {SPe90ONgI0oNT,,

« { TenbgeT8ueTIL1USTYIONS,

. TegeT8uRTIIAYSTYIONS.,
u $OTSURTILAUSTYIONR,
u {®PTTLSOPe08IdIoNT,,

« ¢ Tenbg1ueTSSope0aIdIoNs,

. S TenbgsepeosexdioNy,
- SOPODSIJIONY,,
u - SSOTSSOTPOISONIONR,

. { I91R8INID1RSINPOLISONIONTR,

- OPTTLSSOTIOND,

. ¢ TenbgaueTgsseTIONS,,
. {SSoTTSSoTI0NY,

. S I931B0INHSSOTIOND .,

u { TenbATTNASSOTIONR,,

333

,ooedsyjewutyy ,=ooedsi ,we(,=90edsST

yooedsyjewutysy ,=ooedsi ,wo(,=90edsT
yooedsyjewutrysy ,=ooedsI ,we(,=90edsT
yooedsyjewutysy,=ooedsi ,we(Q,=9oedsT

y9oedsyjewutyy ,=ooedsi ,wo(,=90edsST

y9oedsyjewutys,=ooedsx ,wo(,=90edsT

,ooredsyjewurys,=ooedsI
,ooredsyjewurys,=ooedsI
«oordsyaewuryl,=soeds
«oordsyiewuryl,=soedsi
,ooedsyjewutys, =ooedsi

,ooredsyjeuwurys, =ooedsT
yooedsyjewutys,=ooedsT
(oordsysemuryl,=soedsT
(oordsysewuryl,=soedsT
,ooedsyjewutys, =ooedsT

,we(0, =ooedsx ,weQ,=0o0edsST
,ooedsyjewutys,=ooedsi ,ooedsyjrewuryl,=o0edsT

,ONIY,=S)TWI TS TqRAOW

yonxy,=dosl8xeT

,ooedsyjewurys,=ooedsi ,ooedsyjrewutryl,=9oedsT
,ooedsyjewurys,=ooedsi ,ooedsyjewutyl,=9oedsT

,onIq, =Ayo3eaas
,onIq, =Aysyexas
,onxy,=Ayosiaaas

,ONIY,=S1TUIToTqRAOW
,ONIY ,=S1TWIToTqRAOW
, o013, =S1TUT o TqRAOW
,ONIY,=S1TUT O TqQRAOW

,ONIY,=AU03013s ,ONI3,=S3TUTTOTqeAOU

,onxa, =dos31er
,on1q, =dos3et
yonxy,=dosl8xeT
yonxy, =dos81eT
yonxy, =dos81eT

,oordsyjewurys,=ooedsi ,ooedsyjewutryl,=ooeds|
,ooredsyjewurys,=ooedsi ,ooedsyjewuryl,=9oedsT
,ooedsyjewutys,=ooedsi ,eoedsyjzewuryl,=90edsT

Lo, =ooedsx
Le0, =0oedsx
,eQ, =0oedsx
L8, =ooedsx
Lo, =ooedsx

Lo, =0oedsT
We0, =ooedsT
W80, =0o0edsT
W80, =ooedsT
Lo, =0oedsT

,onIq, =Aysiaxas
,onig,=Lyoieias
,oniy,=Ayoieias
,onIq, =£Aysyexas
Lonig,=Ayosieias

,onxq, =dos3ret
yonxy, =dos81eT
yonxy, =dos8xeT
,on1q, =dos3er
,on1q, =dos3rer

,ooedsyjewurys,=ooeds1 ,ooedsyjrewutryl,=9o0edsT
,ooredsyjewurys,=ooedsi ,ooedsyjrewutryl,=9oedsT

,ooedsyjewurys,=ooedss ,woQ,=00edST ,oNI3
,ooedsyjewurys,=ooedsi ,we(,=ooedST ,°oNI3
,ooedsyjewurys,=ooedsi ,we(,=0oedST ,°oNI3

yooedsyjewutysy,=ooedsi ,we(Q,=9oedsT
y9oedsyjewutyy ,=ooedsi ,wo(,=90edsT
y9oedsyjewutyy,=ooedsi ,wo(,=90edsST

yooedsyjewutysy ,=ooedsI ,we(,=90edsT
yooedsyjewutrysy ,=ooedsI ,we(,=90edsT

yooedsyjewutrys ,=ooedsi ,we(,=90edsT

,ooredsyjewuntpau, =ooedsI

,ooredsyjeuumtpau, =ooedsa

,onxgy,=Ayoieias
,onIq, =Ayoiaaas
,onxgy, =Ayoieias

,ONIY , =S TWITOTqRAOW
,ONIY,=S3TUTTOTqeAOU
,ONIY,=S3TUTTOTqeAOU
,ONI%,=S3TUTToTqeAOU
,ONI%, =S} TUTToTqeAOU
,onIy,=Ayo3eI3s ,oniq,=S3}TWITOTqRAOW
yooredsyjeuuntpou, =ooedsT

«=S3TWITeTqRAOW
«=S3TWITSTqRAOW
2=S3TUTTSTqRAOW
yonxy,=dosl8xeT
yonxy, =dos81eT
yonxy, =dosl81eT
,onxq, =dos8aer
,on1q, =dos3er
yonxy,=dos8xeT
,onIq, =Ayoqeias

,ooredsyjeuuntpau, =0oedsi ,ooedsyreuuwmtpauw,=9oedsT
,ooedsyjeuumIpsu,=0oeds1 ,ooedsyjeuwntpou,=ooedsT
,oordsyjeuwntpau, =ooedsI ,90edsSUlRUUNTPOW,=90edsST
,ooredsyjeuwuwntpsu, =ooedsI ,o0oedsSyleUUNTPoW,=90edsT

,ooredsyjeuwuntpau, =ooedsx
yooredsyjeuumrtpau, =ooedsT

,ooredsyjeuwntpau, =0oedsi ,ooedsyjeuumtpau,=9oedsT
,oordsyjeuwntpau, =ooedsI ,ooedsylRUUNTPOW,=90edsST

,onIq, =Ayoyeaas

yooredsyjeuuwntpau, =ooedsT

,onIq, =Ayoieaas
,onxgy,=Ayoieias
,onIq, =Ayoieaas

WXTIUT,=WIOJ
WXTJUT, =WIoF
WXTFUT, =WIOT
WXTFUT, =WIOT
:NHHQH:HEHOH
WXTIUT,=WIOJ
WXTJUT, =WIoJ

WXTIoad, =wIoF
WXTFUT, =WIOT
WXTJUT, =WIoJ

WXTFoad, =wioF

WXTFoad, =wIoF

WXTFoad, =wIoF

WXTyoad, =wIoF

WXTFoad, =wIoF
WXTJUT, =WIoJ
WXTIUT,=WIOJ
WXTJUT, =WIoF

WXTIoad, =wIoF

WXTFoad, =wIoF

WXTJ01d, =wIO¥

JXTFoad, =wIoF

WXTFoad, =wIoF
WXTJUT, =WIoF
WXTFUT, =WIOT

WXTFoad, =wIoF

JXTFoad, =wxoF

WXTFoad, =wIoF

WXTFoad, =wIoF

WXTFoad, =wIoF

WXTFoad, =wIoF

JXTFoad, =wioF

JXTFoad, =wIoF

WXTFoad, =wIoF
WXTFUT, =WIOT
WXTFUT, =WIOT
:NHHQH:HEHOH
WXTFUT,=WIOJ
WXTJIUT,=WIOJ
WXTJUT, =WIoF
WXTFUT, =WIOT
WXTJUT, =WIoJ
WXTJUT, =WIoJ

. - puoweI(d3®,

u ‘o3pang,

" Mow\/w%:

- SOWTLOTOITDR,

u f30QI93UL)y,

- SPWTIOTISTAUIR,

__*:

w - 30IOTOITIDR,

11} mnHmu-mw%:

. $qonpoadony,,

. cUOT3DO8SI9QUIR,,

- 3OMPOoIdR,,

., $2onpoadony,

- SOWTLOTOITDR,

« ‘©3pemy,

W OPTTLTIROTIIOAR,
«dedR,

@ $dnDR,

u fTRI8OUIR,
:MHMHMQPQHHSOPQOOOHDﬂOQQ:
:mHﬁH@@PﬁHHSOPQOOOWHBMUOHOHwPﬁﬁOOQ:
:MHOHMQPGHHSOPQOOQ:
:mHdhwwPﬁHHSOPﬁOO@WHBMUOHOQ:
w s SNTIOTOITIDR,

- SNUTHOTOITDR,,

:HH._HE..

_.um.ms:

:EHH:

- SnTJuotuny®,

n WHHAU.HH.HH.HQM:

n msﬂ.mw%:

u i STNT9TOITDR,,

i STUTROTOITDR,,

" m®®>£:
:MQOHPUQWHOPﬁHQHMﬂUWQ:
u - SNUTHSNTJR.,

- SDTISTUTHR,,

i {UOT3D9SI93UIR,,

__+:

u - SNTJuUoTun®,
n m HHO.HHHDQ%:
. fuotupexenbgn,

334

,ooedsyjewuryafion, =ooedsx
yooedsyjeuutyzfisa,=ooedsa
,ooredsyjewuryrfion, =ooedsx
yooedsyjeuutyafisa ,=ooedsa
yooedsyjeuutyifisa,=ooedsa
,ooredsyjewuryafion, =ooedsx
yooedsyjeuutyifisa,=ooedsa
,ooredsyjewuryrfion, =ooedsx
yooedsyjeuutyafisa ,=soedsa
yooedsyjeuutyafisa,=ooedsa
,ooredsyjewuryafion, =ooedsa
,ooredsyjewuryafion, =ooedsx
yooedsyjewutyzfisa,=ooedsa
yooredsyjewuryrfion, =ooedsx
yooedsyjeuutyafisa,=ooedsa
,ooredsyjewuryafion, =ooedsa
,ooedsyjewuryafion, =ooedsa
yooedsyjewutyzfisa,=ooedsa
,ooredsyjewuryrfion, =ooedsx
yooedsyjeuutyafisa,=ooedsa
yooedsyjeuutyafisa,=ooedsa
,ooedsyjewuryafion, =ooedsa
,ooredsyjewuryafion, =ooedsx
,ooredsyjewuryrfion, =ooedsx
yooedsyjewuryrfion, =ooedsx
yooedsyjeuutyafisa,=ooedsa

,ooredsyjewuryafion, =ooedsT
,ooredsyrewuryarfion, =ooedsT
,ooredsyrewuryarfion, =ooedsT
yooedsyjeuutyafisn ,=ooedsT
,ooedsyreuutyafisn ,=ooedsT
,ooredsyjewuryafion, =ooedsT
,ooredsyjewuryarfion, =ooedsT
,ooredsyrewuryarfion, =ooedsT
yooredsyrewuryafion, =ooedsT
,ooedsyjeuutyafisa ,=ooedsT
,ooredsyjewuryafion, =ooedsT
,ooredsyjewuryarfion, =ooedsT
yooedsyjeuwutyzfisa,=ooedsT
yooredsyrewuryrfion, =ooedsT
yooedsyjeuutyafisa ,=ooedsT
,ooredsyjewuryafion, =ooedsT
,ooredsyjewuryafion, =ooedsT
,ooredsyjewuryarfion, =ooedsT
yooredsyrewuryarfion, =ooedsT
yooedsyjeuutyafisn ,=ooedsT
yooedsyjeuutyafisa ,=ooedsT
,ooredsyjewuryafion, =ooedsT
,ooredsyjewuryrfion, =ooedsT
,ooedsyrewuryafion, =ooedsT
yooredsyrewuryrfion, =ooedsT
yooedsyjeuutyafisn ,=ooedsT

y,ooedsyjeuutryafion,=eoedsx ,we(Q,=0oedsT

,onIq, =£Ayoyeaas
,onxgy,=Ayoyeias
,onIq, =Ayoieias
,onxgy,=£Ayoieias
,onxay,=Ayoieias
,onIq, =£Ayoyexas
,onxay,=Ayoieias
,onIq, =Ayoieias
,onxgy,=£Ayoieias
,onxgy,=Ayoieias
,onIq, =Ayoyeaas
,onIq, =Ayoyeias
,onxgy,=Ayoyeias
,onIq, =Ayoieaas
,onxgy,=Ayoieias
,onIq,=Ayoyeaas
,onIq, =£Aysyeaas
,onxay,=Ayoieias
,onIq, =Ayoieias
,onxgy,=£Ayoieias
,onxgy,=Ayoieias
,onIq, =Ayoyeaas
,onxa,=Ayoieias
,onIq, =Ayoieias
,onxgy,=LAyoieias
,onxgy,=Ayoieias
,onIq, =Ayoieaas

,ooedsyjeuutryafioa, =ooedsa
yooedsyjewutyifion,=ooedsa
y,ooredsyreuwutryrfaoa, =ooedsx
,ooedsyreuwutyifion,=ooedsa

Lo, =0oedsT
,ue0,=0oedsT
Lo, =0oedsT
Lo, =0oedsT

y,ooedsyjeuutryafies,=eoedsx ,wo(Q,=0oedsT

,ooedsyjewuryafion, =ooedsx
yooedsyjeuutyzfisa,=ooedsa
yooedsyjewuryrfion, =ooedsx
yooedsyjeuutyafisa ,=ooedsa

,ooedsyjewuryafion, =ooedsT
,ooedsyjewuryrfion, =ooedsT
yooredsyrewuryarfion, =ooedsT
yooedsyjeuutyafisn ,=ooedsT
.80 ,=eoedsx ,we(,=9oedsT

yooedsyjewutryzfionfion, =eoedsx ,wo(Q,=0oedsT
yooedsyjewutryrfronfion, =eoedsx ,wo(Q,=0oedsT
yooedsyjewutryrfronfion, =eoedsx ,wo(Q,=0oedsT
yooedsyrewutryifionfion, =ooedsx ,we(,=0oedsT

,ooredsyjewurys,=ooedsi ,ooedsyjewutyl,=9oedsT
,oordsyjewurys,=ooedsi ,ooedsyjewutyl,=ooeds|

,onxgy,=Ayoieias
,onIq, =Ayoieaas

WXTIUT,=WIOT
WXTJUT, =WIoF
WXTJUT, =WIOT
WXTJUT, =WIoF
WXTJUT, =WIoy
WXTIUT,=WIOT
WXTJUT, =WIoJ
WXTJUT, =WI0F
WXTJUT, =WI0T
WXTJUT, =WI0J
WXTJUT, =WIoJ
WXTIUT,=WIOT
WXTJUT, =WIoF
WXTJUT, =WI0T
WXTJUT, =WI0J
WXTJUT, =WIoJ
WXTIUT,=WIOT
WXTJUT, =WIoF
WXTJUT, =WIOT
WXTJUT, =WIoF
WXTJUT, =WIoz
WXTIUT,=WIOT
WXTIUT,=WIOT
WXTJUT, =WIoF
WXTJUT, =WI0T
WXTJUT, =WI0J
WXTFoad, =wioF
WXTFoad, =wIoF
WXTFoad, =wIoF
WXTFoad, =wIoF
WXTFoad, =wIoF
JXTFoad, =wioF
WXTIUT,=WIOT
WXTJUT, =WIoJ
W XTJUT, =WIOT
WXTJUT, =WI0F
WXTJUT, =WIoy
JXTFoad, =wIoF
WXTFoad, =wIoF
WXTIoad, =wIoF
WXTFoad, =wIoF
WXTJUT, =WI0J
WXTJUT, =WIOoJ

. Sx0900p001dnauSTYR.,

., $x0100 punoqdnaySTHR,,

. {IegI0308\UMOIIYSTYY,

u £ I0309\UMOQIYSTHR,,

u £ 10308 \08 L UMOQIYSTHR,,
yfuntaqrTtnbgdnesisasyy,
» Smoxayay3tysuoTy,

. Smoxxyay3Tyaro18uoTy,,

4 fMoxIyazeoIduoTy,

. S xegzoqoepdniyen,

u £ 103007dN1F0TR,

. $x0700p001dnNa1TOTR,,

. SxogoepumoqdnazeIn,

. S IegI0100\UMOIYTOTY,

u + I01D9\UMOQLFO TR,

. < X000)\90 I UMOILFOTR.,

4 fMOIIyee UMOQR,

» Smoxaydpmoxayumoqy,,

S TegMOIIYUMOQR,

. fMoxayumoQn,,

. fmoxxyumoqdneTqnoQy,,

. fmoxxydpeTqnoQy,

4 SmoxayaystysuoTeoTqnoQgy,,
W SMoxIyaySTYaFo8uocTeTqnOoQ®,,
,» $moxxyqze18uoTeTqnOQy,,
» SMOIIYUMO@OTANOQR,
uf33bgn,
w-QTeTAUSIDIITAR,
«‘aretaueIeyyrgreltdensy,
w +qTeT3Ied:,

n mnﬁwow%:

., Soxenbgy,

u -OTOITDTTRWSR,,
w-3009TOITDR,

__**:

. fSsoxd®n,

" : "

- SNUTKSNTIR,,

u - SDTJSNUTRHA,,

__+:

:\:
u -UseTsyoeds,

335

,weQ,=ooedsx ,weQ,=ooedsT ,ona3,=Ayo3er3s ,onij,=3usdoe ,xTy3sod,=WIOF . f90RIgIDAQR,,
JweQ,=ooedsx ,weQ,=ooedsT ,oni3,=Ayoierls ,onij,=3usdoe ,XTF3sod,=WIOF . S IRgIDAQR,
L weQ,=ooedsx ,we(,=eoedsT ,eniq,=Lyoierls ,eniy,=1usdoe ,XTF3sod,=WIOT »S1RHB.,
,we(,=oo0edsx ,we(,=0oedsT ,onial,=LAyoierls ,oniy,=3usdoe ,XTF3sod,=WIOF . Se0oRHY,

.80, =eoedsx ,we(,=00edST ,8NI3,=1U8d0® ,XTJ1sod,=WIOF . feALIguUMO(R,,

JweQ,=ooedsx ,we(,=ooedsT ,oNI3,=3uUsd0® ,XTF3sod,=WIOF . f30@eTqnods.,
,weQ,=ooedsa ,weQ,=ooedsT ,oni3,=AyoieIls ,onIj},=3usdoe ,XTy3sod,=WIOF W SOPTTITROTITIORTI(R,,

,Ie0,=0oeds1 ,weQ,=00edsT ,oni3,=Lyoierls ,oni3,=1usedoe ,XTI31sod,=WIOT
Lo, =ooeds1 ,weQ,=00edsT ,oni3,=Lyoierls ,oni3,=1usedoe ,XTI1s0d,=WIOT

,e0,=0oeds1 ,weQ,=0o0edsST ,onI3,=qusdoe ,XT1F3sod,=wIioJ
,Ie0,=0oeds1 ,weQ,=ooedsT ,oni3,=Lyo3eI3s ,oNI3,=3uUso0e ,XTFasod,=WI0J
,Ie0,=0oeds1 ,we(Q,=0oedsT ,onx3,=Lyo1eI3s ,onI3,=1usooe ,XTJ3s0d,=WIOJ
Lo ,=0oedsx ,we(Q,=oo0evdsST ,oni3,=Aydo3eI3s ,onI3,=3uU800® ,XTJ3sod,=wIoF
,e0,=ooeds1 ,weQ,=00edsT ,oni3,=£yoierls ,oni3,=1usdoe ,XTI31sod,=WIOT

u$I0109A1YSTYTROTATIORTQR,,

u {MOIIYIYSTYTROTITIORIQR,,

4 $9INOYTedTITIORTIOR,

< I0309\1FOTTEOTITIORIQR,

u £ I0309A1YSTYIFOTTROTITIORT(R,,
u {MOIIYIYSTYIFOTTROTATIORT(R,
uw +MOIIYQIOTTROTITIORIOR,

336

We0, =0oedsx

Lue(0, =ooedsT

4 ONIY , =3US00®.

WXTIasod,=wIoF

u $9INOYeTqNOQTeOTITIORT(AR,,

JIe0,=0oeds1 ,we(Q,=0ooedsST ,oNI3,=1usdoe ,XTFasod,=WwIoJ 4 $10(QTeOTATIORI(QR,

90, =0oeds1 ,weQ,=0oedsT ,onI3,=3usd0® ,XTF3sod,=wIoF 4 $9ARINTROTATIORIQR,

w0 ,=00eds1 ,we(,=00edsT ,onI3,=31uUsd0® ,XTF3sod,=wIOF W CBTTTIPODR,

w0 ,=00eds1 ,we(,=o0eds] ,onI3,=31uUsd0e ,XTF3sod,=wIOF . fonDIgR,

yooedsyjeuutyafisa ,=eoedsx ,eoedsyjeuwutyifisn,=ooedsT WXTJIUT,=WIOJ 0 e
yooedsyjeuutyafisa ,=eoedsa ,eoedsyrewutyifisa,=ooedsT JXTJUT,=WIOF W

,ue(0,=ooedsx ,weQ,=0o0edsT WXTFUT,=WIOJ 4 fuotgoungA1ddyz,,

y,ooredsyreuwutryafises,=eoedsx ,wo(Q,=0oedsT WXTFoad, =wIoF wt+u

JIe0,=0oeds1 ,eoedsyrewutyifisn,=ooedsT ,XTIasod,=wIoJ wt+u

yooredsyrewuryafaoa, =eoedsx ,we(Q,=0oedsT WXTFoaxd, =wIoF Jp—

W80, =0oedsx ,eoedsyjeuutyrfisa,=eoedsT ,xryasod,=wIo} fp—

yooredsyjewuryafion,=eoedsa ,ooedsyjewutrysfion,=ooedsT WXTIUT,=WIOJ WOu
yooredsyjewuryarfion, =eoedsa ,ooedsyjewutryizfisan,=ooedsT WXTJIUT,=WIOJ W

,e0,=0oedsx ,ooedsyjewutyirfisn,=eoedsT ,xT1y3sod,=wioF wiin

Je0,=0oeds1 ,ooedsyrewutyifisn,=ooedsT ,xTI3asod,=wIoJ win

W80, =0o0edsx ,ooedsyjeuutyrfisa,=eoedsT ,xryasod,=wIo} wen

yooredsyjewuryafion, =eoedsx ,eoedsyjewurysfion,=ooedsT WZXTFUT,=WIOT <>
yooredsyjewuryafion, =eoedsa ,eoedsyjewutryizfisn,=ooedsT WXTIUT,=WIOJ Hen
yooedsyjeuutyzfisn,=ooedsa ,eoedsyjewutyrfior,=ooedsT ,oni3,=£Aysieils JXTJUT,=WIOF . fmoxxyes1dnzs,,
,ooedsyjewuryrfien,=ooedsa ,eoedsyjewuryifien,=ooedsT ,onia,=£Lysieiis WXTJIUT,=WIOJ ,fumtaqrTInbgdnz,,
yooedsyjeuutyifion,=ooedsx ,ooedsyrewutyszfion,=0oedsT ,onI3,=Ayo3eI13s ,XTJUT,=WIOF . fmoxxyumoqdn?®,,
Jooedsyjeuutyafisan,=eoedsa ,eoedsyjewutryifion,=ooedsT ,oni3,=Lysieils WXTJUT,=WIOF , Smoxxyumoqmoxxydng,
,ooredsyjewuryafion,=eoedsa ,ooedsyjewutryzfion,=ooedsT ,oni3,=Lyos1eI3s WXTFUT,=WIOJ . Sxegmoxaydnz,,
,ooredsyjewuryrfion,=eoedsx ,eoedsyjewuryzfion,=ooedsT ,oni3,=£Lyos1e13s WXTJIUT,=WIOJ W Smoxaydn®,
yooedsyjewuryrfien,=eoedsa ,eoedsyrewutryirfisas,=ooedsT WXTJIUT,=WIOJ 2 Smoxaydparoysm,,
yooedsyjewuryifien,=ooedsa ,eoedsyrewutryirfisn,=ooedsT WXTJIUT,=WIOJ , $MOIIYUMOQAIOUSH,,
Jooedsyjeuutyafisan,=eoedsa ,eoedsyjewutryifion,=ooedsT ,oni3,=Lysiseils WXTFUT,=WIOJ . fxegroloepdnaySTyR,
,ooredsyjewuryafion,=eoedsa ,ooedsyjewutryzfion,=ooedsT ,oni3,=Lyos3eI3s WXTIUT,=WIOJ 4 $x0200pdn2ySTYR,,

480, =0oedsI
W90, =ooeds1
W80, =0oeds1
WIe0, =0oeds1

W80, =0oeds1
W90, =ooedsx

,eQ,=0o0edsT
Lo, =ooedsT
Lo, =0oedsT
,ue(0, =ooedsT

Loniy, =Lyosieias
,o0I3,=£ys30138
,onIq, =£ysqeIas
,onIa, =£yoiaxas

Lo, =ooeds1 ,we(,=00edST

Lwe0, =ooedsT
Lo, =ooedsT

Lonig , =Lyoieias
,o0I3,=£ys3e13s

4 ONIY,=3US8DO.
,ONIY ,=1U8d0®.
,ONIY ,=]1U8Dd0®
,ONIY,=1US8DO.
,ONIY,=3US8DO.
4 ONIY, =3U8D0.
4 ONIY, =3US8D0.

:NH%PWOQ:HEMOH
WXTIasod, =wIoF
WXTJ3sod, =wIoF
WXTIasod, =wIoF
WXTIasod,=wIoF
:NH%PmOQ:HEHOH
WXTIasod, =wioF

. - STS8YjUSIRJISPUNY,
u - 3ONORIGISPUNR,,
. s@orIgIspuny®,,

« { TREISDUNR,,
af20qeTdTIry,

. fSTseyjusIedIanQy,
" : I9deIgIan(R.,

337

Appendix E

Document Object Model for MathML (Non-Normative)

The following sections describe the interfaces that have been defined in the Document Object Model for MathML
Please refer to Chapt8rfor more information.

E.l IDL Interfaces

E.1.1 Miscellaneous Object Definitions
Interface MathMLDOMImplementation
Extends: DOMImplementation

This interface extends tl@MImplementation interface by adding a method to create a top |@glhMLmathEle-
ment.

IDL Definition

interface MathMLDOMImplementation: DOMImplementation {
MathMLmathElement createMathMLmathElement(in Document hostDocument, in Node parent);

};

Methods

createMathMLmathElement
Creates a&lathMLmathElement t0 correspond to a MathMhath element. TheMathMLmathElement iS
empty, having no child elements or non-default attributes.

Parameters
Document hostDocument The Document object containing theth element.
Node parent TheNode that is to be the parent node of the math element. This may be

null.
Return value
MathMLmathElement The newly createtfathMLmathElement.
Exceptions
HIERARCHY_REQUEST_ERR Raised if anath element is not allowed in eith@épstDocument or the
parent node.

338

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#i-Document
http://www.w3.org/TR/DOM-Level-2/core.html

Interface MathMLDocumentFragment
Extends: MathMLElement

This interface is provided as a specialization of the DocumentFragment interface. Thioclitdof thisMathMLEle-

ment Must beMathMLElements or Text nodes. As with th®documentFragment object, inserting alathMLDocu-
mentFragment into aMathMLElement Which can accept children has the effect of inserting each of the top-level
child Nodes of the fragment rather than the fragment itself. Note HzahMLDocumentFragments are frequently used

in the DOM as values ofeadonly attributes, encapsulating, for instance, various collections of child elements.
When used in this way, these objects are always understoodliechen the sense that they changes to the document
are immediately reflected in them.

IDL Definition

interface MathMLDocumentFragment: MathMLElement {
+;

E.1.2 Generic MathML Elements
Interface MathMLElement
Extends:Element

All MathML element interfaces derive from this object, which derives from the basic DOM interface Element.

Note: At some point it is expected that CSS support for mathematics will be available. At that poistythe

attribute of a MathML element should be accessed through the ElementCSSinlineStyle interface, which is defined in
the CSS DOM specification.

IDL Definition

interface MathMLElement: Element {
attribute DOMString className;
attribute DOMString style;
attribute DOMString id;

};

Attributes

className of type DOMString The class attribute of the element. See the discussion elsewhere in this document
and the HTML definition of thelass attribute.
style of type DOMString A string identifying the element’style attribute.

id of type DOMString The element’s identifier. See the discussion elsewhere in this document and the HTML defini-
tion of theid attribute.

Interface MathMLmathElement
Extends: MathMLElement

This interface represents the top-level Mathidth element. It may be useful for interfacing between the Document
Object Model objects encoding an enclosing document and the MathML DOM elements that are its children. It may
also be used for some purposes as a MathML DOM surrogateotament object. For instance, MathML-specific
factory methods could be placed here, as could methods for creating MathML-speeifictors or TreeWalkers.

339

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLmathElement: MathMLElement {
readonly attribute MathMLDocumentFragment declarations;
attribute DOMString macros;
attribute DOMString display;
MathMLdeclareElement insertDeclaration(in MathMLdeclareElement newDeclaration, in unsigned long
MathMLdeclareElement setDeclaration(in MathMLdeclareElement newDeclaration, in unsigned long inc
MathMLdeclareElement removeDeclaration(in unsigned long index) ;
MathMLDocumentFragment createMathMLDocumentFragment () ;
MathMLElement createMathMLElement(in DOMString tagName) ;
3

Attributes

declarations of type MathMLDocumentFragment, readonly Provides access to théeclare elements which are
children of thisnath element, in &athMLDocumentFragment. All Nodes of this fragment must béathMLde-
clareElements.

macros of type DOMString Represents theacros attribute of themath element. See Sectiohl

display of type DOMString Represents thé@isplay attribute of themath element. This value is eithérlock or
inline. See Sectiofi.L

Methods

insertDeclaration
This method inserteewDeclaration before the currentndex-th child declare element of thisfathML-
mathElement. If index is O,newDeclaration is appended as the last childeclare element.

Parameters .
MathMLdeclareElement newDeclaration A MathMLdeclareElement to be inserted as thién-

dexth childdeclare element.

unsigned long index A one-based index into the list of chiltkclare ele-
ments of this element giving the position before which
newDeclaration is to be inserted.

Return value _ _
MathMLdeclareElement TheMathMLdeclareElement child of thisMathMLmathElement represent-

ing newDeclaration in the DOM.
This method raises no exceptions.
setDeclaration
This method insertaewDeclaration as theindex-th child declaration of thigfathMLmathElement. If
there is already afindex-th declare child element, it is replaced yewDeclaration.

Parameters .
MathMLdeclareElement newDeclaration A MathMLdeclareElement to be inserted as then-

dexth childdeclare element.
unsigned long index A one-based index into the list of chil@eclare el-
ements of this element giving the position at which

newDeclaration iS to be inserted.
Return value

MathMLdeclareElement TheMathMLdeclareElement being inserted.
This method raises no exceptions.
removeDeclaration
This method removes th¢éathMLdeclareElement representing thendex-th declare child element of

340

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

thismath element, and returns it to the caller. Note thadex is the position in the list ofileclare element
children, as opposed to the position in the list of all ciiitdies.
Parameters

unsigned long index The one-based index of tleclare elementto be removed.

Return value
MathMLdeclareElement The MathMLdeclareElement being removed as a chillode of this ele-

ment.
This method raises no exceptions.

createMathMLDocumentFragment

Creates a new empMathMLDocumentFragment element.
Return value

MathMLDocumentFragment TheMathMLDocumentFragment created.
This method raises no exceptions.

createMathMLElement

This method creates MathMLElement to represent a MathML element of typegName. The returned

MathMLElement should be of the correct derived type to represent the element. In addition, if there are
known attributes with default values, Attr nodes representing them are automatically created and attached t

the elementMathMLElements representing required child elements are created as empty elements.
Parameters
DOMString tagName The case-sensitive name of the element type to instantiate.
Return value
MathMLElement TheMathMLElement created.
Exceptions
INVALID_CHARACTER_ERR Raised if the specified name contains an illegal character.

Interface MathMLSemanticsElement

Extends: MathMLElement

This interface represents tBemantics element in MathML.

IDL Definition

interface MathMLSemanticsElement: MathMLElement {

};

attribute MathMLElement body;

MathMLElement getAnnotation(in unsigned long index);

MathMLElement insertAnnotation(in MathMLElement newAnnotation, in unsigned long index);
MathMLElement setAnnotation(in MathMLElement newAnnotation, in unsigned long index) ;

Attributes

body of type MathMLElement This attribute represents the first child of themantics element, i.e. the child giving

the ‘primary’ content represented by the element.

Methods

getAnnotation

This method gives access to thedex-th ‘alternate’ content associated with saemantics element.
Parameters

341

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

unsigned long index The one-based index of the annotation being retrieved.
Return value)
MathMLElement TheMathMLAnnotationElement Or MathMLXMLAnnotationElement representing

the index-th annotation or xml-annotation child of the semantics element.
Note that all child elements of semantics element other than the first are required
to be of one of these types.

This method raises no exceptions.

insertAnnotation

This method inserteewAnnotation before the currentndex-th ‘alternate’ content associated witlsa-

mantics element. Ifindex is 0,newAnnotation is appended as the lasinotation Or xml-annotation

child of this element.

Parameters
MathMLElement newAnnotation A MathMLAnnotationElement OrMathMLXMLAnnotationEle-

ment representing the newannotation Or xml-annotation to
be inserted.

unsigned long index The position in the list oknnotation or xml-annotation chil-
dren before whiclhewAnnotation is to be inserted. The first an-

notation is numbered 1.
Return value
MathMLElement TheMathMLAnnotationElement Or MathMLXMLAnnotationElement child of this

element that represents the new annotation in the DOM.

Exceptions

HIERARCHY_REQUEST_ERR Raised ifhewAnnotation is notaMathMLAnnotationElement Of MathM-
LXMLAnnotationElement.

INDEX_SIZE_ERR Raised ifindex is greater than the current numbegsahotation or xml-annotation
children of this semantics element.

setAnnotation

This method allows setting or replacement of ihelex-th ‘alternate’ content associated witts@mantics

element. If there is already amnotation Or xml-annotation element with this index, it is replaced by

newAnnotation.

Parameters
MathMLElement newAnnotation A MathMLAnnotationElement OrMathMLXMLAnnotationEle-

ment representing the new value of thedexth annotation or
xml-annotation child of thissemantics element.

unsigned long index The position in the list oknnotation or xml-annotation chil-
dren of thissemantics element that is to be occupied hgwAn-

notation. The first annotation element is numbered 1.
Return value _ _
MathMLElement TheMathMLAnnotationElement Or MathMLXMLAnnotationElement child of this

element that represents the new annotation in the DOM.
Exceptions

HIERARCHY_REQUEST_ERR Raised ifhewAnnotation is notaMathMLAnnotationElement Of MathM-
LXMLAnnotationElement.

INDEX_SIZE _ERR Raised ifindex is greater than one more than the current numbehabtation or
xml-annotation children of this semantics element.

Interface MathMLANnotationElement
Extends: MathMLElement

This interface represents theénotation element of MathML.

342

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

IDL Definition

interface MathMLAnnotationElement: MathMLElement {
attribute DOMString body;
attribute DOMString encoding;

};

Attributes

body of type DOMString Provides access to the content ofammnotation element.
encoding of type DOMString Provides access to thacoding attribute of amannotation element.

Interface MathMLXMLANnNotationElement
Extends: MathMLElement

This interface represents theéml-annotation element of MathML.

IDL Definition

interface MathMLXMLAnnotationElement: MathMLElement {
readonly attribute NodeList contents;
attribute DOMString encoding;

};

Attributes

contents of type NodeList, readonly Provides access to the content of @ammotation element, represented by
XML DOM Nodes.
encoding of type DOMString Provides access to th@&coding attriubte of amannotation element.

E.1.3 Presentation Elements
Interface MathMLPresentationElement
Extends:MathMLElement

This interface is provided to serve as a base interface for various MathML Presentation interfaces. It contains no ne
attributes or methods at this time; however, it is felt that the distinction between Presentation and Content MathMl
entities should be indicated in the MathMLElement heirarchy. In particular, future versions of the MathML DOM may
add functionality on this interface; it may also serve as an aid to implementors.

IDL Definition

interface MathMLPresentationElement: MathMLElement {
};

E.1.3.1 Leaf Presentation Element Interfaces
Interface MathMLCharacterElement
Extends:MathMLPresentationElement

This interface supports the-har element Sectio3.2.8

343

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLCharacterElement: MathMLPresentationElement {
attribute DOMString name;
};

Attributes

name of type DOMString The name of a non-ASCII character, taken from Chafter

Interface MathMLGIlyphElement
Extends: MathMLPresentationElement

This interface supports theglyph element Sectio3.2.9

IDL Definition

interface MathMLGlyphElement: MathMLPresentationElement {
attribute DOMString alt;
attribute DOMString fontfamily;
attribute unsigned long index;

};

Attributes

alt of type DOMString A string giving an alternate name for the character. Represenigilyeh’s alt attribute.
fontfamily of type DOMString A string representing the font family.

index of type unsigned long An unsigned integer giving the glyph’s position within the font.

Interface MathMLSpaceElement
Extends:MathMLPresentationElement

This interface extends theathMLPresentationElement interface for the MathMLspace elementspace. Note that
this is not derived fromMathMLPresentationToken, despite the fact thaispace is classified as a token element,
since it does not carry the attributes declaredfpthML.PresentationToken.

IDL Definition

interface MathMLSpaceElement: MathMLPresentationElement {
attribute DOMString width;
attribute DOMString height;
attribute DOMString depth;

+;

344

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html

Attributes

width of type DOMString A string of the form number h-unit’; represents the@idth attribute for thenspace ele-
ment, if specified.

height of type DOMString A string of the form humber v-unit’; represents théeight attribute for themspace
element, if specified.

depth of type DOMString A string of the form humber v-unit’; represents théepth attribute for themspace ele-
ment, if specified.

E.1.3.2 Presentation Token Element Interfaces

Interfaces representing the MathML Presentation token elements that may have content are described here.

Interface MathMLPresentationToken
Extends: MathMLPresentationElement

This interface extends théathMLElement interface to include access for attributes specific to text presentation. It
serves as the base class for all MathML presentation token elements. Access to the body of the element is via t
nodeValue attribute inherited fromiode. Elements that expose only the core presentation token attributes are directly
supported by this object. These elements are:

mi identifier element
mn humber element
mtext textelement

IDL Definition

interface MathMLPresentationToken: MathMLPresentationElement {
attribute DOMString fontsize;
attribute DOMString fontweight;
attribute DOMString fontstyle;
attribute DOMString fontfamily;
attribute DOMString color;
readonly attribute MathMLDocumentFragment contents;

};

Attributes

fontsize of type DOMString The font size attribute for the element, if specified.
fontweight of type DOMString The font weight attribute for the element, if specified.
fontstyle of type DOMString The font style attribute for the element, if specified.
fontfamily of type DOMString The font family attribute for the element, if specified.

color of type DOMString The color attribute for the element, if specified.

contents of type MathMLDocumentFragment, readonly Returns the childiodes of the element. These should con-
sist only of Text nodes and possiblyathMLGlyphElements Or MathMLCharacterElements. Should be-
have the same as the base claBs&e: : children attribute; however, it is provided here for clarity.

345

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Interface MathMLOperatorElement
Extends: MathMLPresentationToken

This interface extends th&athMLPresentationToken interface for the MathMLoperator elementno.

IDL Definition

interface MathMLOperatorElement: MathMLPresentationToken {
attribute DOMString form;

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString

fence;
separator;
1lspace;
rspace;
stretchy;
symmetric;
maxsize;
minsize;
largeop;

attribute
attribute
};

DOMString
DOMString

moveablelimits;
accent;

Attributes

form of type DOMString Theform attribute prefix, infix or postfix) for themo element, if specified.
fence of type DOMString Thefence attribute ¢rue or false) for themo element, if specified.
separator of type DOMString Theseparator attribute ¢rue or false) for themo element, if specified.

Ispace of type DOMString Thelspace attribute (spacing to left) of theo element, if specified.
rspace of type DOMString Therspace attribute (Spacing to right) of theo element, if specified.

stretchy of type DOMString Thestretchy attribute rue or false) for themo element, if specified.
symmetric of type DOMString Thesymmetric attribute grue or false) for themo element, if specified.

maxsize of type DOMString Themaxsize attribute for theno element, if specified.
minsize of type DOMString Theminsize attribute for theno element, if specified.
largeop of type DOMString Thelargeop attribute for theno element, if specified.

moveablelimits of type DOMString Themoveablelimits (true or false) attribute for theno element, if specified.
accent of type DOMString Theaccent attribute ¢true or false) for themo element, if specified.

Interface MathMLStringLitElement
Extends: MathMLPresentationToken

This interface extends th&athMLPresentationToken interface for the MathMLstring literal elementus.

IDL Definition

interface MathMLStringlitElement: MathMLPresentationToken {
attribute DOMString lquote;
attribute DOMString rquote;

};

346

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

lquote of type DOMString A string giving the opening delimiter for the string literal; representstherte attribute
for thems element, if specified.

rquote of type DOMString A string giving the closing delimiter for the string literal; representsiieote attribute
for thems element, if specified.

E.1.3.3 Presentation Container Interfaces

We include under the heading of Presentation Container Elements interfaces designed to represent MathML Presentat
elements that can contain arbitrary numbers of ctehMLElements.

Interface MathMLPresentationContainer
Extends: MathMLPresentationElement

This interface represents MathML Presentation elements that may contain arbitarily many child elements.

IDL Definition

interface MathMLPresentationContainer: MathMLPresentationElement {
readonly attribute MathMLDocumentFragment arguments;
MathMLElement getArgument(in unsigned long index);
MathMLElement insertArgument(in MathMLElement newArgument, in unsigned long index);
MathMLElement setArgument(in MathMLElement newArgument, in unsigned long index);
void deleteArgument (in unsigned long index);
MathMLElement removeArgument(in unsigned long index) ;

};

Attributes

arguments of type MathMLDocumentFragment, readonly This attribute accesses the childthMLElements of this
element, as #athMLDocumentFragment.

Methods

getArgument
This method returns thindex-th child element of this element.
Parameters
unsigned long index The one-based index of the argument to be retrieved.
Return value
MathMLElement A MathMLElement representing the element being retrieved.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than the number of child elements.
insertArgument
This method insertaewArgument before the currentndex-th child argument of this element. ihdex is
0, newArgument is appended as the last argument.

Parameters _ _ _
MathMLElement newArgument A MathMLElement representing the element thatis to be inserted as

a child argument of this element.
unsigned long index The index of the position in the list of arguments before which
newArgument is to be inserted. The first argument is numbered 1.

347

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Return value
MathMLElement TheMathMLElement child of this element that represents the new argument in the

DOM.
Exceptions
HIERARCHY_REQUEST_ERR Raised ifnewArgument represents an element that cannot be an argu-
ment of this element.
INDEX_SIZE_ERR Raised ifindex is greater than the number of child arguments.

setArgument
This method setsBewArgument as theindex-th child element of this element. If there is already an element
at positionindex, it is replaced byrewArgument.

Parameters ' _
MathMLElement newArgument A MathMLElement representing the element that is to be set as the

index-th argument of this element.
unsigned long index The index of the argument that is to be sehémArgument.

Return value
MathMLElement TheMathMLElement child of this element that represents the new argument in the

DOM.
Exceptions
HIERARCHY_REQUEST_ERR Raised ifnewArgument represents an element that cannot be an argu-
ment of this element.
INDEX_SIZE_ERR Raised ifindex is greater than one more than the number of child elements.

deleteArgument
This method deletes thimdex-th child MathMLElement of this element.
Parameters
unsigned long index The one-based index of the argument to be deleted.
Return value
void None.

Exceptions

INDEX_SIZE_ERR Raised ifindex is greater than the number of child elements.
removeArgument

This method removes thimdexth child element of this element and returns it to the caller.

Parameters

unsigned long index The one-based index of the argument to be removed.
Return value

MathMLElement A MathMLElement representing the child element being removed.
Exceptions

INDEX_SIZE_ERR Raised ifindex is greater than the number of child elements.

Interface MathMLStyleElement
Extends:MathMLPresentationContainer

This interface extends th¢athMLElement interface for the MathMLstyle elementmstyle. While themstyle el-

ement may contain anyttributes allowable on any MathML presentation element, oalgibutes specific to the
mstyle element are included in the interface below. Other attributes should be accessed using the methods on t
baseElement class, particularly thElement: : getAttribute andElement: :setAttribute methods, or even the
Node: :attributes attribute to access all of them at once. Not only does this obviate a lengthy list below, but it seems
likely that most implementations will find this a considerably more useful interfac#l#aaMLStyleElement.

348

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

IDL Definition

interface MathMLStyleElement: MathMLPresentationContainer {
attribute DOMString scriptlevel;
attribute DOMString displaystyle;
attribute DOMString scriptsizemultiplier;
attribute DOMString scriptminsize;
attribute DOMString color;
attribute DOMString background;
3

Attributes

scriptlevel of type DOMString A string of the form /- unsigned integer’; represents thecriptlevel attribute for
themstyle element, if specified. See also the discussion of this attribute.

displaystyle of type DOMString Either true or false; a string representing th&isplaystyle attribute for the
mstyle element, if specified. See also the discussion of this attribute.

scriptsizemultiplier of type DOMString A string of the form humber’; represents thescriptsizemultiplier
attribute for themstyle element, if specified. See also the discussion of this attribute.

scriptminsize of type DOMString A string of the form nhumber v-unit’; represents thecriptminsize attribute for
themstyle element, if specified. See also the discussion of this attribute.

color of type DOMString A string representation of a color; representsdheor attribute for thenstyle element,
if specified. See also the discussion of this attribute.

background of type DOMString A string representation of a color or the stritithnsparent; represents theack-
ground attribute for themstyle element, if specified. See also the discussion of this attribute.

Interface MathMLPaddedElement
Extends: MathMLPresentationContainer

This interface extends th&athMLElement interface for the MathMLspacing adjustment elemenimpadded.

IDL Definition

interface MathMLPaddedElement: MathMLPresentationContainer {
attribute DOMString width;
attribute DOMString lspace;
attribute DOMString height;
attribute DOMString depth;
3

Attributes

width of type DOMString A string representing the totatidth of thempadded element, if specified. See also the
discussion of this attribute.

Ispace of type DOMString A string representing th@space attribute - the additional space to the left - of the
mpadded element, if specified. See also the discussion of this attribute.

height of type DOMString A string representing thieeight above the baseline of thpadded element, if specified.
See also the discussion of this attribute.

depth of type DOMString A string representing théepth beneath the baseline of thpadded element, if specified.
See also the discussion of this attribute.

349

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Interface MathMLFencedElement

Extends: MathMLPresentationContainer
This interface extends thiathMLPresentationContainer interface for the MathMlfenced content elemenifenced.

IDL Definition

interface MathMLFencedElement: MathMLPresentationContainer {
attribute DOMString open;
attribute DOMString close;
attribute DOMString separators;

};

Attributes

open of type DOMString A string representing thepening-fence for themfenced element, if specified; this is the

element’sopen attribute.
close of type DOMString A string representing thepening-fence for themfenced element, if specified; this is the

element’sclose attribute.
separators of type DOMString A string representing any separating characters insidefteeced element, if spec-

ified; this is the element’separators attribute.

Interface MathMLEncloseElement
Extends: MathMLPresentationContainer

This interface supports theenclose element Sectio3.3.9

IDL Definition

interface MathMLEncloseElement: MathMLPresentationContainer {
attribute DOMString notation;
};

Attributes

notation of type DOMString A string giving a name for the notation enclosing the element’s contents. Represents the
notation attribute of themenclose. Allowed values ar@ongdiv, actuarial, radical.

Interface MathMLActionElement
Extends:MathMLPresentationContainer
This interface extends theathMLPresentationContainer interface for the MathMLlenlivening expression element

maction.

IDL Definition

interface MathMLActionElement: MathMLPresentationContainer {
attribute DOMString actiontype;
attribute DOMString selection;

};

350

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

actiontype of type DOMString A string specifying the action. Possible values incltidggle, statusline, tooltip,
highlight, andmenu.
selection of type DOMString A string specifying an integer that selects the current subject of the action.

E.1.3.4 Presentation Schemata Interfaces
Interface MathMLFractionElement
Extends:MathMLPresentationElement

This interface extends tiathMLPresentationElement interface for the MathMLlfraction elemeninfrac.

IDL Definition

interface MathMLFractionElement: MathMLPresentationElement {
attribute DOMString linethickness;
attribute MathMLElement numerator;
attribute MathMLElement denominator;

};

Attributes

linethickness of type DOMString A string representing theinethickness attribute of thenfrac, if specified.

numerator of type MathMLElement The first childMathMLElement Of the MathMLFractionElement; represents
the numerator of the represented fraction.

denominator of type MathMLElement The second chiltfathMLElement Of theMathMLFractionElement; repre-
sents the denominator of the represented fraction.

Interface MathMLRadicalElement
Extends: MathMLPresentationElement

This interface extends theathMLPresentationElement interface for the MathMLlradical andsquare root elements
mroot andmsqrt.

IDL Definition

interface MathMLRadicalElement: MathMLPresentationElement {
attribute MathMLElement radicand;
attribute MathMLElement index;

};

Attributes

radicand of type MathMLElement The first childMathMLElement oOf the MathMLRadicalElement; represents the
base of the represented radical.

index of type MathMLElement The second childlathMLElement Of the MathMLRadicalElement; represents the
index of the represented radical. This musthAa 1 for msqrt elements.

351

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Interface MathMLScriptElement
Extends: MathMLPresentationElement

This interface extends thathMLPresentationElement interface for the MathMLsubscript, superscript andsubscript-
superscript pair elementsisub, msup, andmsubsup.

IDL Definition

interface MathMLScriptElement: MathMLPresentationElement {
attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
attribute MathMLElement subscript;
attribute MathMLElement superscript;
3

Attributes

subscriptshift of type DOMString A string representing the minimum amount to shift the baseline ofihecript
down, if specified; this is the elementabscriptshift attribute. This must returfiull for anmsup.

superscriptshift of type DOMString A string representing the minimum amount to shift the baseline okper-
script up, if specified; this is the elementaperscriptshift attribute. This must returiull for amsub.

base of type MathMLElement A MathMLElement representing théase of the script. This is the first child of the
element.

subscript of type MathMLElement A MathMLElement representing theubscript of the script. This is the second
child of amsub or msubsup; retrieval must returaull for anmsup.
HIERARCHY_REQUEST_ERR Raised when the element imaup.

superscript of type MathMLElement A MathMLElement representing theuperscript of the script. This is the second
child of amsup or the third child of ansubsup; retrieval must returiull for anmsub.
HIERARCHY_REQUEST ERR Raised when the element imaub.

Interface MathMLUnderOverElement
Extends: MathMLPresentationElement

This interface extends thiathMLPresentationElement interface for the MathMlunderscript, overscript andoverscript-
underscript pair elementsiunder, mover andmunderover.

IDL Definition

interface MathMLUnderOverElement: MathMLPresentationElement {
attribute DOMString accentunder;
attribute DOMString accent;
attribute MathMLElement base;
attribute MathMLElement underscript;
attribute MathMLElement overscript;

352

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

accentunder of type DOMString Eithertrue or false if present; a string controlling whethanderscript is drawn
as an ‘accent’ or as a ‘limit’, if specified; this is the elemenatsentunder attribute. This must returiull
for anmover.

accent of type DOMString Eithertrue or false if present; a string controlling whethewerscript is drawn as an
‘accent’ or as a ‘limit’, if specified; this is the elementgcent attribute. This must returaull for an
munder.

base of type MathMLElement A MathMLElement representing théase of the script. This is the first child of the
element.

underscript of type MathMLElement A MathMLElement representing th@nderscript of the script. This is the sec-
ond child of anmunder or munderover; retrieval must returtaull for anmover.
HIERARCHY_REQUEST_ERR Raised when the element imaver.

overscript of type MathMLElement A MathMLElement representing theverscript of the script. This is the second
child of amover or the third child of a munderover; retrieval must returfull for anmunder.

HIERARCHY_REQUEST_ERR Raised when the element imander.

Interface MathMLMultiScriptsElement
Extends:MathMLPresentationElement

This interface extends thathMLPresentationElement interface for the MathMLmultiscripts (including prescripts
or tensors) elememinultiscripts.

IDL Definition

interface MathMLMultiScriptsElement: MathMLPresentationElement {
attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
readonly attribute MathMLDocumentFragment prescripts;
readonly attribute MathMLDocumentFragment scripts;
readonly attribute unsigned long numprescriptcolumns;
readonly attribute unsigned long numscriptcolumns;
MathMLElement getPreSubScript(in unsigned long collndex);
MathMLElement getSubScript(in unsigned long collIndex);
MathMLElement getPreSuperScript(in unsigned long colIndex);
MathMLElement getSuperScript(in unsigned long collIndex);

MathMLElement insertPreSubScriptBefore(in unsigned long colIndex, in MathMLElement newScript);

MathMLElement setPreSubScriptAt(in unsigned long collndex, in MathMLElement newScript);
MathMLElement insertSubScriptBefore(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement setSubScriptAt(in unsigned long colIndex, in MathMLElement newScript);

MathMLElement insertPreSuperScriptBefore(in unsigned long colIndex, in MathMLElement newScript) ;

MathMLElement setPreSuperScriptAt(in unsigned long colIndex, in MathMLElement newScript);

MathMLElement insertSuperScriptBefore(in unsigned long collIndex, in MathMLElement newScript);

MathMLElement setSuperScriptAt(in unsigned long colIndex, in MathMLElement newScript);

353

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

subscriptshift of type DOMString A string representing the minimum amount to shift the baseline ofithecripts
down, if specified; this is the elementabscriptshift attribute.

superscriptshift of type DOMString A string representing the minimum amount to shift the baseline okitper-
scripts up, if specified; this is the elementaperscriptshift attribute.

base of type MathMLElement A MathMLElement representing théase of the script. This is the first child of the
element.

prescripts of type MathMLDocumentFragment, readonly A NodeList representing thprescripts of the script, which
appear in the order described by the expresgipescript presuperscript)*. This is the same as traversing
the contents of th&lodeList returned byNode: :childNodes() from the Node following the <mpre-
scripts/> (if present) to the end of the list.

scripts of type MathMLDocumentFragment, readonly A MathMLDocumentFragment representing thecripts of the
script, which appear in the order described by the expregsioipt superscript)*. This is the same as travers-
ing the contents of thBodeList returned byode: : childNodes () from the firstNode up to and including
theNode preceding themprescripts/> (if present).

numprescriptcolumns of type unsigned long, readonly The number of script/subscript columns preceding (to the
left of) the base. Should always be half gfetprescripts() .length()

numscriptcolumns of type unsigned long, readonly The number of script/subscript columns following (to the
right of) thebase. Should always be half gfetscripts() .length()

Methods
getPreSubScript
A convenience method to retriepee-subscript children of the element, referenced by column index .
Parameters
unsigned long colIndex Columnindex ofprescript (where 1 represents the leftm@sescript col-
umn).

Return value
MathMLElement Returns thelathMLElement representing theollndex-th presubscript (to the left of

the base, counting from 1 at the far left). Note that this may be Ha@hMLElement
corresponding to the special elem&nbne/> in the case of a ‘missingresubscript
(see the discussion afiultiscripts), or it may benull if colIndex is out of range
for the element.
This method raises no exceptions.
getSubScript
A convenience method to retrieyebscript children of the element, referenced by column index.

Parameters _
unsigned long colIndex Column index ofscript (where 1 represents the leftmostipt column,

the first to the right of théase).

Return value
MathMLElement Returns thelathMLElement representing theollndex-th subscript to the right of the

base. Note that this may be théathMLElement corresponding to the special element
<none/> in the case of a ‘missingubscript (see the discussion afiultiscripts),
or it may benull if colIndex is out of range for the element.
This method raises no exceptions.
getPreSuperScript
A convenience method to retriepee-superscript children of the element, referenced by column index .

Parameters
unsigned long colIndex Column index ofpre-superscript (where 1 represents the leftmgste-

script column).

354

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Return value
MathMLElement Returns thedathMLElement representing theollndex-th presuperscript (to the left

of the base, counting from 1 at the far left). Note that this may be MaghMLElement
corresponding to the special elemenbne/> in the case of a ‘missingresuperscript
(see the discussion afultiscripts), or it may benull if colIndex is out of range
for the element.
This method raises no exceptions.
getSuperScript
A convenience method to retrieyeperscript children of the element, referenced by column index .

Parameters _
unsigned long colIndex Column index ofscript (where 1 represents the leftmastipt column,

the first to the right of théase)

Return value _ _ _
MathMLElement Returns theMathMLElement representing theollndex-th superscript to the right of

the base. Note that this may be théathMLElement corresponding to the special ele-
ment<none/> in the case of a ‘missinguperscript (see the discussion efiulti-
scripts), or it may benull if colIndex is out of range for the element.
This method raises no exceptions.
insertPreSubScriptBefore
A convenience method to inserpee-subscript before the position referenced by column index.di Index
is 0, the newpre-subscript is appended as the Igste-subscript of the mmultiscripts element; if colindex
is 1, a newpre-subscript is prepended at the far left. Note that inserting a pewvsubscript will cause the
insertion of an emptyre-superscript in the same column.

Parameters
unsigned long colIndex Column index ofpre-subscript (where 1 represents the leftmgsi-

script column).
MathMLElement newScript A MathMLElement representing the element to be inserted gsea
subscript.

Return value _ ' _
MathMLElement TheMathMLElement child of thisMathMLMultiScriptsElement representing the

new script in the DOM.
Exceptions

HIERARCHY_REQUEST_ERR Raised ilnewScript represents an element that cannot be a pre-subscript.

INDEX_SIZE_ERR Raised ifcolIndex is greater than the number pfe-scripts of the element.
setPreSubScriptAt

A convenience method to set tipee-subscript child at the position referenced yplIndex. If there is

currently apre-subscript at this position, it is replaced lyewScript.

Parameters _
unsigned long colIndex Column index ofpre-subscript (where 1 represents the leftmqst-

script column).
MathMLElement newScript MathMLElement representing the element that is to be set asthe
Indexth pre-subscript child of this element.

Return value _ _ _
MathMLElement TheMathMLElement child of thisMathMLMultiScriptsElement representing the

new pre-subscript in the DOM.
Exceptions
HIERARCHY_REQUEST_ERR Raised ihewScript represents an element that cannot pecasubscript.
INDEX_SIZE_ERR Raised ifcolIndex is greater than one more than the numbepmfscripts of the
element.
insertSubScriptBefore
A convenience method to insersabscript before the position referenced by column indexcdfiIndex is

355

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

0, the newsubscript is appended as the lagtbscript of themmultiscripts element; if colindex is 1, a new
subscript is prepended at the far left. Note that inserting a rebscript will cause the insertion of an empty
superscript in the same column.

Parameters _
unsigned long colIndex Column index ofsubscript, where 1 represents the leftmastipt col-
umn (the first to the right of thgase).
MathMLElement newScript A MathMLElement representing the element to be inserted asta
script.

Return value
MathMLElement TheMathMLElement child of thisMathMLMultiScriptsElement that represents the

new subscript in the DOM.
Exceptions
HIERARCHY_REQUEST_ERR Raised ifnewScript represents an element that cannot be a subscript.
INDEX_SIZE_ERR Raised ifcolIndex is greater than the number @iripts of the element.
setSubScriptAt
A convenience method to set thebscript child at the position referenced laplIndex. If there is currently
a subscript at this position, it is replaced lyewScript.

Parameters
unsigned long colIndex Column index ofsubscript, where 1 represents the leftmastipt col-

umn (the first to the right of thgase).
MathMLElement newScript MathMLElement representing the element that is to be set astiie
Indexth subscript child of this element.
Return value
MathMLElement TheMathMLElement chlid of this element representing the newscript in the DOM.
Exceptions
HIERARCHY_REQUEST_ERR Raised ifnewScript represents an element that cannot betacript.
INDEX_SIZE_ERR Raised ifcolIndex is greater than one more than the numbestcapts of the element.
insertPreSuperScriptBefore
A convenience method to inserpee-superscript before the position referenced by column indexdi In-
dex is 0, the newpre-superscript is appended as the lgste-superscript of the mmultiscripts element;
if colindex is 1, a newpre-superscript is prepended at the far left. Note that inserting a pesvsuperscript
will cause the insertion of an emppye-subscript in the same column.

Parameters
unsigned long colIndex Column index ofpre-superscript (where 1 represents the leftmgst-

script column).
MathMLElement newScript A MathMLElement representing the element to be inserted gsea

superscript.
Return value
MathMLElement TheMathMLElement child of this element that represents the newersuperscript in

the DOM.
Exceptions
HIERARCHY_REQUEST_ERR Raised ilhewScript represents an element that cannot be a pre-superscript
INDEX_SIZE_ERR Raised ifcolIndex is greater than the number pfe-scripts of the element.
setPreSuperScriptAt
A convenience method to set tipee-superscript child at the position referenced lyplIndex. If there is
currently apre-superscript at this position, it is replaced yewScript.
Parameters
unsigned long colIndex Column index ofpre-superscript (where 1 represents the leftmgst-
script column).
MathMLElement newScript MathMLElement representing the element that is to be set asthie
Indexth pre-superscript child of this element.

356

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Return value
MathMLElement TheMathMLElement child of this element that represents the n@we-superscript in

the DOM.
Exceptions
HIERARCHY_REQUEST_ERR Raised ihewScript represents an element that cannot pecasuperscript.
INDEX_SIZE_ERR Raised ifcolIndex is greater than one more than the numbepmfscripts of the
element.
insertSuperScriptBefore
A convenience method to insertaperscript before the position referenced by column indexcdfiIndex
is 0, the newsuperscript is appended as the lastperscript of themmultiscripts element; if colindex is 1,
a newsuperscript is prepended at the far left. Note that inserting a seperscript will cause the insertion
of an emptysubscript in the same column.

Parameters
unsigned long colIndex Columnindex ofkuperscript, where 1 represents the leftmaestipt col-

umn (the first to the right of thgase).
MathMLElement newScript A MathMLElement representing the element to be inserted aspar-
script.

Return value
MathMLElement TheMathMLElement chld of this element that represents the neyerscript in the

DOM.
Exceptions
HIERARCHY_REQUEST_ERR Raised ifnewScript represents an element that cannot be a superscript.
INDEX_SIZE_ERR Raised ifcolIndex is greater than the number afripts of the element.
setSuperScriptAt
A convenience method to set thperscript child at the position referenced bylIndex. If there is currently
a superscript at this position, it is replaced lmewScript.

Parameters _
unsigned long colIndex Column index okuperscript, where 1 represents the leftmestipt col-

umn (the first to the right of thgase).
MathMLElement newScript MathMLElement representing the element that is to be set axthe
Indexth superscript child of this element.

Return value _ _ .
MathMLElement TheMathMLElement child of this element that represents the n@werscript in the

DOM.
Exceptions
HIERARCHY_REQUEST_ERR Raised ifnewScript represents an element that cannot beprscript.
INDEX_SIZE_ERR Raised ifcolIndex is greater than one more than the numbestcapts of the element.

Interface MathMLTableElement
Extends:MathMLPresentationElement

This interface extends tiathMLPresentationElement interface for the MathMLltable or matrix elementntable.

IDL Definition

interface MathMLTableElement: MathMLPresentationElement {
attribute DOMString align;
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;

357

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

};

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString
DOMString

alignmentscope;
columnwidth;
width;
rowspacing;
columnspacing;
rowlines;
columnlines;
frame;
framespacing;
equalrows;
equalcolumns;
displaystyle;
side;
minlabelspacing;

readonly attribute MathMLDocumentFragment rows;

MathMLTableRowElement insertEmptyRow(in long index);

MathMLLabeledRowElement insertEmptyLabeledRow(in long index);
MathMLTableRowElement getRow(in unsigned long index) ;

MathMLTableRowElement insertRow(in long index, in MathMLTableRowElement newRow) ;
MathMLTableRowElement setRow(in long index, in MathMLTableRowElement newRow) ;
void deleteRow(in unsigned long index);

MathMLTableRowElement removeRow(in long index);

Attributes

align of type DOMString A string representing the vertical alignment of the table with the adjacent text. Allowed
values arefop | bottom | center | baseline | axis)[rownumber], whererownumber is between 1 and

(for a table withn rows) or -1 andn.

rowalign of type DOMString A string representing the alignment of entries in each row, consisting of a space-
separated sequence of alignment specifiers, each of which can have the following vajyassttom,
center, baseline, Oraxis

columnalign of type DOMString A string representing the alignment of entries in each column, consisting of a space-
separated sequence of alignment specifiers, each of which can have the following Mafttesenter, or
right.
groupalign of type DOMString A string specifying how the alignment groups within the cells of each row are to
be aligned with the corresponding items above or below them in the same column. The string consists of :
sequence of braced group alignment lists. Each group alignment list is a space-separated sequence, eact
which can have the following valueseft, right, center, ordecimalpoint.

alignmentscope of type DOMString A string consisting of the valuesrue or false indicating, for each column,
whether it can be used as an alignment scope.

columnwidth of type DOMString A string consisting of a space-separated sequence of specifiers, each of which
can have one of the following formauto, number h-unit, namedspace, or fit. (A value of the form
namedspace iS one ofveryverythinmathspace, verythinmathspace, thinmathspace, mediummath-

space, thickmathspace, verythickmathspace, Or veryverythickmathspace. This represents the ele-
ment'scolumnwidth attribute.

width of type DOMString A string that is either of the formiumber h-unit or is the stringauto. This represents

the element’'sridth attribute.

358

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

rowspacing of type DOMString A string consisting of a space-separated sequence of specifiers of thednbear
v-unit representing the space to be added between rows.

columnspacing of type DOMString A string consisting of a space-separated sequence of specifiers of thedarm
ber h-unit representing the space to be added between columns.

rowlines of type DOMString A string specifying whether and what kind of lines should be added between each row.
The string consists of a space-separated sequence of specifiers, each of which can have the following value
none, solid, Ordashed.

columnlines of type DOMString A string specifying whether and what kind of lines should be added between each
column. The string consists of a space-separated sequence of specifiers, each of which can have the followi
valuesmnone, solid, ordashed.

frame of type DOMString A string specifying a frame around the table. Allowed values @féne | solid |
dashed).

framespacing of type DOMString A string of the formnumber h-unit number v-unit specifying the spacing
between table and its frame.

equalrows of type DOMString A string with the valuesrue or false.

equalcolumns of type DOMString A string with the valuesrue or false.
displaystyle of type DOMString A string with the valuesrue or false.

side of type DOMString A string with the valuedeft, right, leftoverlap, Orrightoverlap.

minlabelspacing of type DOMString A string of the formnumber h-unit, specifying the minimum space between
a label and the adjacent entry in the labeled row.

rows of type MathMLDocumentFragment, readonly A MathMLDocumentFragment consisting oMathMLTableRow-
Elements andMathMLLabeledRowElements representing the rows of the table. This ikw& object.

Methods

insertEmptyRow
A convenience method to insert a new (empty) rawx) in the table before the currenhdexth row. If
index is less than 0, the new row is inserted before-thedexth row counting up from the current last row;
if index is equal to the current number of rows, the new row is appended as the last row.

Parameters
long index Position before which to insert the new row, where 0 represents the first row. Negative

numbers are used to count backwards from the last row.
Return value
MathMLTableRowElement Returns theMathMLTableRowElement child of this MathMLTableEle-

ment that represents the newtr element being inserted.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than the current number of rows of tiiable element or
less than minus this number.
insertEmptyLabeledRow

A convenience method to insert a new (empty) labeled mlwifeledtr) in the table before the current
indexth row. If index is less than 0, the new row is inserted before-thedexth row counting up from the
current last row; ifindex is equal to the current number of rows, the new row is appended as the last row.
Parameters

long index Position before which to insert the new row, where 0 represents the first row. Negative

numbers are used to count backwards from the last row.

Return value

MathMLLabeledRowElement Returns the MathMLLabeledRowElement child of this

MathMLTableElement representing thatr element being inserted.

Exceptions

359

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

getRow

INDEX_SIZE_ERR Raised ifindex is greater than the current number of rows of tiable element or
less than minus this number.

A convenience method to retrieve tiedexth row from the table. Ifindex is less than 0, theindexth row

from the bottom of the table is retrieved. (So, for instancenifex is -2, the next-to-last row is retrieved.)

If index is not a valid value (i.e. is greater than or equal to the number of rows, or is less than minus the
number of rows), aull MathMLTableRowElement is returned.

Parameters
unsigned long index Index of the row to be returned, where O represents the first row. Negative

numbers are used to count backwards from the last row.

Return value .
MathMLTableRowElement Returnsth@lathMLTableRowElement representing théndexth row of the

table.
This method raises no exceptions.

insertRow

setRow

A convenience method to insert the new row or labeled mowr (0r mlabeledtr) represented byewRow

in the table before the currenihdexth row. If index is equal to the current number of rows;wRow is
appended as the last row in the tableidflex is less than 0, the new row is inserted before-tivedexth row
from the bottom of the table. (So, for instancejiidex is -2, the new row is inserted before the next-to-last
current row.)

Parameters _ _ _
long index Index before which to insettewRow, where O represents the first

row. Negative numbers are used to count backwards from the cur-
rent last row.

MathMLTableRowElement newRow A MathMLTableRowElement Or MathMLLabeledRowElement
representing the row to be inserted.

Return value
MathMLTableRowElement The MathMLTableRowElement Or MathMLLabeledRowElement child of

thisMathMLTableElement representing thetr element being inserted.
Exceptions
HIERARCHY_REQUEST_ERR Raised ifnewRow is not aMathMLTableRowElement OF MathMLLa-
beledRowElement.
INDEX_SIZE_ERR Raised ifindex is greater than the current number of rows or less than minus the
current number of rows of thistable element.

A method to set the value of the row in the table at the specified index ttthermlabeledtr represented
by newRow. If index is less than O, theindexth row counting up from the last is replaced tywRow; if
index is one more than the current number of rows, the new row is appended as the last row in the table.

Parameters _
long index Index of the row to be set toewRow, where O represents the first

row. Negative numbers are used to count backwards from the last
row.

MathMLTableRowElement mnewRow A MathMLTableRowElement representing the row that is to be
the newindexth row.

Return value
MathMLTableRowElement Returns theMathMLTableRowElement Or MathMLLabeledRowElement

child of this element that represents the new row in the DOM.
Exceptions
HIERARCHY_REQUEST_ERR Raised ifnewRow is not aMathMLTableRowElement Or MathMLLa-
beledRowElement.
INDEX_SIZE_ERR Raised ifindex is greater than the current number of rows of tiiable element or

360

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

less than minus this number.
deleteRow
A convenience method to delete the row of the table at the specified indixddk is less than 0, the
indexth row from the bottom of the table is deleted. (So, for instanciqpdfex is -2, the next-to-last row is
deleted.)
Parameters
unsigned long index Index of row to be deleted, where O represents the first row.
Return value
void None.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than or equal to the current number of rows of thizble
element or less than minus this number.
removeRow
A convenience method to delete the row of the table at the specified index and return it to the dalterx|f
is less than 0, theindexth row from the bottom of the table is deleted. (So, for instanciepdiex is -2, the
next-to-last row is deleted.)
Parameters
long index Index of row to be removed, where O represents the first row.
Return value
MathMLTableRowElement A MathMLTableRowElement representing the row being deleted.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than or equal to the number of rows of ihiisble element
or less than minus this number.

Interface MathMLTableRowElement
Extends: MathMLPresentationElement

This interface extends thathMLPresentationElement interface for the MathML table or matrix row elemeittr.

IDL Definition

interface MathMLTableRowElement: MathMLPresentationElement {
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
readonly attribute MathMLDocumentFragment cells;
MathMLTableCellElement insertEmptyCell(in unsigned long index) ;
MathMLTableCellElement insertCell(in MathMLTableCellElement newCell, in unsigned long index);
MathMLTableCellElement setCell(in MathMLTableCellElement newCell, in unsigned long index);
void deleteCell(in unsigned long index);

};

Attributes

rowalign of type DOMString A string representing an override of the row alignment specified in the containing
mtable. Allowed values areop, bottom, center, baseline, andaxis.

columnalign of type DOMString A string representing an override of the column alignment specified in the contain-
ingmtable. Allowed values ardeft, center, andright.

groupalign of type DOMString [To be changed?]

361

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

cells of type MathMLDocumentFragment, readonly A MathMLDocumentFragment consisting of the cells of the row.
Note that this does not include the label if this is a MathMLLabeledRowElement!

Methods

insertEmptyCell
A convenience method to insert a new (empty) cell in the row.

Parameters
unsigned long index Index of the cell before which the new cell is to be inserted, where the first

cell is numbered 0. Ifindex is equal to the current number of cells, the
new cell is appended as the last cell of the rdVwte that the index will
differ from the index of the corresponding Node in the collection returned by

Node: : childNodes if this is a MathMLLabeledRowElement!
Return value _
MathMLTableCellElement ReturnsthélathMLTableCellElement representing thetd element be-

ing inserted.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than the current number of cells of thig element.
insertCell
A convenience method to insert a new cell in the row.

Parameters _
MathMLTableCellElement newCell A MathMLTableCellElement representingthe new ceti{d

element) to be inserted.

unsigned long index Index of the cell before which the new cell is to be inserted,
where the first cell is numbered 0.ilfidex equals the current
number of cells, the new cell is appended as the last cell of the
row. Note that the index will differ from the index of the cor-
responding Node in Node: : childNodes if this is a MathML-
LabeledRowElement!

Return value ' o
MathMLTableCellElement TheMathMLTableCellElement representing thetd element being in-

serted.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than the current number of cells of thig element.
setCell
A convenience method to set the value of a cell in the rometeCel1. If index is equal to the current number
of cells,newCell is appended as the last cell in the row.

Parameters _
MathMLTableCellElement newCell A MathMLTableCellElement representing the celhgd ele-

ment) that is to be inserted.

unsigned long index Index of the cell that is to be replaced by the new cell, where
the first cell is numbered QNote that the index will differ from
the index of the corresponding Node in the collection returned
by Node: : childNodes if this is a MathMLLabeledRowEle-
ment!

Return value
MathMLTableCellElement TheMathMLTableCellElement child of thisMathMLTableRowElement

representing the nemtd element.
This method raises no exceptions.
deleteCell
A convenience method to delete a cell in the row.

362

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Parameters
unsigned long index Index of cell to be deletedVote that the count will differ from the indexth

child node if this is a MathMLLabeledRowElement!
Return value
void None.
This method raises no exceptions.

Interface MathMLLabeledRowElement
Extends: MathMLTableRowElement

This interface extends théathMLTableRowElement interface to represent thelabeledtr element Sectior8.5.3
Note that the presence of a label causes the indexth child node to differ from the indexth cell!

IDL Definition

interface MathMLLabeledRowElement: MathMLTableRowElement {
attribute MathMLElement label;
};

Attributes

label of type MathMLElement A MathMLElement representing the label of this row. Note that retrieving this should
have the same effect as a callNode: :getfirstChild (), while setting it should have the same effect as
Node: :replaceChild(Node: :getfirstChild()).
NO_MODIFICATION_ALLOWED_ERR Raised if thisfathMLElement or the newMathMLElement iS
read-only.

Interface MathMLTableCellElement
Extends:MathMLPresentationContainer

This interface extends théathMLPresentationContainer interface for the MathML table or matrix cell element
mtd.

IDL Definition

interface MathMLTableCellElement: MathMLPresentationContainer {
attribute DOMString rowspan;
attribute DOMString columnspan;
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
readonly attribute boolean hasaligngroups;
readonly attribute DOMString cellindex;

363

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Attributes

rowspan of type DOMString A string representing a positive integer that specifies the number of rows spanned by
this cell. The default is 1.

columnspan of type DOMString A string representing a positive integer that specifies the number of columns spanned
by this cell. The default is 1.

rowalign of type DOMString A string specifying an override of the inherited vertical alignment of this cell within
the table row. Allowed values at®p, bottom, center, baseline, andaxis.

columnalign of type DOMString A string specifying an override of the inherited horizontal alignment of this cell
within the table column. Allowed values areft, center, andright.

groupalign of type DOMString A string specifying how the alignment groups within the cell are to be aligned with
those in cells above or below this cell. The string consists of a space-separated sequence of specifiers, ec
of which can have the following valueseft, right, center, Ordecimalpoint.

hasaligngroups of type boolean, readonly A string with the valuesrue or false indicating whether the cell con-
tains align groups.

cellindex of type DOMString, readonly A string representing the integer index (1-based?) of the cell in its containing
row. [What about spanning cells? How do these affect this value?]

Interface MathMLAlignGroupElement
Extends:MathMLPresentationElement

This interface extends th&athMLPresentationElement interface for the MathML group -alignment elemetnta-
ligngroup/>.

IDL Definition

interface MathMLAlignGroupElement: MathMLPresentationElement {
attribute DOMString groupalign;
+;

Attributes

groupalign of type DOMString A string specifying how the alignment group is to be aligned with other alignment
groups above or below it. Allowed values areft, right, center, Ordecimalpoint.

Interface MathMLAlignMarkElement
Extends: MathMLPresentationElement

This interface extends théathMLPresentationElement interface for the MathMLalignment mark element<ma-
lignmark/>.

IDL Definition

interface MathMLAlignMarkElement: MathMLPresentationElement {
attribute DOMString edge;
s

364

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

edge of type DOMString A string specifying alignment on the right edge of the preceding element or the left edge of
the following element. Allowed values ateft andright.

E.1.4 Content Elements
Interface MathMLContentElement
Extends: MathMLElement

This interface is provided to serve as a base interface for various MathML Content interfaces. It contains no ney
attributes or methods at this time; however, it is felt that the distinction between Presentation and Content MathML
entities should be indicated in the MathMLElement heirarchy. In particular, future versions of the MathML DOM may
add functionality on this interface; it may also serve as an aid to implementors.

IDL Definition

interface MathMLContentElement: MathMLElement {
};

E.1.4.1 Content Token Interfaces
Interface MathMLContentToken
Extends: MathMLContentElement

This interface represents the MathML Content token elemeritscn and csymbol. These elements may contain
MathML Presentation elementBext nodes, or a combination of both. Thus gt Argument andinsertArgument
methods have been provided to deal with this distinction between these elements and other MathML Content elemen

IDL Definition

interface MathMLContentToken: MathMLContentElement {
readonly attribute MathMLDocumentFragment arguments;
Node getArgument(in unsigned long index);
Node insertArgument(in unsigned long index, in Node newArgument) ;
Node setArgument(in unsigned long index, in Node newArgument) ;
void deleteArgument(in unsigned long index);
Node removeArgument(in unsigned long index);

};

Attributes

arguments of type MathMLDocumentFragment, readonly The arguments of this element, returned a$a@hML-
DocumentFragment. Note that this is not necessarily the sameiage : : childNodes, particularly in the
case of then element. The reason is that thep elements that are used to separate the argumentsmof a
are not returned.

365

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Methods

getArgument
A convenience method to retrieve the child argument at the position referencadi&y. Note that this is
not necessarily the same as tielexth child Node of thisElement; in particular,sep elements will not be
counted.

Parameters
unsigned long index Position of desired argument in the list of arguments. The first argument is

numbered 1.
Return value
Node TheNode retrieved.
This method raises no exceptions.

insertArgument
A convenience method to inseréwArgument before the currentndexth argument child of this element. If
index is 0,newArgument is appended as the last argument.

Parameters
unsigned long index Position before whichewArgument is to be inserted. The first argu-

ment is numbered Note that this is not necessarily the index of the
Node in the list of child nodes, as nodes representing such elements
as sep are not counted as arguments.
Node newArgument Node to be inserted as thendexth argument. This will either be a
MathMLElement Or aText node.
Return value
Node TheNode inserted. This is the element within the DOM.
This method raises no exceptions.

setArgument
A convenience method to set an argument child at the position referencediby. If there is currently an
argument at this position, it is replaced iywArgument.

Parameters N . . _
unsigned long index Position of the argument that is to be sehtarArgument in the list

of arguments. The first argument is numberediate that this is not
necessarily the index of the Node in the list of child nodes, as nodes
representing such elements as sep are not counted as arguments.
Node newArgument Node to be inserted as the argument. This will either biga@ahM-
LElement or aText node.
Return value
Node TheNode inserted. This is the element within the DOM.
This method raises no exceptions.

deleteArgument
A convenience method to delete the argument child located at the position refereniaeithy

Parameters
unsigned long index Position of the argument to be deleted from the list of arguments. The first

argument is numbered 1.

Return value

void None.
This method raises no exceptions.

removeArgument

A convenience method to delete the argument child located at the position referengetdbyand to return
it to the caller.
Parameters

366

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

unsigned long index Position of the argument to be deleted from the list of arguments. The first
argument is numbered 1.
Return value
Node A Node representing the deleted argument.
This method raises no exceptions.

Interface MathMLcnElement
Extends: MathMLContentToken

Thecn element is used to specify actual numeric constants.

IDL Definition

interface MathMLcnElement: MathMLContentToken {
attribute DOMString type;
attribute DOMString base;
readonly attribute unsigned long nargs;
attribute DOMString definitionURL;
attribute DOMString encoding;

};

Attributes

type of type DOMString Values include, but are not restricted t&nter, real, integer, rational, complex-
cartesian, complex-polar, andconstant.

base of type DOMString A string representing an integer between 2 and 36; the base of the numerical representation

nargs of type unsigned long, readonly The number okep-separated arguments.

definitionURL of type DOMString A URL pointing to an alternative definition
encoding of type DOMString A description of the syntax used #&finitionURL.

Interface MathMLciElement
Extends: MathMLContentToken

Theci element is used to specify a symbolic name.

IDL Definition

interface MathMLciElement: MathMLContentToken {
attribute DOMString type;
};

Attributes

type of type DOMString Values includeinteger, rational, real, float, complex, complex-polar, complex-
cartesian, constant, any of the MathML content container types€tor, matrix, set, list etc.) or
their types.

367

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Interface MathMLcsymbolElement
Extends: MathMLContentToken

This interface represents tkeymbol element.

IDL Definition

interface MathMLcsymbolElement: MathMLContentToken {
attribute DOMString definitionURL;
attribute DOMString encoding;

+;

Attributes

definitionURL of type DOMString A URI pointing to a definition for this symbol element.
encoding of type DOMString A string describing the syntax in which the definition located@tinitionURL is
given.

E.1.4.2 Content Container Interfaces

We have added interfaces for content elements that are containers, i.e. elements that may contain child elements co
sponding to arguments, bound variables, conditions, or lower or upper limits.

Interface MathMLContentContainer
Extends:MathMLContentElement

This interface supports the MathML Content elements that may contain child Content elements. They #pgllge:
reln (deprecated)n, lambda, condition, declare, semantics, annotation, annotation-xml, interval, set,
list,vector,matrix,matrixrow,lowlimit,uplimit,bvar,degree,set,list,andlogbase.

IDL Definition

interface MathMLContentContainer: MathMLContentElement {
readonly attribute unsigned long nBoundVariables;
readonly attribute MathMLDocumentFragment nArguments;
attribute MathMLconditionElement condition;
attribute MathMLElement lowLimit;
attribute MathMLElement uplLimit;
attribute MathMLElement opDegree;
MathMLElement getArgument(in unsigned long index);
MathMLElement insertArgument(in MathMLElement newArgument, in unsigned long index);
MathMLElement setArgument(in MathMLElement newArgument, in unsigned long index);
void deleteArgument(in unsigned long index);
MathMLElement removeArgument(in unsigned long index) ;
MathMLbvarElement getBoundVariable(in unsigned long index);
MathMLbvarElement insertBoundVariable(in MathMLbvarElement newBVar, in unsigned long index) ;
MathMLbvarElement setBoundVariable(in MathMLbvarElement newBVar, in unsigned long index);
void deleteBoundVariable(in unsigned long index);
MathMLbvarElement removeBoundVariable(in unsigned long index);

368

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

nBoundVariables of type unsigned long, readonly The number obvar child elements of this element.

nArguments of type MathMLDocumentFragment, readonly The number of child elements of this element which
represent arguments of the element, as opposed to qualifiers. Thus it does not contain elements represent
bound variables, conditions, separators, degrees, or upper or lower bmits, condition, sep, degree,
lowlimit, Oruplimit).

condition of type MathMLconditionElement This attribute represents thendition child element of this node.
See Sectiod.2.3.2
HIERARCHY_REQUEST_ERR Raised if this element does not permit a chilshdition element. In

particular, raised if this element is notaply, set, orlist.

lowLimit of type MathMLElement This attribute represents thewlimit child element of this node (if any). This
expresses, for instance, the lower limit of integration if this i:spply element whose first child is mt.
See Sectiod.2.3.2
HIERARCHY_REQUEST_ERR Raised if this element does not permit a chileklimit element. In
particular, raised if this element is not apply element whose first child is aimt, sum, product, or
limit element.

upLimit of type MathMLElement This attribute represents theplimit child element of this node (if any). This
expresses, for instance, the upper limit of integration if this iagsly element whose first child is mt.
See Sectiod.2.3.2
HIERARCHY_REQUEST_ERR Raised if this element does not permit a chijgl imit element. In par-
ticular, raised if this element is not atppply element whose first child is atmt, sum, or product
element.

opDegree of type MathMLElement This attribute represents tliegree child element of this node. This expresses,
for instance, the degree of differentiation if this elementissar child of anapply element whose first child
isadiff orpartialdiff. See Sectiod.2.3.2
HIERARCHY_REQUEST_ERR Raised if this element does not permit a chikgree element. In par-
ticular, raised if this element is nottarar or apply.

Methods

getArgument
This method returns only the child elements that are arguments of this elefhénfiequently differs from
the value of Node: :childNodes() .item(index), as elements representing bound variables, conditions,
separators, degrees, and upper or lower limits are not retusied,(condition, sep, degree, lowlimit,
uplimit).
Parameters
unsigned long index The one-based index of the argument to be retrieved.
Return value
MathMLElement A MathMLElement representing théndex-thargument of this element.
This method raises no exceptions.
insertArgument
This method insertaewArgument before the currenindexth argument of this element. ifndex is O,
newArgument iS appended as the last arguméitis frequently differs from setting the node at Node: : childNodes (]
as elements representing bound variables, conditions, separators, degrees, and upper or lower limits are 1
counted bvar, condition, sep, degree, lowlimit, uplimit).
Parameters

369

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

MathMLElement newArgument TheMathMLElement to be inserted as thindexth argument of this
element.
unsigned long index The one-based index of the position before whielwArgument is
to be inserted.
Return value

MathMLElement TheMathMLElement being inserted as thindexth argument of this element.
Exceptions
HIERARCHY_REQUEST_ERR Raised if this element does not permit a chikgree element. In par-
ticular, raised if this element is nottarar or apply.
setArgument
This method setsewArgument as theindexth argument of this element. If there is currentlyiardexth ar-
gument, itis replaced byewArgument. This frequently differs from setting the node at Node: : childNodes () .item
as elements representing bound variables, conditions, separators, degrees, and upper or lower limits are
counted bvar, condition, sep, degree, lowlimit, uplimit).

Parameters
MathMLElement newArgument TheMathMLElement that is to be thendexth argument of this ele-
ment.
unsigned long index The one-based index of the position in the argument list into which

newArgument is to be inserted.
Return value

MathMLElement The newMathMLElement being inserted as thindexth argument of this element.
Exceptions
HIERARCHY_REQUEST_ERR Raised if this element does not permit a chilgree element. In par-
ticular, raised if this element is nottarar or apply.
deleteArgument

This method deletes thimdexth child element that is an argument of this element. Note that child elements
which are qualifier elements are not counted in determiningtldexth argument.
Parameters
unsigned long index The one-based index of the argument to be deleted.
Return value
void None.
This method raises no exceptions.
removeArgument

This method deletes thwdexth child element that is an argument of this element, and returns it to the caller.
Note that child elements that are qualifier elements are not counted in determiningigxth argument.
Parameters
unsigned long index The one-based index of the argument to be removed.
Return value
MathMLElement A MathMLElement representing the argument being removed.
This method raises no exceptions.
getBoundVariable

This method retrieves thindexth MathMLbvarElement child of theMathMLElement. Note that onlyovar
child elements are counted in determining ildexth bound variable.
Parameters
unsigned long index The one-based index into the bound variable children of this element of the
MathMLbvarElement to be retrieved.
Return value
MathMLbvarElement TheMathMLbvarElement representing théndexth bvar child of this element.
This method raises no exceptions.
insertBoundVariable

370

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

This method inserts MathMLbvarElement as a child node before the currenidexth bound variable child

of this MathMLElement. If index is 0, newBVar is appended as the last bound variable child. This has the
effect of adding a bound variable to the expression this element represents. Note that the new bound variab
is inserted as théndex-th bvar child node, not necessarily as théndexth child node. The point of the
method is to allow insertion of bound variables without requiring the caller to calculate the exact order of
child qualifier elements.

Parameters _ _
MathMLbvarElement newBVar A MathMLbvarElement representing thevar elementbeing added.
unsigned long index The one-based index into the bound variable children of this element

before whichnewBVar is to be inserted.
Return value

MathMLbvarElement TheMathMLbvarElement being added.
Exceptions

HIERARCHY_REQUEST_ERR Raised if this element does not permit chilear elements.

setBoundVariable
This method sets thindexth bound variable child of thidathMLElement to newBVar. This has the effect of
setting a bound variable in the expression this element represents. Note that the new bound variable is insert
as theindex-th bvar child node, not necessarily as théndexth child node. The point of the method is to
allow insertion of bound variables without requiring the caller to calculate the exact order of child qualifier
elements. If there is alreadybaar at theindex-th position, it is replaced byewBVar.

Parameters
MathMLbvarElement newBVar The newMathMLbvarElement child of this element being set.
unsigned long index The one-based index into the bound variable children of this element

at whichnewBVar is to be inserted.
Return value

MathMLbvarElement TheMathMLbvarElement being added.
Exceptions

HIERARCHY_REQUEST_ERR Raised if this element does not permit chilear elements.

deleteBoundVariable
This method deletes thimdex-th MathMLbvarElement child of theMathMLElement. This has the effect of
removing this bound variable from the list of qualifiers affecting the element this represents.
Parameters
unsigned long index The one-based index into the bound variable children of this element of the

MathMLbvarElement to be removed.
Return value

void None.
This method raises no exceptions.

removeBoundVariable
This method removes thimdex-th MathMLbvarElement child of theMathMLElement and returns it to the
caller. This has the effect of removing this bound variable from the list of qualifiers affecting the element this
represents.

Parameters
unsigned long index The one-based index into the bound variable children of this element of the

MathMLbvarElement to be removed.
Return value

MathMLbvarElement TheMathMLbvarElement being removed.
This method raises no exceptions.

371

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Interface MathMLapplyElement
Extends: MathMLContentContainer

Theapply element allows a function or operator to be applied to its arguments.

IDL Definition

interface MathMLapplyElement: MathMLContentContainer {
attribute MathMLElement operator;

};

Attributes

operator of type MathMLElement The MathML element representing the function or operator that is applied to the
list of arguments.

Interface MathMLfnElement
Extends: MathMLContentContainer

The fn element makes explicit the fact that a more general MathML object is intended to be used in the same manne
as if it were a pre-defined function suchsgis: or plus.

IDL Definition

interface MathMLfnElement: MathMLContentContainer {
attribute DOMString definitionURL;
attribute DOMString encoding;

};

Attributes

definitionURL of type DOMString A URL pointing to a definition for this function-type element. Note that there is
no stipulation about the form this definition may take!

encoding of type DOMString A string describing the syntax in which the definition locatedi@tinitionURL is
given.

Interface MathMLlIambdaElement
Extends: MathMLContentContainer

Thelambda element is used to construct a user-defined function from an expression and one or more free variables.

IDL Definition

interface MathMLlambdaElement: MathMLContentContainer {
attribute MathMLElement expression;

};

372

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

expression of type MathMLElement The MathMLElement representing the expression. This is included only as a
convenience; getting it should give the same resultza®MLContentContainer: : getArgument (1).

Interface MathMLsetElement
Extends:MathMLContentContainer

The set element is the container element that represents a set of elements. The elements of a set can be defined eit
by explicitly listing the elements, or by using thear andcondition elements.

IDL Definition

interface MathMLsetElement: MathMLContentContainer {
readonly attribute boolean isExplicit;
attribute DOMString type;

};

Attributes

isExplicit of type boolean, readonly This is true if the set is specified by giving the list of its elements explicitly.

type of type DOMString Thetype attribute of the represented element. Predefined valuesatd andmultiset.
See Sectiod.4.6and Sectiont.3.

Interface MathMLIistElement
Extends: MathMLContentContainer

The 1ist element is the container element which represents a list of elements. Elements can be defined either &
explicitly listing the elements, or by using tib@ar andcondition elements.

IDL Definition

interface MathMLlistElement: MathMLContentContainer {
readonly attribute boolean isExplicit;
attribute DOMString ordering;

};

Attributes

iSExplicit of type boolean, readonly This is true if the list is specified by giving its elements explicitly.

ordering of type DOMString The order attribute of the represented element. Predefined valuesuakeric and
lexicographic. See Sectiod.4.6and Sectiont.3.

Interface MathMLbvarElement
Extends: MathMLContentContainer

This interface represents the MathML bound variable elerbeat. The interface currently provides no functionality
beyond that ofathMLContentContainer, but is useful for defining the type of bound variable access functions.

373

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLbvarElement: MathMLContentContainer {
};

E.1.4.3 Content Leaf Element Interfaces
Interface MathMLpredefinedSymbol
Extends:MathMLContentElement

This interface supports all of the empty built-in operator, relation, function, and constant and symbol elements that hay
thedefinitionURL andencoding attributes in addition to the standard set of attributes. The elements supported in
order of their appearance in Sectidnl are: inverse, compose, ident, quotient, exp, factorial, divide, max,

min, minus, plus, power, rem, times, root, gcd, and, or, xor, not, implies, forall, exists, abs, conjugate,

eq, neq, gt, 1t, geq, leq, 1n, log, int, diff, partialdiff, union, intersect, in, notin, subset, prsubset,
notsubset, notprsubset, setdiff, sum, product, 1limit, tendsto, sin, cos, tan, sec, csc, cot, sinh, cosh,

tanh, sech, csch, coth, arcsin, arccos, arctan, mean, sdev, variance, median, mode, moment, determinant,
transpose, integers, reals, rationals, naturalnumbers, complexes, primes, exponentiale, imaginaryi,
notanumber,true,false,emptyset,pi,eulergamma,andinfinity.

IDL Definition

interface MathMLpredefinedSymbol: MathMLContentElement {
attribute DOMString definitionURL;
attribute DOMString encoding;
attribute DOMString arity;
readonly attribute DOMString symbolName;
3

Attributes

definitionURL of type DOMString A string that provides an override to the default semantics, or provides a more
specific definition

encoding of type DOMString A string describing the syntax in which the definition located@initionURL is
given.

arity of type DOMString A string representing the number of arguments. Values include 0, 1, .vaandble.

symbolName of type DOMString, readonly A string giving the name of the MathML element represented. This is
a convenience attribute only; accessing it should be synonymous with accessiigifeat : : tagName
attribute.

E.1.4.4 Other Content Element Interfaces
Interface MathMLintervalElement
Extends:MathMLContentElement

The interval element is used to represent simple mathematical intervals on the real number line. It contains eithe
two child elements that evaluate to real numbers or one child element that is a condition for defining membership in th
interval.

374

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLintervalElement: MathMLContentElement {
attribute DOMString closure;
attribute MathMLcnElement start;
attribute MathMLcnElement end;

+;

Attributes

closure of type DOMString A string with valueopen, closed, open-closed Or closed-open. The default value is
closed.

start of type MathMLcnElement A MathMLcnElement representing the real number defining the start of the interval.
If end has not already been set, it becomes the samseast until set otherwise.

end of type MathMLcnElement A MathMLcnElement representing the real number defining the end of the interval.
If start has not already been set, it becomes the samedantil set otherwise.

Interface MathMLconditionElement
Extends: MathMLContentElement

Thecondition element is used to place a condition on one or more free variables or identifiers.

IDL Definition

interface MathMLconditionElement: MathMLContentElement {
attribute MathMLapplyElement condition;
3

Attributes

condition of type MathMLapplyElement A MathMLapplyElement that represents the condition.

Interface MathMLdeclareElement
Extends:MathMLContentElement

The declare construct has two primary roles. The first is to change or set the default attribute values for a specific
mathematical object. The second is to establish an association between a ‘name’ and an object.

IDL Definition

interface MathMLdeclareElement: MathMLContentElement {
attribute DOMString type;
attribute unsigned long nargs;
attribute DOMString occurrence;
attribute DOMString definitionURL;
attribute DOMString encoding;
attribute MathMLciElement identifier;
attribute MathMLElement constructor;

375

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

type of type DOMString A string indicating the type of the identifier. It must be compatible with the type of the
constructor, if a constructor is present. The type is inferred from thenstructor if present, otherwise

it must be specified.

nargs of type unsigned long If the identifier is a function, this attribute specifies the number of arguments the
function takes. This represents teclare element'snargs attribute; see Sectiofh4.2.8

occurrence of type DOMString A string with the valuesprefix, infix, postfix, or function-model.

definitionURL of type DOMString A URL specifying the detailed semantics of the element.

encoding of type DOMString A description of the syntax used #&finitionURL.
identifier of type MathMLciElement A MathMLciElement representing the name being declared.

constructor of type MathMLElement An optionalMathMLElement providing an initial value for the object being
declared.

Interface MathMLvectorElement
Extends:MathMLContentElement

vector is the container element for a vector.

IDL Definition

interface MathMLvectorElement: MathMLContentElement {
readonly attribute unsigned long ncomponents;
MathMLContentElement getComponent(in unsigned long index) ;
MathMLContentElement insertComponent(in MathMLContentElement newComponent, in unsigned long indge
MathMLContentElement setComponent(in MathMLContentElement newComponent, in unsigned long index)
deleteComponent (in unsigned long index) ;
MathMLContentElement removeComponent(in unsigned long index);

};

Attributes

ncomponents of type unsigned long, readonly The number of components in the vector.

Methods
getComponent
A convenience method to retrieve a component.
Parameters
unsigned long index Position of the component in the list of components. The first element is
numbered 1.

Return value
MathMLContentElement TheMathMLContentElement component atthe position specifiedindex.

If index is not a valid index (i.e. is greater than the number of components
of the vector or less than 1) ml1 MathMLContentElement is returned.
This method raises no exceptions.

insertComponent
A convenience method to insert a new component in the vector before the cigeith component. If

376

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

index is 0 or is one more than the number of components currently in the veetd@omponent is appended
as the last component of the vector.
Parameters
MathMLContentElement newComponent A MathMLContentElement representing the component
that is to be added.
unsigned long index Position of the component in the list of components. The

first component is numbered 1.
Return value

MathMLContentElement TheMathMLContentElement child of thiSMathMLvectorElement repre-
senting the new component in the DOM.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than one more than the current number of components of
this vector element.
setComponent

A convenience method to set thedexth component of the vector tewComponent. If index iS one more
than the current number of componenisyComponent is appended as the last component.
Parameters
MathMLContentElement newComponent A MathMLContentElement representing the element that
is to be theindex-th component of the vector.
unsigned long index Position of the component in the list of components. The

first element is numbered 1.
Return value

MathMLContentElement The MathMLContentElement child of this MathMLvectorElement that
represents the new component in the DOM.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than one more than the current number of components of
this vector element.
deleteComponent
A convenience method to delete an element. The deletion changes the indices of the following components
Parameters
unsigned long index Position of the component in the vector. The position of the first component
is1
Return value
None
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than the current number of components of thistor
element.
removeComponent

A convenience method to remove a component from a vector and return it to the caller. If index is greater
than the number of components or is Gua1 MathMLContentElement is returned.
Parameters
unsigned long index Position of the component in the list of components. The first element is
numbered 1.
Return value

MathMLContentElement TheMathMLContentElement component being removed.
This method raises no exceptions.

Interface MathMLmatrixElement
Extends:MathMLContentElement

Thematrix element is the container element fertrixrow elements.

377

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

IDL Definition

interface MathMLmatrixElement: MathMLContentElement {
readonly attribute unsigned long nrows;
readonly attribute unsigned long ncols;
readonly attribute MathMLDocumentFragment rows;
MathMLmatrixrowElement getRow(in unsigned long index);
MathMLmatrixrowElement insertRow(in MathMLmatrixrowElement newRow, in unsigned long index);
MathMLmatrixrowElement setRow(in MathMLmatrixrowElement newRow, in unsigned long index);
deleteRow(in unsigned long index);
removeRow(in unsigned long index);

};

Attributes

nrows of typeunsigned long, readonly The number of rows in the represented matrix.

ncols of type unsigned long, readonly The number of columns in the represented matrix.

rows of type MathMLDocumentFragment, readonly The rows of the matrix, returned aglathMLDocumentFrag-
ment consisting oMathMLmatrixrowElements.

Methods

getRow
A convenience method to retrieve a specified row.
Parameters

unsigned long index Position of the row in the list of rows. The first row is numbered 1.
Return value

MathMLmatrixrowElement TheMathMLmatrixrowElement representing théndex-th row.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than the number of rows in the matrix.
insertRow
A convenience method to insert a row before the row that is currentlyrthiexth row of this matrix. If
index is 0,newRow is appended as the last row of the matrix.

Parameters
MathMLmatrixrowElement newRow MathMLmatrixrowElement to be inserted into the matrix.
unsigned long index Unsigned integer giving the row position before whigkwRow

is to be inserted. The first row is numbered 1.
Return value o o
MathMLmatrixrowElement The MathMLmatrixrowElement added. This is the new element within

the DOM.
Exceptions
INDEX_SIZE _ERR Raised ifindex is greater than one more than the number of rows in the matrix.
HIERARCHY_REQUEST_ERR Raised if the number of cells inewRow doesn’t match the number of
columns in the matrix.
setRow
A convenience method to set the value of ilmdexth child matrixrow element of this element. If there is
already a row at the specified index, it is replacedbyRow.
Parameters

378

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

MathMLmatrixrowElement newRow MathMLmatrixrowElement representing thematrixrow
which is to become théndexth row of the matrix.
unsigned long index Unsigned integer giving the row which is to be sentwRow.

The first row is numbered 1.

Return value
MathMLmatrixrowElement The MathMLmatrixrowElement child of this MathMLmatrixrowEle-

ment representingiewRow within the DOM.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than the number of rows in the matrix.
HIERARCHY_REQUEST_ERR Raised if the number of cells inewRow doesn’t match the number of
columns in the matrix.
deleteRow
A convenience method to delete a row. The deletion changes the indices of the following rows.
Parameters
unsigned long index Position of the row to be deleted in the list of rows
Return value
None
Exceptions
INDEX_SIZE ERR Raised ifindex is greater than the number of rows in the matrix.
removeRow
A convenience method to remove a row and return it to the caller. The deletion changes the indices of the
following rows.

Parameters
unsigned long index Position of the row to be removed in the list of rows. The first row is num-

bered 1.
Return value

TheMathMLmatrixrowElement being removed.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than the number of rows in the matrix.

Interface MathMLmatrixrowElement
Extends: MathMLContentElement

Thematrixrow element is the container element for the elementsmeftaix.

IDL Definition

interface MathMLmatrixrowElement: MathMLContentElement {
readonly attribute unsigned long nEntries;
MathMLContentElement getEntry(in unsigned long index);
MathMLContentElement insertEntry(in MathMLContentElement newEntry, in unsigned long index) ;
MathMLContentElement setEntry(in MathMLContentElement newEntry, in unsigned long index);
deleteEntry(in unsigned long index);
MathMLContentElement removeEntry(in unsigned long index);

};

Attributes

nEntries of type unsigned long, readonly The number of entries in the row.

379

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Methods

getEntry
A convenience method to retrieve the contents of an entry by index.
Parameters
unsigned long index Position of the entry in the row. The first entry is numbered 1.

Return value _ _
MathMLContentElement TheMathMLContentElement element representing thadexth entry in the

row.
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than the number of entries in the row.
insertEntry
A convenience method to insert an entry before the cutnedéxth entry of the row. Ifindex is O,newEntry
is appended as the last entry. Note that this method increases the sizeaftherow.

Parameters _
MathMLContentElement newEntry TheMathMLContentElement to be representing the new entry

to be inserted into the row.
unsigned long index The index before whiclhewEntry is to be inserted in the row.

The first entry is numbered 1.
Return value
MathMLContentElement TheMathMLContentElement child of thisMathMLmatrixrowElement rep-

resentinghewEntry in the DOM.
Exceptions
INDEX_SIZE _ERR Raised ifindex is greater than the number of entries in the row.
setEntry
A convenience method to set the contents of the entry at positidex in the row tonewEntry. If there is
already a entry at the specified index, it is replaced by the new entry.

Parameters _ .
MathMLContentElement newEntry TheMathMLContentElement representing the element that is

to be theindexth entry.
unsigned long index The index of the entry that is to be set equahtmEntry. The

first entry is numbered 1.
Return value _ _
MathMLContentElement TheMathMLContentElement child of thisMathMLmatrixRowElement rep-

resentinghewEntry in the DOM.
Exceptions
INDEX_SIZE _ERR Raised ifindex is greater than one more than the number of elements in the row.
deleteEntry
A convenience method to delete an entry. The deletion changes the indices of the following entries.
Parameters
unsigned long index Position of the entry to be deleted in the row. The first entry is numbered 1.
Return value
None
Exceptions
INDEX_SIZE_ERR Raised ifindex is greater than the number of entries in the row.
removeEntry
A convenience method to remove an entry from the row and return the removed entry to the caller.
Parameters
unsigned long index Position of the entry to be removed from the row. The first entry is numbered
1.
Return value

380

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

MathMLContentElement TheMathMLContentElement being removed from the row.
Exceptions
INDEX_SIZE _ERR Raised ifindex is greater than the number of entries in the row.

381

Appendix F

Glossary (Non-Normative)

Several of the following definitions of terms have been borrowed or modified from similar definitions in documents
originating from W3C or standards organisations. See the individual definitions for more information.

Argument A child of a presentation layout schema. That is, ‘A is an argument of B’ means ‘A is a child of B and B
is a presentation layout schema’. Thus, token elements have no arguments, even if they have children (whic
can only benalignmark).

Attribute A parameter used to specify some property of an SGML or XML element type. It is defined in terms of
an attribute name, attribute type, and a default value. A value may be specified for it on a start-tag for tha
element type.

Axis The axis is an imaginary alignment line upon which a fraction line is centered. Often, operators as well as char
acters that can stretch, such as parentheses, brackets, braces, summation signs etcetera, are centered o
axis, and are symmetric with respect to it.

Baseline The baseline is an imaginary alignment line upon which a glyph without a descender rests. The baselin
is an intrinsic property of the glyph (namely a horizontal line). Often baselines are aligned (joined) during
typesetting.

Black box The bounding box of the actual size taken up by the viewable portion (ink) of a glyph or expression.

Bounding box The rectangular box of smallest size, taking into account the constraints on boxes allowed in a particula
context, which contains some specific part of a rendered display.

Box A rectangular plane area considered to contain a character or further sub-boxes, used in discussions of render
for display. It is usually considered to have a baseline, height, depth and width.

Cascading Style Sheets (CSSA mechanism that allows authors and readers to attach style (e.g. fonts, colors and
spacing) to HTML and XML documents.

Character A member of a set of identifiers used for the organization, control or representation of text. ISO/IEC Stan-
dard 10646-1:1993 uses the word ‘data’ here instead of ‘text’.

Character data (CDATA) A datatype in SGML and XML for raw data that does not include markup or entity references.
Attributes of typeCDATA may contain entity references. These are expanded by an XML processor before the
attribute value is processed GZATA.

Character or expression depth Distance between the baseline and bottom edge of the character glyph or expression
Also known as the descent.

Character or expression height Distance between the baseline and top edge of the character glyph or expression. Alsc
know as the ascent.

Character or expression width Horizontal distance taken by the character glyph as indicated in the font metrics, or
the total width of an expression.

Condition A MathML content element used to place a mathematical condition on one or more variables.

Contained (element A is contained in element B)A is part of B’s content.

Container (Constructor) A non-empty MathML Content element that is used to construct a mathematical object such
as a number, set, or list.

382

Content elements MathML elements that explicitly specify the mathematical meaning of a portion of a MathML
expression (defined in Chaptéx.

Content token element Content element having onRCDATA, sep and presentation expressions as content. Represents
either an identifierdi) or a number ¢n).

Context (of a given MathML expression) Information provided during the rendering of some MathML data to the
rendering process for the given MathML expression; especially information about the MathML markup sur-
rounding the expression.

Declaration An instance of the declare element.

Depth (of a box) The distance from the baseline of the box to the bottom edge of the box.

Direct sub-expression (of a MathML expression ‘E’) A sub-expression directly contained in E.

Directly contained (element A in element B) A is a child of B (as defined in XML), in other words A is contained in
B, but not in any element that is itself contained in B.

Document Object Model A model in which the document or Web page is treated as an object repository. This model
is developed by the DOM Working Group (DOM) of the W3C.

Document Style Semantics and Specification Language (DSSSB) method of specify the formatting and transfor-
mation of SGML documents. ISO International Standard 10179:1996.

Document Type Definition (DTD) In SGML or XML, a DTD is a formal definition of the elements and the relation-
ship among the data elements (the structure) for a particular type of document.

Em A font-relative measure encoded by the font. Before electronic typesettirgy was the width of an ‘M’ in the
font. In modern usage, am is either specified by the designer of the font or is taken to be the height (point
size) of the font. Em’s are typically used for font-relative horizontal sizes.

Ex A font-relative measure that is the height of an ‘x’ in the fants are typically used for font-relative vertical sizes.

Height (of a box) The distance from the baseline of the box to the top edge of the box.

Inferred mrow Anmrow element that is ‘inferred’ around the contents of certain layout schemata when they have other
than exactly one argument. Defined precisely in Sediarb

Embedded object Embedded objects such as Java applets, Microsoft Component Object Model (COM) objects (e.g
ActiveX Controls and ActiveX Document embeddings), and plug-ins that reside in an HTML document.

Embellished operator An operator, including any ‘embellishment’ it may have, such as superscripts or style infor-
mation. The ‘embellishment’ is represented by a layout schema that contains the operator itself. Definec
precisely in Sectio.2.4

Entity reference A sequence of ASCII characters of the fo&mame ; representing some other data, typically a non-
ASCII character, a sequence of characters, or an external source of data, e.g. a file containing a set of stands
entity definitions such as ISO Latin 1.

Extensible Markup Language (XML) A simple dialect of SGML intended to enable generic SGML to be served,
received, and processed on the Web.

Fences|In typesetting, bracketing tokens like parentheses, braces, and brackets, which usually appear in matched pal

Font A patrticular collection of glyphs of a typeface of a given size, weight and style, for example ‘Times Roman Bold
12 point'.

Glyph The actual shape (bit pattern, outline) of a character. ISO/IEC Standard 9541-1:1991 defines a glyph as a re
ognizable abstract graphic symbol that is independent of any specific design.

Indirectly contained A is contained in B, but not directly contained in B.

Instance of MathML A single instance of the toplevel element of MathML, and/or a single instance of embedded
MathML in some other data format.

Inverse function A mathematical function that, when composed with the original function acts like an identity func-
tion.

Lambda expression A mathematical expression used to define a function in terms of variables and an expression in
those variables.

Layout schema (plural: schemata) A presentation element defined in chapter 3, other than the token elements and
empty elements defined there (i.e. not the elements defined in S&ctiand Sectior8.5.5 or the empty

383

elementsione andmprescripts defined in Sectior3.4.7). The layout schemata are never empty elements
(though their content may contain nothing in some cases), are always expressions, and all allow any MathM|
expressions as arguments (except for requirements on argument count, and the requirement for a certe
empty element immultiscripts).

Mathematical Markup Language (MathML) The markup language specified in this document for describing the
structure of mathematical expressions, together with a mathematical context.

MathML element An XML element that forms part of the logical structure of a MathML document.

MathML expression (within some valid MathML data) A single instance of a presentation element, except for the
empty elementsione or mprescripts, Or an instance ohalignmark within a token element (defined
below); or a single instance of certain of the content elements (see Chdpter precise definition of which
ones).

Multi-purpose Internet Mail Extensions (MIME) A set of specifications that offers a way to interchange text in lan-
guages with different character sets, and multi-media content among many different computer systems th:
use Internet mail standards.

Operator, content element A mathematical object that is applied to arguments usingtipay element.

Operator, an mo element Used to represent ordinary operators, fences, separators in MathML presentation. (The toker
elemento is defined in Sectio.2.4).

OpenMath A general representation language for communicating mathematical objects between application program:

Parsed character data PCDATA) An SGML/XML data type for raw data occurring in a context where text is parsed
and markup (for instance entity references and element start/end tags) is recognised.

Point Point is often abbreviated ‘pt’. The value of 1 pt is approximately 1/72 inch. Points are typically used to specify
absolute sizes for font-related objects.

Pre-defined function One of the empty elements defined in Sectioh.3and used with thepply construct to build
function applications.

Presentation elementsMathML tags and entities intended to express the syntactic structure of mathematical notation
(defined in Chaptes).

Presentation layout schemaA presentation element that can have other MathML elements as content.

Presentation token elementA presentation element that can contain only parsed character datamtlthenmark
element.

Qualifier A MathML content element that is used to specify the value of a specific named parameter in the applicatior
of selected pre-defined functions.

Relation A MathML content element used to construct expressions sualxds

Render Faithfully translate into application-specific form allowing native application operations to be performed.

Schema Schema (plural: schemata). See ‘presentation layout schema’.

Scope of a declarationThe portion of a MathML document in which a particular definition is active.

Selected sub-expression (of anaction element) The argument of amaction element (a layout schema defined in
Section3.6) that is (at any given time) ‘selected’ within the viewing state of a MathML renderer, or by the
selection attribute when the element exists only in MathML data. Defined precisely in the abovementioned
section.

Space-like (MathML expression) A MathML expression that is ignored by the suggested rendering rules for MathML
presentation elements when they determine operator forms and effective operator rendering attributes bas
on operator positions irow elements. Defined precisely in Secti®2.G

Standard Generalized Markup Language (SGML) An ISO standard (ISO 8879:1986) that provides a formal mech-
anism for the definition of document structure via DTDs (Document Type Definitions), and a notation for the
markup of document instances conforming to a DTD.

Sub-expression (of a MathML expression ‘E’) A MathML expression contained (directly or indirectly) in the content
of E.

Suggested rendering rules for MathML presentation elementsDefined throughout Chapt8&rthe ones that use other
terms defined here occur mainly in Secti®@.4and in Sectior.6.

384

TeX A software system developed by Professor Donald Knuth for typesetting documents.

Token element Presentation token element or a Content token element. (See above.)

Top-level element (of MathML) math (defined in Chapter).

Typeface A typeface is a specific design of a set of letters, numbers and symbols, such as ‘Times Roman’ or ‘Chicago’

Valid MathML data MathML data that (1) conforms to the MathML DTD, (2) obeys the additional rules defined in
the MathML standard for the legal contents and attribute values of each MathML element, and (3) satisfie:
the EBNF grammar for content elements.

Width (of a box) The distance from the left edge of the box to the right edge of the box.

Extensible Style Language (XSL)A style language for XML developed by W3C. See XSL FO and XSLT.

XSL Formatting Objects (XSL FO) An XML vocabulary to express formatting, which is a part of XSL.

XSL Transformation (XSLT) A language to express the transformation of XML documents into other XML docu-
ments.

385

Appendix G

Working Group Membership (Non-Normative)

The W3C Math Working Group is presently co-chaired by Patrick lon of the AMS, and Angel Diaz of IBM. Contact
the co-chairs if you are interested in joining the group. For the present membership see its workingogneypage

Members of the Working Group responsible for MathML 2.0 are:

Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
Laurent Bernardin, Waterloo Maple, Inc., Waterloo ON, CAN
Stephen Buswell, Stilo Technologies, Cardiff, UK

David Carlisle, NAG Ltd., Oxford, UK

Stéphane Dalmas, INRIA, Sophia Antipolis, FR

Stan Devitt, Radical Flow Inc., Waterloo ON, CAN

Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
Ben Hinkle, Waterloo Maple, Inc., Waterloo ON, CAN

Stephen Hunt, MATH.EDU Inc., Champaign IL, USA

Douglas Lovell, IBM Hawthorn Research, Yorktown Heights NY, USA
Patrick lon, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
Robert Miner, Geometry Technologies Inc., Minneapolis MN, USA
Ivor Philips, Boeing, Seattle WA, USA

Nico Poppelier, Penta Scope, Amersfoort, NL

Dave Raggett, W3C (Hewlett Packard), Bristol, UK

T.V. Raman, IBM Almaden, Palo Alto CA, USA

Murray Sargent I, Microsoft, Redmond WA, USA

Neil Soiffer, Wolfram Research Inc., Champaign IL, USA

Irene Schena, Universita di Bologna, Bologna, IT

Paul Topping, Design Science Inc., Long Beach CA, USA
Stephen Watt, University of Western Ontario, London ON, CAN

Earlier active members of this second W3C Math Working Group have included:

° Sam Dooley, IBM Research, Yortown Heights NY, USA
° Robert Sutor, IBM Research, Yortown Heights NY, USA
° Barry MacKichan, MacKichan Software, Las Cruces NM, USA

At the time of release of MathML 1.0 the Math Working Group was co-chaired by Patrick lon and Robert Miner, then
of the Geometry Center. Since that time several changes in membership have taken place. In the course of the updat
MathML 1.01, in addition to people listed in the original membership below, corrections were offered by David Carlisle,
Don Gignac, Kostya Serebriany, Ben Hinkle, Sebastian Rahtz, Sam Dooley and others.

Members of the Math Working Group responsible for the finished MathML 1.0 Specification were:

. Stephen Buswell, Stilo Technologies, Cardiff, UK
° Stéphane Dalmas, INRIA, Sophia Antipolis, FR

386

http://www.w3.org/Math/

Stan Devitt, Maplesoft Inc., Waterloo ON, CAN

Angel Diaz, IBM Research Division, Yorktown Heights NY, USA

Brenda Hunt, Wolfram Research Inc., Champaign IL, USA

Stephen Hunt, Wolfram Research Inc., Champaign IL, USA

Patrick lon, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
Robert Miner, Geometry Center, University of Minnesota, Minneapolis MN, USA
Nico Poppelier, Elsevier Science, Amsterdam, NL

Dave Raggett, W3C (Hewlett Packard), Bristol, UK

T.V. Raman, Adobe Inc., Mountain View CA, USA

Bruce Smith, Wolfram Research Inc., Champaign IL, USA

Neil Soiffer, Wolfram Research Inc., Champaign IL, USA

Robert Sutor, IBM Research, Yorktown Heights NY, USA

Paul Topping, Design Science Inc., Long Beach CA, USA

Stephen Watt, University of Western Ontario, London ON, CAN

Ralph Youngen, American Mathematical Society, Providence RI, USA

Others who had been members of the W3C Math WG for periods at earlier stages were:

Stephen Glim, Mathsoft Inc., Cambridge MA, USA
Arnaud Le Hors, W3C, Cambridge MA, USA

Ron Whitney, Texterity Inc., Boston MA, USA

Lauren Wood, Softquad, Surrey BC, CAN

Ka-Ping Yee, University of Waterloo, Waterloo ON, CAN

387

Appendix H

Changes (Non-Normative)

This appendix summarises the changes with respect to the preceding version (1.01) of the MathML Specification.

. changes to Chaptér(upto revision 1.20)

rewritten to reflect developments since publication of the MathML 1.0 Recommendation, for example
XML, XSL, CSS and schemas

° changes to Chapt@r(upto revision 1.23)

rewritten to reflect developments since publication of the MathML 1.0 Recommendation, for example
XML, XSL, CSS and schemas

added reference to XML recommendation

removed error in description of allowed character in attribute values

° changes to Chapt@&r(upto revision 1.39)

the attributedefinitionURL can have a URL or a URI as value
added sections abowénclose andmegno

added attributebeveled, numalign anddenomalign tomfrac, and updated text accordingly
made sure examples are correct, and fixed several typos
added sections afichar andmglyph

adjusted description afstyle andmglyph

added description aflabeledtr

added examples for actuarial notation and long division
added width attribute tatable

describe deprecated features

make use oéncoding attribute more uniform

removed inferrechtr andmtd

° changes to Chaptér(upto revision 1.39)

discuss changed use &yfply, and deprecation afeln

introducecsymbol and discuss the relation wit

introduce the new category of elementary classifical functions

introduce new content elemerdsg, real, imaginary, equivalent, approx, divergence, grad,
curl, laplacian, size, vectorproduct, scalarproduct andouterproduct

made sure examples are correct, and fixed several typos

the attributedefinitionURL can have a URL or a URI as value

revised some of the default renderings

described the use of presentation markup insitle

modified the example for root to indicate that the rendering with a radical sign is for integer degrees
only

default rendering ofiot made to match example markup

addedninus to the row for unary arithmetic in the table in section 4.2.3

388

— make use oéncoding attribute more uniform

— changed description of the usewfar in combination withnin andmax

— describe deprecated features

— make use oéncoding attribute more uniform

changes to Chaptér(upto revision 1.21)

— added description of content-faithful transformation

— updated to usesymbol and notfn in examples

— define list of content that can appear in presentation

— add attributexref for cross-referencing purposes

— added brief description of the element, 0MS and0OMV

— added examples using XLink and namespaces

— make use oéncoding attribute more uniform

— miscellaneous typographical corrections

changes to Chaptér(upto revision 1.9) chap6 modifications, linking to tables

— none

changes to Chapté&r(upto revision 1.25)

— rewrote introductory text in section 7.2 and all text of section 7.2.1

— rewrote many statements in future tense to present or past tense

— reworked the text in acknowledgement of the fact that the top-level and interface elements for MathML
are now in practice the same

— rewrote the text about linking in accordance with the new XLink draft

— revisited the material about interactions with embedded renderers to reflect the current state of DOM
implementation

— made sure examples are correct, and fixed several typos

— describe deprecated features

— make use oéncoding attribute more uniform

— rewrote text extensively to describe namespaces and CSS behaviors

changes to Chapt@&r(upto revision 1.5)

— thisis a completely new chapter

— moved IDL definitions to a new, non-normative appendix

changes to Appendi% (upto revision 1.15)

— renamed attributeccurence to occurrence

— added global attributeref

— add links to tables for each entity set

changes to Appendik (upto revision 1.7)

— none

changes to Appendi€ (upto revision 1.15)

— completely rewritten

changes to Appendi® (upto revision 1.14)

— entries in operator dictionary are parametrized

— operator dictionary has become non-normative part of the specification

— new entries were added to operator dictionary

changes to Appendik (upto revision 1.19)

— thisis a completely new appendix, containing the IDL definitions that used to be in chapter 8

— several interfaces were changed

— addxzmlns attribute declarations toone, sep andmprescripts

— added various attributes and methods to reflect changes in the spec

— replaced interface MathMLCollection with MathMLDOMImplementation

— extended list of elements supported by interface MathMLpredefinedSymbol

389

— reconcile various inconsistent uses of methods

changes to Appendik (upto revision 1.14)

— added entries for XSL, XSLT and XSL FO

changes to Appendis (upto revision 1.11)

— all members of first and second Math working group are listed

— new addresses for Maple

— removed ‘Publishers’ from affiliation of NP

changes to Appendii (upto revision 1.14)

— completely new appendix, based on the logs obtained from CVS

changes to Appendix(upto revision 1.11)

— added entry for XML Recommendation

— added documents about XML Schemas

— added entry for other W3C documents

— changed first author of reference 5 to ‘Chaundy’

— added revised edition of Ellen Swanson’s book

general changes

— text of specification now in XML form, with HTML and XHTML rendering by means of XSLT, and
PDF rendering by means of XSLT angXl

— fixed errors in spelling and notation

— normative examples of formulae are images, with agxadquivalent

— non-normative examples of formulae are HTML constructions wherever possible

— improved cross-referencing

390

Appendix |

References (Non-Normative)

391

Bibliography

[Bray1998] Bray, Tim, Jean Paoli and C.M. Sperberg-Mcqueéttensible Markup Language 1.0, 10 February 1998,
http://www.w3.0rg/TR/1998/REC-xml-19980210.

[Buswell1996] Buswell, S., Healey, E.R. Pike, and M. Pik&ML and the Semantic Representation of Mathematics,

UIUC Digital Library Initiative SGML Mathematics Workshop, May 1996 and SGML Europe 96 Conference,
Munich 1996.

[Cajoril928] Cajori, Florian;A History of Mathematical Notations, vol. | & Il. Open Court Publishing Co., La Salle
lllinois, 1928 & 1929 republished Dover Publications Inc., New York, 1993, xxviii+820 pp. ISBN 0-486-67766-4
(paperback).

[Carroll1871] Carroll, Lewis [Rev. C.L. Dodgson]lhrough the Looking Glass and What Alice Found There, Macmil-
lian & Co., 1871.

[Chaundy1954]Chaundy, T.W., P.R. Barrett, and C. Batélie Printing of Mathematics. Aids for authors and editors
and rules for compositors and readers at the University Press, Oxford, Oxford University Press, London, 1954,
ix+105 pp.

[Drucker1997] Drucker, Peter; Forbes, 10 Mar 1997 [quoted by Gene Klotz].

[Higham1993] Higham, Nicholas J.Handbook of writing for the mathematical sciences. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1993. xii+241 pp. ISBN: 0-89871-314-5.

[Knuth1986] Knuth, Donald E. ,The TgXbook. American Mathematical Society, Providence, Rl and Addison-Wesley
Publ. Co., Reading, MA, 1986, ix+483 pp. ISBN: 0-201-13448-9.

[LieBos1996] Lie, Hakon Wium and Bert Bos; Cascading Style Sheets, level 1, W3C Recommendation, 17 Dec 1996
http://www.w3.org/pub/WWW/TR/REC-CSS1.

[OpenMath1996]OpenMath Release 1, December 1996; www.openmath.org.

[Piercel961]Pierce, John R.An Introduction to Information Theory. Symbols, Signals and Noise., Revised edition
of Symbols, Signals and Noise: the Nature and Process of Communication (1961). Dover Publications Inc., New
York, 1980, xii+305 pp. ISBN 0-486-24061-4.

[Poppelier1992]Poppelier, N.A.F.M., E. van Herwijnen, and C.A. Rowl&yandard DTD’s and Scientific Publishing,
EPSIG News 5 (1992) #3, September 1992, 10-19.

[HTML4.0] Raggett, Dave, Arnaud Le Hors and lan Jacobs; HTML 4.0 Specification, 18 Dec 1997,
http://www.w3.0rg/TR/REC-html40/; section on data types.

[Spivak1986] Spivak, M. D.The Joy of TEX A gourmet guide to typesetting with the AMS-TgX macro package. Amer-
ican Mathematical Society, Providence, RI, MA 1986, xviii+290 pp. ISBN: 0-8218-2999-8.

[Swanson1979]Swanson, EllenMathematics into type. Copy editing and proofreading of mathematics for editorial
assistants and authors. Revised edition. American Mathematical Society, Providence, R.l., 1979. x+90 pp. ISBN:
0-8218-0053-1.

[Swanson1999]Swanson, EllenMathematics into type: Updated Edition. American Mathematical Society, Provi-
dence, R.I., 1999. 102 pp. ISBN: 0-8218-1961-5.

[XLink] DeRose, Steve, David Orchard and Ben Trafford (editoX®)L. Linking Language (XLink). World-Wide
Web Consortium working draft, July 199%t{p://www.w3.org/TR/xIink

[XPointer] Steve DeRose, Ron Daniel, Eve Maler (editot§ML Pointer Language (XPointer). World-Wide Web
Consortium working draft, Decemeber 1998itp://www.w3.org/TR/xpty

392

http://www.w3.org/TR/xlink
http://www.w3.org/TR/xptr

[XSLT] Clark, James (editofXSL Transformations (XSLT), version 1.0. World-Wide Web Consortium, October 1999.
(http://www.w3.0rg/TR/xsk

[Namespaces]lim Bray, Dave Hollander, Andrew Layman (editof$ymespaces in XML World-Wide Web Consor-
tium, January 1999 hftp://www.w3.org/TR/REC-xml-nameés/

[Behaviors] Vidur Apparao, Daniel Glazman, Chris Wilson (editoBdhavioral Extensions to CSS World-Wide Web
Consortium, September 199%iip:// www.w3.0rg/TR/bec3s

[DOM] Lauren Wood, Arnaud Le Hors, Vidur Apparao, Laurence Cable, Mike Champion, Joe Kesselman, Philippe Le
H?ret, Tom Pixley, Jonathan Robie, Peter Sharpe, Chris Wilson (ed@otsiment Object Model (DOM) Level
2 Specification World-Wide Web Consortium, December 1998ttf://www.w3.0rg/TR/DOM-Level-2/

[XHTML1.0] Steve Pemberton et al. (authoPSTML [tm] 1.0: The Extensible HyperText Markup Language \World-
Wide Web Consortium, January 2000ttp://www.w3.org/TR/xhtml1y

[XHTML1.1] Murray Altheim, Shane McCarron (editolXHTML[tm] 1.1: Module-based XHTML World-Wide Web
Consortium, January 2000t(p://www.w3.org/TR/xhtmI1)/

[Modularization] Murray Altheim, Frank Boumphrey, Sam Dooley, Shane McCarron, Ted Wugofski (editloxs)lar-
ization of XHTML World-Wide Web Consortium, January 2000ttp://www.w3.org/TR/xhtml-modularization/

[Building] Murray Altheim, Shane McCarron (editorB)iilding XHTML Modules World-Wide Web Consortium, Jan-
uary 2000. [ttp://www.w3.org/TR/xhtml-building/

[XMLSchemas] Ashok Malhotra and Murray Maloney(authotXML Schema Requirements, W3C Note 15 February
1999 World-Wide Web Consortium, February 1998tt0://www.w3.0rg/TR/NOTE-xml-schema-rgq/

393

http://www.w3.org/TR/xslt
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/becss
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xhtml-modularization/
http://www.w3.org/TR/xhtml-building/
http://www.w3.org/TR/xhtml1/

	Mathematical Markup Language Specification
	Introduction
	Mathematics and its Notation
	Origins and Goals
	The History of MathML
	Acknowledgments
	Limitations of HTML
	Requirements for Mathematics Markup
	Design Goals of MathML

	The Role of MathML on the Web
	Layered Design of Mathematical Web Services
	Relation to Other Web Technology
	Existing Mathematical Markup Languages
	HTML Extension Mechanisms
	Browser Extension Mechanisms

	MathML Fundamentals
	MathML Overview
	Taxonomy of MathML Elements
	Presentation Markup
	Content Markup
	Mixing Presentation and Content

	Some MathML Examples
	Presentation Examples
	Content Examples
	Mixed Markup Examples

	MathML Syntax and Grammar
	MathML Syntax and Grammar
	An XML Syntax Primer
	Children versus Arguments
	MathML Attribute Values
	Syntax notations used in the MathML specification
	Attributes with units
	CSS-compatible attributes
	Default values of attributes
	Attribute values in the MathML DTD

	Attributes Shared by all MathML Elements
	Collapsing Whitespace in Input

	Presentation Markup
	Introduction
	What Presentation Elements Represent
	Terminology Used In This Chapter
	Types of presentation elements
	Terminology for other classes of elements and their relationships

	Required Arguments
	Inferred mrows
	Table of argument requirements

	Elements with Special Behaviors
	Summary of Presentation Elements
	Token Elements
	General Layout Schemata
	Script and Limit Schemata
	Tables and Matrices
	Enlivening Expressions

	Token Elements
	Attributes common to token elements
	Identifier (mi)
	Description
	Attributes
	Examples

	Number (mn)
	Description
	Attributes
	Examples
	Numbers that should not be written using mn alone

	Operator, Fence, Separator or Accent (mo)
	Description
	Attributes
	Examples with ordinary operators
	Examples with fences and separators
	Invisible operators
	Names for other special operators
	Detailed rendering rules for mo elements
	Stretching of operators, fences and accents
	Other attributes of mo

	Text (mtext)
	Description
	Attributes
	Examples
	Mixing text and mathematics

	Space (mspace)
	Description
	Attributes
	Definition of space-like elements
	Legal grouping of space-like elements

	String Literal (ms)
	Description
	Attributes

	Referring to non-ASCII characters (mchar)
	Description
	Attributes of mchar
	Examples

	Adding new character glyphs to MathML (mglyph)
	Description
	Attributes
	Example

	General Layout Schemata
	Horizontally Group Sub-Expressions (mrow)
	Description
	Attributes
	Proper grouping of sub-expressions using mrow
	Examples

	Fractions (mfrac)
	Description
	Attributes of mfrac
	Examples

	Radicals (msqrt, mroot)
	Description
	Attributes

	Style Change (mstyle)
	Description
	Attributes
	Examples

	Error Message (merror)
	Description
	Attributes
	Example

	Adjust Space Around Content (mpadded)
	Description
	Attributes
	Meanings of dimension attributes
	Warning: nonportability of `tweaking'
	Warning: spacing should not be used to convey meaning

	Making Content Invisible (mphantom)
	Description
	Attributes
	Examples

	Content Inside Pair of Fences (mfenced)
	Description
	Attributes
	Examples

	Enclose Content Inside Notation (menclose)
	Description
	Attributes
	Examples

	Script and Limit Schemata
	Subscript (msub)
	Description
	Attributes

	Superscript (msup)
	Description
	Attributes

	Subscript-superscript Pair (msubsup)
	Description
	Attributes
	Examples

	Underscript (munder)
	Description
	Attributes
	Examples

	Overscript (mover)
	Description
	Attributes
	Examples

	Underscript-overscript Pair (munderover)
	Description
	Attributes
	Examples

	Prescripts and Tensor Indices (mmultiscripts)
	Description
	Attributes
	Examples

	Tables and Matrices
	Table or Matrix (mtable)
	Description
	Attributes
	Examples

	Row in Table or Matrix (mtr)
	Description
	Attributes

	Labeled Row in Table or Matrix (mlabeledtr)
	Description
	Attributes
	Equation Numbering

	Entry in Table or Matrix (mtd)
	Description
	Attributes

	Alignment Markers
	Description
	Specifying alignment groups
	Table cells that are not divided into alignment groups
	Specifying alignment points using malignmark
	Attributes
	Attributes
	Inheritance of groupalign values
	MathML representation of an alignment example
	Further details of alignment elements
	A simple alignment algorithm

	Enlivening Expressions
	Bind Action to Sub-Expression (maction)

	Content Markup
	Introduction
	The Intent of Content Markup
	The Scope of Content Markup
	Basic Concepts of Content Markup

	Content Element Usage Guide
	Overview of Syntax and Usage
	Constructing Mathematical Objects
	Constructing General Expressions
	The apply construct
	Explicitly defined functions and operators
	The inverse construct
	The declare construct
	The lambda construct
	The use of qualifier elements and the condition construct
	Rendering of Content elements

	Containers
	Tokens
	Constructors
	Special Constructs

	Functions, Operators and Qualifiers
	Predefined functions and operators
	Operators taking Qualifiers

	Relations
	Conditions
	Examples

	Syntax and Semantics
	Semantic Mappings
	Constants and Symbols
	MathML element types

	Content Element Attributes
	Content Element Attribute Values
	Attributes Modifying Content Markup Semantics
	 base
	 closure
	 definitionURL
	 encoding
	 nargs
	 occurrence
	 order
	 scope
	 type

	Attributes Modifying Content Markup Rendering
	 type
	General Attributes

	The Content Markup Elements
	Token Elements
	Number (cn)
	Identifier (ci)
	Externally defined symbol (csymbol)

	Basic Content Elements
	Apply (apply)
	Relation (reln)
	Function (fn)
	Interval (interval)
	Inverse (inverse)
	Separator (sep)
	Condition (condition)
	Declare (declare)
	Lambda (lambda)
	Function composition (compose)
	Identity function (ident)

	Arithmetic, Algebra and Logic
	Quotient (quotient)
	Factorial (factorial)
	Division (divide)
	Maximum and minimum (max, min)
	Subtraction (minus)
	Addition (plus)
	Exponentiation (power)
	Remainder (rem)
	Multiplication (times)
	Root (root)
	Greatest common divisor (gcd)
	And (and)
	Or (or)
	Exclusive Or (xor)
	Not (not)
	Implies (implies)
	Universal quantifier (forall)
	Existential quantifier (exists)
	Absolute Value (abs)
	Complex conjugate (conjugate)
	Argument (arg)
	Real part (real)
	Imaginary part (imaginary)
	Lowest common multiple (lcm)

	Relations
	Equals (eq)
	Not Equals (neq)
	Greater than (gt)
	Less Than (lt)
	Greater Than or Equal (geq)
	Less Than or Equal (leq)
	Equivalent (equivalent)
	Approximately (approx)

	Calculus and Vector Calculus
	Integral (int)
	Differentiation (diff)
	Partial Differentiation (partialdiff)
	Lower limit (lowlimit)
	Upper limit (uplimit)
	Bound variable (bvar)
	Degree (degree)
	Divergence (divergence)
	Gradient (grad)
	Curl (curl)
	Laplacian (laplacian)

	Theory of Sets
	Set (set)
	List (list)
	Union (union)
	Intersect (intersect)
	Set inclusion (in)
	Set exclusion (notin)
	Subset (subset)
	Proper Subset (prsubset)
	Not Subset (notsubset)
	Not Proper Subset (notprsubset)
	Set Difference (setdiff)
	Cardinality (card)

	Sequences and Series
	Sum (sum)
	Product (product)
	Limit (limit)
	Tends To (tendsto)

	Elementary classical functions
	Discussion
	Examples
	Default Rendering
	Exponential (exp)
	Natural Logarithm (ln)
	Logarithm (log)

	Statistics
	Mean (mean)
	Standard Deviation (sdev)
	Variance (variance)
	Median (median)
	Mode (mode)
	Moment (moment)

	Linear Algebra
	Vector (vector)
	Matrix (matrix)
	Matrix row (matrixrow)
	Determinant (determinant)
	Transpose (transpose)
	Selector (selector)
	Vector product (vectorproduct)
	Scalar product (scalarproduct)
	Outer product (outerproduct)

	Semantic Mapping Elements
	Annotation (annotation)
	Semantics (semantics)
	XML-based annotation (annotation-xml)

	Constant and Symbol Elements
	integers (integers)
	reals (reals)
	rationals (reals)
	naturalnumbers (naturalnumbers)
	complexes (complexes)
	primes (primes)
	exponentiale (exponentiale)
	imaginaryi (imaginaryi)
	notanumber (notanumber)
	true (true)
	false (false)
	emptyset (emptyset)
	pi (pi)
	eulergamma (eulergamma)
	infinity (infinity)

	Combining Presentation and Content Markup
	Why Two Different Kinds of Markup?
	Mixed Markup
	Reasons to Mix Markup
	Combinations that are prohibited
	Presentation Markup Contained in Content Markup
	Content Markup Contained in Presentation Markup

	Parallel Markup
	Top-level Parallel Markup
	Fine-grained Parallel Markup
	Parallel Markup via Cross-References: id and xref
	Annotation Cross-References using XLink: id and href

	Tools, Style Sheets and Macros for Combined Markup
	Notational Style Sheets
	Content-Faithful Transformations
	Style Sheets for Extensions

	Characters, Entities and Fonts
	Introduction
	The Intent of Character Names
	The STIX Project
	Character Listings
	Non-Marking Characters
	Printing Character Symbol Listings
	Special Constants
	Alphabetical Lists
	ISO Character Set Groupings
	ISO Symbol Sets
	ISO Character Sets for Mathematics Alphabets

	The MathML Interface
	Embedding MathML in other Documents
	MathML and Namespaces
	Document Validation Issues
	Compatibility Suggestions

	The Top-Level math Element
	Invoking MathML Processors
	Mixing and Linking MathML and HTML
	Linking
	Images

	Generating, Processing and Rendering MathML
	MathML Compliance
	Deprecated MathML 1.x Features

	Handling of Errors
	Attributes for unspecified data

	Future Extensions
	Macros and Style Sheets
	XML Extensions to MathML

	Document Object Model for MathML
	Introduction
	MathML DOM Extensions
	Style Issues and Implied Attribute Values
	Traversal and Range Interfaces

	Parsing MathML
	The MathML DTD

	Content Markup Validation Grammar
	Content Element Definitions
	About Content Markup Elements
	The Default Definitions
	The Structure of an MMLdefinition.

	Definitions of MathML Content Elements
	Leaf Elements
	cn
	ci

	Basic Content Element
	apply
	reln
	fn
	interval
	inverse
	sep
	condition
	declare
	lambda
	compose
	ident

	Arithmetic, Algebra and Logic
	quotient
	exp
	factorial
	divide
	max
	min
	minus
	plus
	power
	rem
	times
	root
	gcd
	and
	or
	xor
	not
	implies
	forall
	exists
	abs
	conjugate
	arg
	real
	imaginary

	Relations
	eq
	neq
	gt
	lt
	geq
	leq

	Calculus
	ln
	log
	int
	diff
	partialdiff
	lowlimit
	uplimit
	bvar
	degree

	Theory of Sets
	set
	list
	union
	intersect
	in
	notin
	subset
	prsubset
	notsubset
	notprsubset
	setdiff

	Sequences and Series
	sum
	product
	limit
	tendsto

	Trigonometry
	sin
	cos
	tan
	sec
	csc
	cot
	sinh
	cosh
	tanh
	sech
	csch
	coth
	arcsin
	arccos
	arctan

	Statistics
	mean
	sdev
	variance
	median
	mode
	moment

	Lineary Algebra
	vector
	matrix
	matrixrow
	determinant
	transpose
	selector

	Operator Dictionary (Non-Normative)
	Format of operator dictionary entries
	Indexing of operator dictionary
	Choice of entity names
	Notes on lspace and rspace attributes
	Operator dictionary entries

	Document Object Model for MathML (Non-Normative)
	IDL Interfaces
	Miscellaneous Object Definitions
	Generic MathML Elements
	Presentation Elements
	Leaf Presentation Element Interfaces
	Presentation Token Element Interfaces
	Presentation Container Interfaces
	Presentation Schemata Interfaces

	Content Elements
	Content Token Interfaces
	Content Container Interfaces
	Content Leaf Element Interfaces
	Other Content Element Interfaces

	Glossary (Non-Normative)
	Working Group Membership (Non-Normative)
	Changes (Non-Normative)
	References (Non-Normative)

